晚期恶性肿瘤继发肝门静脉积气2例并文献复习
Hepatic Portal Venous Gas Associated with Advanced Malignant Tumors: Two Case Report and Literature Review
摘要: 该病例报告首次报道了2例晚期肿瘤患者经过不同方式治疗后继发肝门静脉积气这一罕见并发症。并通过文献检索及文献复习,从发病机制角度系统的分析了2例患者的并发原因,阐述了肠黏膜受损导致门脉积气的关键因素,对晚期肿瘤患者相关并发症的临床表现有一定的诊断参考价值。
Abstract: This case report presents the first documentation of a rare complication of hepatic portal venous gas in two patients with advanced tumors, following different treatments. Through literature search and review, the report systematically analyzes the causes of complications in these two patients from the pathogenetic perspective, elucidating the key factors of intestinal mucosal damage leading to hepatic portal venous gas. It offers significant diagnostic reference for the clinical presentation of related complications in patients with advanced tumors.
文章引用:雷佩捷, 姜韬, 曹连静, 傅佳雷, 魏小娟, 程敬敬, 田娇, 张红军. 晚期恶性肿瘤继发肝门静脉积气2例并文献复习[J]. 世界肿瘤研究, 2024, 14(2): 67-72. https://doi.org/10.12677/wjcr.2024.142010

1. 引言

晚期肿瘤患者在多种治疗模式中出现的罕见并发症备受关注,其中肝门静脉积气(Hepatic Portal Venous Gas, HPVG)作为一种少见但危重的放射学表现,对于临床医生而言具有一定的挑战性 [1] 。本文通过两例晚期肿瘤患者的病例报告,系统描述了其在治疗过程中出现的HPVG,并通过文献检索及复习探讨了这一并发症的发病机制。这两例病例分别涉及胰腺癌和直肠癌患者,分别在高强度聚焦超声消融(HIFU)姑息治疗和化疗过程中出现HPVG。这提示了治疗方式可能与HPVG的发生及预后相关,尤其是在晚期肿瘤患者中 [2] [3] [4] 。我们的讨论旨在深化对于晚期肿瘤患者并发HPVG的理解,并提供对于这一临床问题的更多见解,以指导今后类似病例的诊断和治疗。在面对罕见且严重的并发症时,特别是涉及到门静脉系统的情况下,对于治疗选择的审慎考虑显得尤为重要。

2. 病例报告

病例1:患者男性,58岁,2020-11因“腹痛伴皮肤巩膜黄染”就诊于上海交通大学附属瑞金医院,行腹部MRI检查示:胰头占位性病变,考虑胰腺癌可能性大。遂行“胰十二指肠切除术”,术后病理示:中分化导管腺癌(普通型),胰周淋巴结(1/6)见癌转移。术后于当地医院行4周期辅助化疗:(吉西他滨d1、d8 + 白蛋白紫杉醇d1、d8,q3w)。2022-04因“腹痛”行腹部MRI检查示:肝脏转移瘤;腹膜后多发异常强化灶,不除外转移。分别于2022-04及2022-05行2周期静脉化疗:吉西他滨 + 替吉奥,q3w (具体剂量不详)。2022-06月行腹部放疗(具体剂量及靶区范围不详)。2022-10-25复查腹部增强MRI检查示(图1(A)):胰腺癌胰十二指肠切除术后MR所见;肝脏转移瘤较前增大;腹膜后多发异常强化灶,不除外转移,较前略增大。诊断为胰腺恶性肿瘤术后复发,分期为rTxNxM1 Ⅳ期。于2022-10-26行HIFU姑息治疗,术后约20小时出现呕吐,呕吐物为咖啡样胃内容物约200 ml,胃引流管内咖啡色液体约150 ml,伴明显腹痛、腹胀,伴发热,体温最高38.9℃,未排气排便,小便正常。急查上腹部CT示(图1(B)~(D)):胃部分缺如,可见吻合线影;肝脏形态欠规整,肝实质密度不均匀;肝内外胆管扩张积气,考虑门静脉积气,腹腔内脂肪间隙模糊,见大量气体影。患者病情危重转入重症医学科治疗,给予V-A ECMO置管,大量补液、输血维持循环;因下腔静脉积气明显,ECMO运转困难,需手摇ECMO运行。患者腹胀进行性加重,为缓解症状行腹腔穿刺放气,后患者病情进行性恶化,感染性休克难以纠正,于2022-10-27宣布临床死亡。

病例2:患者男性,56岁,2022-09因“大便习惯改变1年余,直肠癌肝转移5周期化疗后”就诊于我院,患者1年余前无明显诱因出现大便次数增多,伴少量鲜血、黑便、粘液样便,伴腹痛、里急后重、肛门坠胀感,无其他伴随症状。行肠镜检查示:进镜至直肠可见环周肿物,管腔狭窄,结肠镜不能通过,病变仅有少部分外露,活检质软。病理示:(直肠)结肠黏膜组织,局灶腺体高级别异型增生并癌变–腺癌(高–中分化),未见确切黏膜肌层侵犯。完善影像学检查,上腹部CT动态增强扫描示:肝内多发异常强化灶,转移可能性大。基因检测示KRAS、NRAS、BRAF均为野生型。诊断为直肠恶性肿瘤,分期为cT3cN2M1,Ⅳ期。于2022-10至2023-02行第1-5周期mFOLFOX6 + 西妥昔单抗方案治疗(奥沙利铂150 mg d1 + 左亚叶酸钙300 mg d1 + 氟尿嘧啶0.6g iv d1 + 氟尿嘧啶4.0g civ 46h + 西妥昔单抗800 mg d1),过程顺利,期间疗效评价PR。于2023-03-07行第6周期全身化疗,进食较多量“水饺”后出现腹胀、左下腹痛,急查腹部CT (图2(A))未见明显梗阻征象,遂予以患者乳果糖及开塞露通便、培菲康改善肠道菌群、补液等对症治疗。患者于2023-03-08服用15 ml乳果糖后出现持续性腹泻,12小时内约十余次,为水样便,颜色淡红色,伴乏力,予以蒙脱石散及盐酸洛哌丁胺胶囊止泻治疗效果不佳。于2023-03-09急查全腹部增强CT示(图2(B)~(D)):肝内多发积气,门静脉左支扩张,内见多发气体密度影;腹腔内少量液体密度影,考虑门静脉左支及部分分支积气可能性大;小肠梗阻,部分小肠肠壁积气;肠系膜静脉积气。考虑病情危重转入重症医学科治疗,患者继发感染性休克及多脏器功能衰竭(循环 血液 肾脏),且氧和进行性下降,患者家属放弃治疗并自动出院。

(A):2022-10-25腹部增强MR,箭头处可见肝转移瘤;(B)、(C):2022-10-27腹部CT检查,可见明显肝门静脉积气表现,“鸭爪征”;(D):腹腔大量气体影。

Figure 1. Case 1 patient with HPVG complication before enhanced MRI examination of the abdomen (A) and CT examination of the abdomen after HPVG complication (B)~(D)

图1. 病例1患者并发HPVG前腹部增强MRI检查(A)及并发HPVG后腹部CT检查(B)~(D)

(A):2023-03-08 腹部CT检查,箭头处为肝转移瘤;(B):2023-03-09 腹部增强CT检查,肝门静脉积气征;(C):门静脉积气;(D):肠系膜静脉积气,小肠肠壁积气。

Figure 2. Case 2 patient’s abdominal CT examination before concurrent HPVG (A) and enhanced CT examination of the upper abdomen after concurrent HPVG (B)~(D)

图2. 病例2患者并发HPVG前腹部CT检查(A)及并发HPVG后上腹部增强CT检查(B)~(D)

3. 讨论

肝门静脉积气(Hepatic portal venous gas, HPVG)是一种较为罕见的影像学表现,源于气体在门脉系统及其肝内分支的异常积聚,导致门静脉通畅受阻。该病变可以由多种诱因引起,其中最常见的是肠缺血和坏死。此外,败血症和腹部感染等非消化系统疾病也可能出现这种表现 [5] 。现有研究表明,HPVG主要由肠缺血、腹腔脓肿、坏死性小肠结肠炎、腹部创伤、感染性肠炎和炎症性肠病引起 [6] ,但肿瘤患者并发HPVG的病例在临床中十分罕见。在一项纳入182例HPVG患者的回顾性研究统计分析中,患者死亡率达到39%,但其中合并腹腔肿瘤的患者仅有3% [7] 。HPVG的主要发病机制源于多方面,肠道屏障受损肠道内压力增高、肠道内产气过多或气体吸收减少,均会增加门静脉系统内气体的负荷,导致HPVG [8] 。此外,肝脏肿瘤也会导致肝门静脉积气 [9] ,由于门静脉血流受阻、血液滞留,气体不能有效排出。

病例1患者系胰腺恶性肿瘤并肝转移,行HIFU姑息治疗后出现肝门静脉积气。HIFU是一种非侵入性加热和消融的技术 [10] ,近年来被广泛应用于胰腺恶性肿瘤的姑息性治疗,可以有效缓解肿瘤相关性疼痛,与全身化疗联合为患者提供生存获益,且很少发生较为明显的副作用 [11] ,常见的副反应包括局部疼痛、皮肤灼伤和神经损伤等。当应用于消化系统疾病时,可能出现恶心、呕吐和腹泻等不适,然而目前尚未见HIFU术后并发HPVG的相关报道。该患者HIFU术后第一天即出现恶心、呕吐及呕血等症状,不除外术后应激性溃疡引起消化道屏障受损、上消化道出血、急性胰腺炎等急性并发症,从而诱发HPVG。

病例2患者系直肠恶性肿瘤并肝转移,该患者行mFOLFOX6 + 西妥昔单抗方案化疗后出现腹胀、腹痛,服用乳果糖后出现腹泻,并发肝门静脉积气。化疗联合靶向治疗是晚期消化道肿瘤最常用的治疗方法之一,常常会引发诸多不良反应事件,其中包括肠黏膜损伤。化疗药物在杀伤肿瘤细胞的同时会影响正常肠道上皮细胞的DNA合成和修复,进而导致肠黏膜受损。肠黏膜屏障损伤会导致肠道上皮细胞的凋亡及细胞代谢紊乱 [12] ,加剧肠上皮细胞的氧化应激 [13] ,同时还能使肠道细菌和毒素进入血液循环,引起感染和全身炎症反应 [2] [14] 。除此之外,腹泻则是肠黏膜受损最常见的不良反应之一,在晚期肿瘤患者中,由化疗引起的腹泻发生率高达50%~80% [15] ,尤其是经过多周期全身化疗后的患者,此类患者肠黏膜屏障功能往往较差,更加容易导致不良反应事件的发生。乳果糖是临床中广泛用于治疗慢性便秘的渗透性泻药,临床证实有较高的安全性及有效性 [16] ,其药理作用主要是在结肠中被肠道菌群转化成有机酸,使肠道内pH值下降,通过增加肠道内的水分及容积,促进肠蠕动,进而缓解便秘。此外,有研究表明,乳果糖还能够促进肠道微生物群生长,维持肠道微生态平衡,恢复肠道微生物群的结构和组成,减轻炎症,并抑制炎性肿瘤的发生 [17] 。既往有实验表明,乳果糖可被多种肠道细菌代谢,增加乳酸杆菌及双歧杆菌丰度,而降低拟杆菌属和梭菌属丰度 [18] 。乳果糖的安全性较高,在极少数情况下可能会出现腹胀、腹泻、恶心和呕吐等不良反应,但应用乳果糖后并发HPVG的相关病例此前未见报道。该患者服用乳果糖后继而出现持续性腹泻,不除外与消化道肿瘤化疗后肠道黏膜受损及肠道屏障受到破坏有关。服用乳果糖后持续性腹泻可能会导致肠黏膜屏障进一步受损,引发肠道炎症反应及肠道菌群失调,从而代谢产生大量气体,并通过受损的肠黏膜逃逸至黏膜下层,进入肠系膜及门脉系统最终形成HPVG。

上述2例患者在并发HPVG后,病情均迅速恶化,并发感染性休克及多器官功能衰竭。近年来随着诊疗手段的进步,HPVG患者的死亡率在逐渐下降,但晚期恶性肿瘤患者身体一般情况较差,尤其是消化道肿瘤并肝转移患者,此类患者的肠道屏障功能明显减退,肠道菌群情况复杂,同时肝脏局部可因转移瘤导致门静脉系统回流受阻,这些高危因素均可以导致患者并发HPVG。

4. 结论

对于HPVG的诊断和治疗,本文为未来类似病例提供了参考。在晚期肿瘤患者中,尤其需要关注治疗相关的不良反应。当晚期肿瘤患者并发HPVG后,因患者一般情况差,多数无法耐受急症手术,且易发生菌血症继而发生感染性休克,往往预示患者预后较差。在临床诊疗中,我们应当更加关注晚期肿瘤患者常规治疗的不良反应及相关并发症,高度重视HPVG,当出现严重胃肠道不良反应后,及时通过影像学检查评估是否并发HPVG,并对症处理,避免出现误诊或漏诊。尽管HPVG的发病机制复杂,但我们对其认识的深化有助于改善对晚期肿瘤患者并发症的诊断和治疗水平。进一步的研究应致力于揭示晚期肿瘤患者并发HPVG的具体机制,从而有助于改善对晚期肿瘤患者并发症的诊断和处理水平。

NOTES

*通讯作者。

参考文献

[1] Mehl, L., Schmidt, C., Weidner, U. and Lock, G. (2023) Sonographically Detected Hepatic Portal Venous Gas—Preva-lence, Causes, and Clinical Implications. Ultraschall in der Medizin, 44, 408-413.
https://doi.org/10.1055/a-1797-9986
[2] Tian, C., Bai, Y., Ma, Q.B. and Ge, H.X. (2023) Clinical Characteristics of 7 Cases of Hepatic Portal Venous Gas. Beijing Da Xue Xue Bao Yi Xue Ban, 55, 743-747.
[3] Ortega, J., Hayes, J.M. and Antonia, S. (2009) Hepatic Portal Venous Gas in a Patient with Metastatic Non-Small Cell Lung Cancer on Bevacizumab Therapy: A Case Report and Review of the Literature. Cancer Chemotherapy and Pharmacology, 65, 187-190.
https://doi.org/10.1007/s00280-009-1104-8
[4] Wu, Y., Yang, G., Li, Z., Wu, Z., Rong, X., Yin, F., Li, L., Xia, Q. and Li, Y. (2023) Conservative Treatment of Hepatic portal Vein Gas after Transarterial Chemoembolization Treatment for Liver Metastasis of Postoperative Esophageal Cancer: A Case Report. Journal of Gastrointestinal Oncology, 14, 1166-1174.
https://doi.org/10.21037/jgo-23-213
[5] Sebastià, C., Quiroga, S., Espin, E., Boyé, R., Alvarez-Castells, A. and Armengol, M. (2000) Portomesenteric Vein Gas: Pathologic Mechanisms, CT Findings, and Prognosis. Radiographics, 20, 1213-1224.
https://doi.org/10.1148/radiographics.20.5.g00se011213
[6] Zhang, Y., Liu, H.L., Tang, M., Wang, H., Jiang, H.H. and Lin, M.B. (2022) Clinical Features and Management of 20 Patients with Hepatic Portal Venous Gas. Experimental and Therapeutic Medicine, 24, Article No. 525.
https://doi.org/10.3892/etm.2022.11452
[7] Kinoshita, H., Shinozaki, M., Tanimura, H., Umemoto, Y., Sakaguchi, S., Takifuji, K., Kawasaki, S., Hayashi, H. and Yamaue, H. (2001) Clinical Features and Management of Hepatic Portal Venous Gas: Four Case Reports and Cumulative Review of the Literature. Archives of Surgery, 136, 1410-1414.
https://doi.org/10.1001/archsurg.136.12.1410
[8] Laharwal, M., Orosz, E., Law, C. and Patel, A.V. (2020) Hepatic Portal Venous Gas Associated with Colon Adenocarcinoma. QJM: An International Journal of Medicine, 113, 762-763.
https://doi.org/10.1093/qjmed/hcaa033
[9] Karabulut, U.E., Gultekin, M.A., Sari, L. and Kılınc, Y.B. (2022) A Case of Intratumoral and Hepatic Portal Venous Gas in Patient with Gastric Cancer Liver Metastases. Current Medical Imaging, 18, 263-265.
https://doi.org/10.2174/1573405617666211018112041
[10] Ter Haar, G. (2016) HIFU Tissue Ablation: Concept and Devices. In: Escoffre, JM. and Bouakaz, A. Eds., Therapeutic Ultrasound, Advances in Experimental Medicine and Biology, Vol. 880, Springer, Cham, 3-20.
https://doi.org/10.1007/978-3-319-22536-4_1
[11] Khokhlova, T.D. and Hwang, J.H. (2016) HIFU for Palliative Treatment of Pancreatic Cancer. In: Escoffre, JM. and Bouakaz, A. Eds., Therapeutic Ultrasound, Advances in Experimental Medicine and Biology, Vol. 880, Springer, Cham, 83-95.
https://doi.org/10.1007/978-3-319-22536-4_5
[12] Wang, X., Ni, J., You, Y, Feng, G., Zhang, S., Bao, W., Hou, H., Li, H., Liu, L., Zheng, M., et al. (2021) SNX10-Mediated LPS Sensing Causes Intestinal Barrier Dysfunction via a Caspase-5-Dependent Signaling Cascade. The EMBO Journal, 40, e108080.
https://doi.org/10.15252/embj.2021108080
[13] Cao, S., Xiao, H., Li, X., Zhu, J., Gao, J., Wang, L. and Hu, C. (2021) AMPK-PINK1/Parkin Mediated Mitophagy Is Necessary for Alleviating Oxidative Stress-Induced Intestinal Epithelial Barrier Damage and Mitochondrial Energy Metabolism Dysfunction in IPEC-J2. Antioxidants, 10, Article 2010.
https://doi.org/10.3390/antiox10122010
[14] Abboud, B., El Hachem, J., Yazbeck, T. and Doumit, C. (2009) Hepatic Portal Venous Gas: Physiopathology, Etiology, Prognosis and Treatment. World Journal of Gastroenterology, 15, 3585-3590.
https://doi.org/10.3748/wjg.15.3585
[15] Stein, A., Voigt, W. and Jordan, K. (2010) Chemotherapy-Induced Diarrhea: Pathophysiology, Frequency and Guideline-Based Management. Therapeutic Advances in Medical Oncology, 2, 51-63.
https://doi.org/10.1177/1758834009355164
[16] Lee-Robichaud, H., Thomas, K., Morgan, J. and Nelson, R.L. (2010) Lactulose versus Polyethylene Glycol for Chronic Constipation. Cochrane Database of Systematic Reviews, Article No. CD007570.
https://doi.org/10.1002/14651858.CD007570.pub2
[17] Hiraishi, K., Zhao, F., Kurahara, L.H., Li, X., Yamashita, T., Hashimoto, T., Matsuda, Y., Sun, Z., Zhang, H. and Hirano, K. (2022) Lactulose Modulates the Structure of Gut Microbiota and Alleviates Colitis-Associated Tumorigenesis. Nutrients, 14, Article 649.
https://doi.org/10.3390/nu14030649
[18] Bothe, M.K., Maathuis, A.J.H., Bellmann, S., van der Vossen, J., Berressem, D., Koehler, A., Schwejda-Guettes, S., Gaigg, B., Kuchinka-Koch, A. and Stover, J.F. (2017) Dose-Dependent Prebiotic Effect of Lactulose in a Computer-Controlled In Vitro Model of the Human Large Intestine. Nutrients, 9, Article 767.
https://doi.org/10.3390/nu9070767