自闭症筛查与诊断的客观评估工具——一项系统性综述
Objective Assessment Tools for Screening and Diagnosis of ASD—A Systematic Review
DOI: 10.12677/ap.2024.144196, PDF, HTML, XML, 下载: 44  浏览: 98  国家社会科学基金支持
作者: 司 轩:苏州大学教育学院,江苏 苏州
关键词: 自闭症筛查诊断评估客观工具Autism (ASD) Screening Diagnosis Assess Objective Tools
摘要: 目前对自闭症的筛查与诊断往往基于需要主观评级的标准化访谈或量表,这样的评估方式往往依赖于经验丰富的专业人员,而且具有较强的主观性,耗时耗力,不便普及。较少研究对筛选ASD群体的客观评估工具进行综述。因此,本综述总结了近五年用于自闭症筛查与诊断的客观评估工具及相关可量化的指标,根据研究方法主要总结为以下四类:(1) 基于计算机化测验的行为学研究;(2) 基于眼动追踪技术的研究;(3) 基于脑成像技术的研究;(4) 基于机器学习分类算法的研究,以期为ASD群体的客观筛查方式提供一定的参考依据。
Abstract: At present, the screening and diagnosis of autism is often based on standardized interviews or scales that require subjective ratings, which often rely on experienced professionals, and are highly subjective, time-consuming, and inconvenient to popularize. Few studies reviewed objective assessment tools for screening populations with ASD. Therefore, this review summarizes the objective assessment tools and related quantifiable indicators used for autism screening and diagnosis in the past five years, which are mainly summarized into the following four categories according to the research methods: (1) Behavioral research based on computerized tests; (2) Research based on eye tracking technology; (3) Research based on brain imaging technology; (4) Research based on machine learning classification algorithm, in order to provide a certain reference for the objective screening method of ASD population.
文章引用:司轩 (2024). 自闭症筛查与诊断的客观评估工具——一项系统性综述. 心理学进展, 14(4), 68-80. https://doi.org/10.12677/ap.2024.144196

1. 引言

自闭症谱系障碍(Autism spectrum disorder, ASD)是一种终生神经发育障碍,其特征是社交互动和沟通障碍,以及重复和受限行为、兴趣或活动(American Psychiatric Association, 2013)。

正常群体与自闭症谱系障碍(ASD)的差异通常通过临床上的第三方评估确定,这些评估方式通常需要经验丰富的医生,或是经过专业训练的相关人员使用主观评级的标准化访谈、问卷或量表(He et al., 2021),比如自闭症群体和多动症群体的筛查需要家长或老师完成对被试的主观评估,很多综述或元分析对现有的自闭症谱系障碍筛选与评估工具进行了总结和比较,如Sobieski等人(Sobieski et al., 2022)就综述了英文发表的用于ASD早期筛选的问卷或量表,国内的李婷婷(李婷婷等,2019)、陈光华等(陈光华等,2022)也做了类似的工作。

然而这些评估方式由于需要训练有素的专业人员辅助,往往耗时耗力,难以普及,而且需要老师或看护者的主观评级,因此分数取决于信息提供者的主观性。此外,由于社会期望偏差的影响,还有可能出现过度报告期望行为的现象(陈光华等,2022)。

随着计算机的普及和应用,将计算机化的认知评估任务或游戏化的认知评估任务(如CANTAB (Cambridge Neuropsychological Test Automatic Battery)、TOVA (Test of Variables of Attention)等测试)用于区分典型发育群体和障碍群体(如ASD、ADHD (Attention Deficit Hyperactivity Disorder))的研究越来越多,这些任务往往对反应时、正确率等客观行为指标有较为准确的记录,而且不易受到评价者主观因素的影响。也有研究将眼动追踪技术(He et al., 2021; Tsuchiya et al., 2021)、脑成像技术(谢点,孔令志,2021;Grossi et al., 2017, 2019; Yasuhara, 2010)、机器学习技术(Dawson et al., 2018)等应用与ASD群体的筛查和诊断,为自闭症的筛查与诊断提供了相对客观的工具和方法。

然而目前对于筛选ASD群体的客观评估工具的综述还比较少。一方面,由于客观评估的进步主要依赖于计算机化的测试,而计算机化的测试相较于主观量表发展成熟得比较晚(Luciana, 2003),另一方面,有研究者认为(Garb & Schramke, 1996),客观评估的单一标准可能不足以确定特定的障碍群体,仍需要与主观评价、医疗机构等相结合(比如对神经系统的检查),才能得出确定的结果。然而,随着计算机化测试的进步和成熟,客观评估仍有希望作为区分正常群体与障碍群体的参考标准之一。已有元分析表明,相较于单一的主观评估,基于计算机化的客观评估与主观评估相结合的方式对于临床决策更有效(Grove et al., 2000)。此外,使用计算机进行的客观心理测验有诸多优势,比如精准的反应时记录、完全标准化的测验方式、自动调整任务难度以适应被试的认知水平等(Roper, Ben-Porath, & Butcher, 1995)。

因此,本综述的主要目的是总结近五年用于自闭症筛查与诊断的客观评估工具及相关可量化的指标,并为ASD群体的客观筛查方式提供一定的参考依据。

2. 研究方法

采用国际上广泛使用的系统性文献综述和元分析方法(Preferred Reporting Items for Systematic reviews and Meta-Analyses, PRISMA),并参考PRISMA statement (Moher et al., 2010)对确定纳入研究的论文进行总结。该方法包括4个文献筛选阶段,分别为检索、初筛、纳入和综合,综述项目包括文献标题、摘要、研究目的、研究方法和研究结果等。本文选取在自闭症儿童筛查和诊断中应用计算机化或数字化等客观评估方法的文献。在Web of Science (WoS)、Google Scholar、CNKI等网站以“ASD”或“autism”或“autism spectrum disorders”或“自闭症”与“assess”或“measure”或“evaluate”或“diagnose”或“diagnosis”或“diagnostic”或“screening”或“discrimination”或“筛查”或“评估”与“computerized”或“digital”为关键词进行文献检索。本文选取近5年自闭症儿童筛选和评估的客观方法为主题的文献,具体检索日期范围为2018年1月1日~2023年5月27日。筛选与主题相关的文献,排除由家长或老师填写问卷等主观评价方式的文献(如Megerian et al., 2022)和需要对儿童的行为问题主观评级和编码的文献(如Hoffmann et al., 2022),限定检索范围为同行评议(Peer-reviewed)期刊,发表语言为中文或英文,获得3456篇文献。作者共同阅读文献的标题、摘要及正文,删除重复、不符合既定标准的论文,最后获取纳入综述的文献27篇(见图1),对剩余文献进行综述。

Figure 1. Diagram of the literature retrieval and screening

图1. 文献检索与筛查过程图

3. 自闭症筛查与诊断的客观评估工具

对重点文献阅读后将研究领域归纳为以下四类,分别为:(1) 基于计算机化测验的行为学研究(见表1);(2)基于眼动追踪的研究(见表2);(3) 基于脑成像技术的研究(见表3);(4) 基于机器学习分类算法的研究(见表4)。部分研究同时应用了眼动技术与机器学习分类算法(如He et al., 2021),或同时使用了脑成像技术与机器学习分类算法(如Grossi et al., 2019);本篇综述将前者总结在(4)基于机器学习分类算法的研究中(见表4),后者总结在(3)基于脑成像技术的研究中(见表3)。

Table 1. Summary of the results of behavioral research

表1. 行为学研究的结果总结

3.1. 行为学研究

计算机化的客观评估工具往往是基于现有的认知评估任务开发的,如CANTAB的测验就包含了很多对注意、工作记忆、短时记忆等执行功能进行测量的经典任务。有研究(Mohai et al., 2022)指出,技术(软传感器)方法在评估神经发育障碍(例如自闭症谱系障碍(ASD)、注意力缺陷多动障碍(ADHD)和特定学习障碍)特有的神经认知功能障碍中的作用。在许多情况下,神经认知功能障碍可以在神经发育障碍中检测到,其中一些具有明确的综合征特异性临床模式。许多基于证据的神经心理学测试可用于识别这些特定领域的功能。认知功能(如执行功能)的非典型模式几乎存在于所有发育障碍中。计算机化的任务增强了原始测试的诊断能力和灵敏度,通过更精确地测量目标认知能力及其局限性,可以帮助获得更准确的诊断。这在一些发育障碍(例如,ADHD,ASD)的诊断,干预等方面非常有用(Mohai et al., 2022)。

综合以上行为学研究结果,大部分研究的被试群体集中于18岁以下的未成年人,少部分研究(Johnston, 2019)以成年ASD群体和发育正常群体作为研究对象,其原因可能是ASD作为一种发育障碍导致的特殊群体,可能会在成长发育后减小与正常群体的差异。一部分行为学任务(如测量抑制控制的任务Stroop任务、Stop-Change任务、Hungry Donkey任务;测量视觉感知技能的TVPS-3测试;测量局部和全局的视觉任务隐藏图片(Hidden Pictures)任务;错误信念理解任务(False-Belief Understanding Task,等)已被证明能够区分未成年的ASD群体与年龄相匹配的正常发育群体(Carlsson et al., 2018; Cremone-Caira et al., 2021; DiCriscio et al., 2021; Nilsson Jobs et al., 2018),并且当ASD与ADHD或其他发育障碍导致的特殊群体是共病时,其行为学结果与正常对照组的差异更显著(Cremone-Caira et al., 2021)。对行为学结果的衡量指标通常为所执行任务的正确率、反应时或得分(Goris et al., 2020)。

3.2. 眼动研究

ASD群体的特点之一是比正常群体更少的社会性注意,表现为更少地注释他人面孔的眼睛区域,和更少的社会性互动。因此,很多眼动研究(Carter Leno et al., 2021; Reisinger et al., 2020; Tsuchiya et al., 2021)以眼睛区域的注视作为感兴趣区域,追踪执行任务时的眼球运动,研究ASD和正常群体的差异。其中Tsuchiya等人使用视频任务(Tsuchiya et al., 2021),同时记录眼动注视时,对ASD和正常群体的分类准确率可达78%。

Table 2. Summary of results based on eye tracking research

表2. 基于眼动追踪研究的结果总结

3.3. 脑成像研究

脑成像研究较其他研究方法成本更高,采用的技术方法也不一而足,如脑电图、脑磁图、磁共振成像、无创计算机断层扫描等,用于评估ASD与正常群体的变量也不尽相同。虽然有研究(Bosl et al., 2018; Grossi et al., 2019)结果表明对ASD与其他群体的分类准确率可超过90%,但考虑到其较高的技术成本与较低的被试年龄,从应用层面来看依然较难广泛地推广。

Table 3. Summary of results based on brain imaging research

表3. 基于脑成像研究的结果总结

3.4. 机器学习分类算法的应用

与其他研究方法相比,基于机器学习分类算法的研究不仅在采集数据上更方便快捷,而且对未成年ASD群体与其他群体的分类评估准确率基本可达80%左右(He et al., 2021; Javed et al., 2020; Perochon et al., 2021)。这些研究多是在执行计算机化任务的同时,通过便携电子设备的摄像头记录被试的眼动注视或头部运动,并对其进行编码,再用机器学习分类算法进行分类,评估方法更加客观。

Table 4. Summary of the results of classification algorithm research based on machine learning

表4. 基于机器学习分类算法研究的结果总结

4. 总结与讨论

目前的研究主要综述了:(1) 基于计算机化测验的行为学研究;(2) 基于眼动追踪的研究;(3) 基于脑成像技术的研究;(4) 基于机器学习分类算法的研究,这四类用于自闭症筛查与诊断的客观评估工具。不同的研究方法有不同的优势,比如基于计算机化测验的行为学研究和基于机器学习分类算法的研究往往比较方便操作,便于评估,比如使用平板或手机记录儿童的头部运动特征对ASD分类就能够可达0.83的AUC (Perochon et al., 2021)。而基于眼动追踪技术和脑成像技术的研究分类准确率较高(He et al., 2021; Tsuchiya et al., 2021),但是由于设备条件不够普及,对儿童的脑成像记录往往较困难,因此这样的方法可能更适合正式的临床诊断,而非早期的广泛筛查。此外,将客观评估工具与主观评价的标准化量表相结合,可以帮助提高筛查与诊断的准确性(Grove et al., 2000)。

5. 展望

目前的研究表明,基于机器学习算法对自闭症进行筛查与诊断的客观工具表现出巨大的潜力,这样的评估方式不仅便捷高效,而且表现出较高的分类正确率,还适用于幼儿(Bovery et al., 2021; Dawson et al., 2018; Perochon et al., 2021)的早期筛查,由于早发现才能便于早治疗,因此这样的评估方式还方便对偏远地区的儿童进行普及。

致谢

感谢我的导师张功亮老师,对本综述的指导性建议和对我的教导,感谢国家社会科学基金对此项研究课题的支持,也感谢课题组的其他同学,室友们和我的家人、朋友,你们的鼓励和支持是我完成综述的动力。

基金项目

本研究获得国家社会科学基金教育学一般课题“自闭症儿童的注意加工机制及注意力提升方法研究”的支持,课题批准号:BBA220201。

参考文献

[1] 陈光华, 陶冠澎, 翟璐煜, 白学军(2022). 自闭症谱系障碍的早期筛查工具. 心理科学进展, 30(4), 738-763.
[2] 李婷婷, 郭磊, 李帅, 高靖洁(2019). 孤独症谱系障碍测评工具的研究述评. 心理技术与应用, 7(2), 107-117.
[3] 谢点, 孔令志(2021). 基于脑磁图的自闭症谱系障碍早期筛查和诊断指标. 中国听力语言康复科学杂志, 19(3), 232-237.
[4] American Psychiatric Association, DSM-5 Task Force (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ (5th ed.). American Psychiatric Publishing, Inc.
https://doi.org/10.1176/appi.books.9780890425596
[5] Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG Analytics for Early Detection of Autism Spectrum Disorder: A Data-Driven Approach. Scientific Reports, 8, Article No. 6828.
https://doi.org/10.1038/s41598-018-24318-x
[6] Bovery, M., Dawson, G., Hashemi, J., & Sapiro, G. (2021). A Scalable Off-the-Shelf Framework for Measuring Patterns of Attention in Young Children and Its Application in Autism Spectrum Disorder. IEEE Transactions on Affective Computing, 12, 722-731.
https://doi.org/10.1109/TAFFC.2018.2890610
[7] Carlsson, E., Miniscalco, C., Gillberg, C., & Åsberg Johnels, J. (2018). Assessing False-Belief Understanding in Children with Autism Using a Computer Application: A Pilot Study. Journal of Psycholinguistic Research, 47, 1085-1099.
https://doi.org/10.1007/s10936-018-9579-2
[8] Carter Leno, V., Bedford, R., Chandler, S., White, P., Yorke, I., Charman, T., Pickles, A., & Simonoff, E. (2021). Callous-Unemotional Traits in Youth with Autism Spectrum Disorder (ASD): Replication of Prevalence Estimates and Associations with Gaze Patterns When Viewing Fearful Faces. Development and Psychopathology, 33, 1220-1228.
https://doi.org/10.1017/S0954579420000449
[9] Cremone-Caira, A., Trier, K., Sanchez, V., Kohn, B., Gilbert, R., & Faja, S. (2021). Inhibition in Developmental Disorders: A Comparison of Inhibition Profiles between Children with Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, and Comorbid Symptom Presentation. Autism, 25, 227-243.
https://doi.org/10.1177/1362361320955107
[10] Dawson, G., Campbell, K., Hashemi, J., Lippmann, S. J., Smith, V., Carpenter, K., Egger, H., Espinosa, S., Vermeer, S., Baker, J., & Sapiro, G. (2018). Atypical Postural Control Can Be Detected via Computer Vision Analysis in Toddlers with Autism Spectrum Disorder. Scientific Reports, 8, Article No. 17008.
https://doi.org/10.1038/s41598-018-35215-8
[11] DiCriscio, A. S., Smith, J., & Troiani, V. (2021). Comprehensive Assessment of Visual Perceptual Skills in Autism Spectrum Disorder. Frontiers in Psychology, 12, Article ID: 662808.
https://doi.org/10.3389/fpsyg.2021.662808
[12] Drimalla, H., Scheffer, T., Landwehr, N., Baskow, I., Roepke, S., Behnia, B., & Dziobek, I. (2020). Towards the Automatic Detection of Social Biomarkers in Autism Spectrum Disorder: Introducing the Simulated Interaction Task (SIT). NPJ Digital Medicine, 3, Article No. 25.
https://doi.org/10.1038/s41746-020-0227-5
[13] Garb, H. N., & Schramke, C. J. (1996). Judgement Research and Neuropsychological Assessment: A Narrative Review and Meta-Analyses. Psychological Bulletin, 120, 140-153.
https://doi.org/10.1037/0033-2909.120.1.140
[14] Goris, J., Brass, M., Cambier, C., Delplanque, J., Wiersema, J. R., & Braem, S. (2020). The Relation between Preference for Predictability and Autistic Traits. Autism Research, 13, 1144-1154.
https://doi.org/10.1002/aur.2244
[15] Grossi, E., Buscema, M., Della Torre, F., & Swatzyna, R. J. (2019). The “MS-ROM/IFAST” Model, a Novel Parallel Nonlinear EEG Analysis Technique, Distinguishes ASD Subjects From Children Affected with Other Neuropsychiatric Disorders with High Degree of Accuracy. Clinical EEG and Neuroscience, 50, 319-331.
https://doi.org/10.1177/1550059419861007
[16] Grossi, E., Olivieri, C., & Buscema, M. (2017). Diagnosis of Autism through EEG Processed by Advanced Computational Algorithms: A Pilot Study. Computer Methods and Programs in Biomedicine, 142, 73-79.
https://doi.org/10.1016/j.cmpb.2017.02.002
[17] Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus Mechanical Prediction: A Meta-Analysis. Psychological Assessment, 12, 19-30.
https://doi.org/10.1037/1040-3590.12.1.19
[18] He, Q., Wang, Q., Wu, Y., Yi, L., & Wei, K. (2021). Automatic Classification of Children with Autism Spectrum Disorder by Using a Computerized Visual‐Orienting Task. PsyCh Journal, 10, 550-565.
https://doi.org/10.1002/pchj.447
[19] Hoffmann, A., Thurman, A., Sterling, A., Kover, S., Finestack, L., Berry-Kravis, E., Edgin, J., Drayton, A., Fombonne, E., & Abbeduto, L. (2022). Analysis of a Repetitive Language Coding System: Comparisons between Fragile X Syndrome, Autism, and Down Syndrome. Brain Sciences, 12, Article No. 575.
https://doi.org/10.3390/brainsci12050575
[20] Javed, H., Lee, W., & Park, C. H. (2020). Toward an Automated Measure of Social Engagement for Children with Autism Spectrum Disorder—A Personalized Computational Modeling Approach. Frontiers in Robotics and AI, 7, Article No. 43.
https://doi.org/10.3389/frobt.2020.00043
[21] Johnston, K. (2019). Executive Function: Cognition and Behaviour in Adults with Autism Spectrum Disorders (ASD). Journal of Autism and Developmental Disorders, 49, 4181-4192.
[22] Jung, J., Zbozinek, T. D., Cummings, K. K., Wilhelm, F. H., Dapretto, M., Craske, M. G., Bookheimer, S. Y., & Green, S. A. (2021). Associations between Physiological and Neural Measures of Sensory Reactivity in Youth with Autism. Journal of Child Psychology and Psychiatry, 62, 1183-1194.
https://doi.org/10.1111/jcpp.13387
[23] Koehler, J. C., Georgescu, A. L., Weiske, J., Spangemacher, M., Burghof, L., Falkai, P., Koutsouleris, N., Tschacher, W., Vogeley, K., & Falter-Wagner, C. M. (2022). Brief Report: Specificity of Interpersonal Synchrony Deficits to Autism Spectrum Disorder and Its Potential for Digitally Assisted Diagnostics. Journal of Autism and Developmental Disorders, 52, 3718-3726.
https://doi.org/10.1007/s10803-021-05194-3
[24] Lalani, S. J., Duffield, T. C., Trontel, H. G., Bigler, E. D., Abildskov, T. J., Froehlich, A., Prigge, M. B. D., Travers, B. G., Anderson, J. S., Zielinski, B. A., Alexander, A., Lange, N., & Lainhart, J. E. (2018). Auditory Attention in Autism Spectrum Disorder: An Exploration of Volumetric Magnetic Resonance Imaging Findings. Journal of Clinical and Experimental Neuropsychology, 40, 502-517.
https://doi.org/10.1080/13803395.2017.1373746
[25] Luciana, M. (2003). Practitioner Review: Computerized Assessment of Neuropsychological Function in Children: Clinical and Research Applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB): Use of the CANTAB in Pediatric Neuropsychology. Journal of Child Psychology and Psychiatry, 44, 649-663.
https://doi.org/10.1111/1469-7610.00152
[26] Megerian, J. T., Dey, S., Melmed, R. D., Coury, D. L., Lerner, M., Nicholls, C. J., Sohl, K., Rouhbakhsh, R., Narasimhan, A., Romain, J., Golla, S., Shareef, S., Ostrovsky, A., Shannon, J., Kraft, C., Liu-Mayo, S., Abbas, H., Gal-Szabo, D. E., Wall, D. P., & Taraman, S. (2022). Evaluation of an Artificial Intelligence-Based Medical Device for Diagnosis of Autism Spectrum Disorder. NPJ Digital Medicine, 5, Article No. 57.
https://doi.org/10.1038/s41746-022-00598-6
[27] Mohai, K., Kálózi-Szabó, C., Jakab, Z., Fecht, S. D., Domonkos, M., & Botzheim, J. (2022). Development of an Adaptive Computer-Aided Soft Sensor Diagnosis System for Assessment of Executive Functions. Sensors, 22, Article No. 5880.
https://doi.org/10.3390/s22155880
[28] Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. International Journal of Surgery, 8, 336-341.
https://doi.org/10.1016/j.ijsu.2010.02.007
[29] Mouga, S., Duarte, I. C., Café, C., Sousa, D., Duque, F., Oliveira, G., & Castelo-Branco, M. (2021). Attentional Cueing and Executive Deficits Revealed by a Virtual Supermarket Task Coupled with Eye-Tracking in Autism Spectrum Disorder. Frontiers in Psychology, 12, Article ID: 671507.
https://doi.org/10.3389/fpsyg.2021.671507
[30] Nilsson Jobs, E., Falck-Ytter, T., & Bölte, S. (2018). Local and Global Visual Processing in 3-Year-Olds with and without Autism. Journal of Autism and Developmental Disorders, 48, 2249-2257.
https://doi.org/10.1007/s10803-018-3470-8
[31] Øie, M. G., Andersen, P. N., Hovik, K. T., Skogli, E. W., & Rund, B. R. (2020). Similar Impairments Shown on a Neuropsychological Test Battery in Adolescents with High-Functioning Autism and Early Onset Schizophrenia: A Two-Year Follow-Up Study. Cognitive Neuropsychiatry, 25, 163-178.
https://doi.org/10.1080/13546805.2020.1713736
[32] Ono, Y., Kudoh, K., Ikeda, T., Takahashi, T., Yoshimura, Y., Minabe, Y., & Kikuchi, M. (2020). Auditory Steady-State Response at 20 Hz and 40 Hz in Young Typically Developing Children and Children with Autism Spectrum Disorder. Psychiatry and Clinical Neurosciences, 74, 354-361.
https://doi.org/10.1111/pcn.12998
[33] Perochon, S., Di Martino, M., Aiello, R., Baker, J., Carpenter, K., Chang, Z., Compton, S., Davis, N., Eichner, B., Espinosa, S., Flowers, J., Franz, L., Gagliano, M., Harris, A., Howard, J., Kollins, S. H., Perrin, E. M., Raj, P., Spanos, M., & Dawson, G. (2021). A Scalable Computational Approach to Assessing Response to Name in Toddlers with Autism. Journal of Child Psychology and Psychiatry, 62, 1120-1131.
https://doi.org/10.1111/jcpp.13381
[34] Ramseyer, F., & Tschacher, W. (2011). Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome. Journal of Consulting and Clinical Psychology, 79, 284-295.
https://doi.org/10.1037/a0023419
[35] Reisinger, D. L., Shaffer, R. C., Horn, P. S., Hong, M. P., Pedapati, E. V., Dominick, K. C., & Erickson, C. A. (2020). Atypical Social Attention and Emotional Face Processing in Autism Spectrum Disorder: Insights from Face Scanning and Pupillometry. Frontiers in Integrative Neuroscience, 13, Article No. 76.
https://doi.org/10.3389/fnint.2019.00076
[36] Roper, B. L., Ben-Porath, Y. S., & Butcher, J. N. (1995). Comparability and Validity of Computerized Adaptive Testing with the MMPI-2. Journal of Personality Assessment, 65, 358-371.
https://doi.org/10.1207/s15327752jpa6502_10
[37] Sobieski, M., Sobieska, A., Sekułowicz, M., & Bujnowska-Fedak, M. M. (2022). Tools for Early Screening of Autism Spectrum Disorders in Primary Health Care—A Scoping Review. BMC Primary Care, 23, Article No. 46.
https://doi.org/10.1186/s12875-022-01645-7
[38] Tan, E., Wu, X., Nishida, T., Huang, D., Chen, Z., & Yi, L. (2018). Analogical Reasoning in Children with Autism Spectrum Disorder: Evidence from an Eye-Tracking Approach. Frontiers in Psychology, 9, Article No. 847.
https://doi.org/10.3389/fpsyg.2018.00847
[39] Tsuchiya, K. J., Hakoshima, S., Hara, T., Ninomiya, M., Saito, M., Fujioka, T., Kosaka, H., Hirano, Y., Matsuo, M., Kikuchi, M., Maegaki, Y., Harada, T., Nishimura, T., & Katayama, T. (2021). Diagnosing Autism Spectrum Disorder without Expertise: A Pilot Study of 5-to 17-Year-Old Individuals Using Gazefinder. Frontiers in Neurology, 11, Article ID: 603085.
https://doi.org/10.3389/fneur.2020.603085
[40] Yamada, S., Nakagawa, I., Nishimura, F., Motoyama, Y., Park, Y.-S., & Nakase, H. (2020). The Possibility of Intracranial Hypertension in Patients with Autism Spectrum Disorder Using Computed Tomography. Journal of Clinical Medicine, 9, Article No. 3551.
https://doi.org/10.3390/jcm9113551
[41] Yasuhara, A. (2010). Correlation between EEG Abnormalities and Symptoms of Autism Spectrum Disorder (ASD). Brain and Development, 32, 791-798.
https://doi.org/10.1016/j.braindev.2010.08.010