射血分数保留的心力衰竭诊疗相关进展
Advances in the Diagnosis and Treatment of Heart Failure with Preserved Ejection Fraction
DOI: 10.12677/acm.2024.1441258, PDF, HTML, XML, 下载: 46  浏览: 58 
作者: 曹淋春, 秦 俭*:重庆医科大学第一临床学院,重庆
关键词: 射血分数保留的心力衰竭发病机制诊断治疗Heart Failure with Preserved Ejection Fraction Pathogenesis Diagnosis Treatment
摘要: 射血分数保留的心力衰竭(HFpEF)已占据心力衰竭总人群的50%以上,且随着人口老龄化、肥胖症、糖尿病和高血压等患病率的上升而快速增长。由于HFpEF患者的高度异质性,病因多样,且缺乏特异性的早期症状和体征,其无创性诊断及治疗至今仍具有挑战性。本文就其近几年关于发病机制及诊疗的进展作一综述。
Abstract: Heart failure with preserved ejection fraction (HFpEF) has accounted for more than 50% of the total heart failure population, and its prevalence is rapidly increasing with the aging, obesity, diabetes, and hypertension. Due to the high heterogeneity of HFpEF patients, diverse etiologies, and lack of specific early symptoms and signs, non-invasive diagnosis and treatment remain challenging. This article provides an overview of recent advances in the pathogenesis, diagnosis, and treatment of HFpEF.
文章引用:曹淋春, 秦俭. 射血分数保留的心力衰竭诊疗相关进展[J]. 临床医学进展, 2024, 14(4): 2020-2029. https://doi.org/10.12677/acm.2024.1441258

1. 引言

心力衰竭是一种进行性、多因素和异质性的临床综合征,根据左室射血分数(LVEF)的不同,将其分为射血分数降低的心力衰竭HFrEF (LVEF ≤ 40%)、射血分数轻度降低的心力衰竭HFmrEF (LVEF 41%~49%),射血分数保留的心力衰竭HFpEF (LVEF ≥ 50%)及射血分数改善的心力衰竭HFimpEF (既往LVEF ≤ 40%,但随访检测LVEF > 40%) [1] [2] 。HFpEF曾被描述为舒张性心力衰竭,这种分类目前已不再使用,因为HFpEF患者通常伴有一定程度的收缩功能障碍 [3] 。根据病因,HFpEF被推荐分为五种类型,包括血管疾病(高血压、冠心病)、心肌病(肥厚型心肌病、心脏淀粉样变、法布雷病)、右心及肺动脉疾病(睡眠呼吸暂停综合征、肺动脉高压)、心脏瓣膜病及心律失常、心脏外疾病(代谢性疾病,慢性肾脏病及肿瘤等)相关HFpEF [4] 。高龄(年龄 ≥ 65岁)、女性、肥胖(体重指数 > 30 kg/m2)、心房颤动、高血压病、糖尿病、心肌微血管病变等是HFpEF最常见危险因素 [5] 。该类患者活动耐量往往严重下降,生活质量差,频繁住院,死亡率高。随着人口老龄化和共病负担的增加,HFpEF已达到总心衰人数一半以上,并且其患病率正以每年1%的速度持续性上升 [6] [7] ,这表明HFpEF正成为最常见的HF类型。既往指南推荐使用利尿剂改善症状,识别和治疗特定病因,以及心力衰竭共病的管理。近年来药物治疗方面有了一些新的突破,但尽早识别和评估,以便遵循相关指南进行管理,仍是改善HFpEF患者预后的主要手段。因此,本文回顾了HFpEF的发病机制、诊断及治疗以便对其更全面的理解。

2. 病理生理

HFpEF通常是进展性的,这是由于系统性炎症和心脏适应的复杂机制随时间而变化,特别是随着年龄的增长 [8] ,这意味着HFpEF的表型多种多样。病理生理是解析HFpEF不同表型的基础,非常复杂,该类患者普遍年龄较大,女性多见,并患有多种共病(高血压、肥胖、冠状动脉疾病、糖尿病、贫血、心房颤动、肾功能不全和睡眠呼吸暂停等) [9] 。这些共病影响心室和血管重塑 [10] [11] ,并可促使全身慢性炎症,导致全身和冠状微血管内皮功能障碍 [12] [13] ,进而引起左心室舒张功能障碍(LVDD)和动脉硬度增加,对HFpEF的发展至关重要。其主要机制包括慢性系统性炎症、利钠肽不足、神经内分泌激活 [14] 、代谢异常等多个方面(见图1) [15] 。其中慢性系统性炎症是目前研究的热点,其不仅影响心肌,还影响肺循环、骨骼肌氧化代谢 [16] 和肾脏微循环等 [17] 。心外膜脂肪组织(EAT)因具有区别于其他脏器脂肪组织的独特性质而备受关注 [18] 。在健康状态下,心外膜可产生营养心脏的细胞因子。然而,在慢性炎症性疾病中,心外膜脂肪生成紊乱,导致促炎症脂肪因子的分泌,引起心房和心室纤维化 [19] [20] 。一项64例LVEF > 40%的心衰病人的研究表明,心外膜脂肪量与房颤、2型糖尿病及心肌损伤标志物的升高密切相关 [21] 。另一项基于PROMIS-HFpEF [22] 试验的182例HFpEF患者EAT相关的研究结果显示,大约30%的HFpEF患者心外膜脂肪组织增加(EAT ≥ 9 mm),这部分患者表现出明显的心脏结构改变、血脂异常、胰岛素抵抗、内皮功能障碍 [23] ,但其潜在作用机制尚不明确。上述各种机制引起心室重塑、左室舒张末压力升高,最终导致HFpEF,尽管LVEF无异常,仍可以引起心力衰竭的症状和体征 [24] 。

Figure 1. HFpEF发病机制 [15]

图1. Pathogenesis of HFpEF [15]

3. 诊断

HFpEF当前的诊断主要依据是否存在心力衰竭的临床症状及体征,并结合利钠肽和超声心动图,但两者敏感性和特异性均欠佳 [25] [26] 。利钠肽在评估HFpEF方面的阴性预测价值较为突出(95%~99%) [27] ,但部分研究发现超过五分之一的HFpEF患者虽然有心力衰竭的症状或体征、超声心动图和血流动力学证据,但利钠肽水平可能低于诊断阈值,特别是在肥胖的人群中,这增加了利钠肽在HFpEF诊断中的不确定性 [9] [28] [29] 。侵入性血液动力学测试是HFpEF确诊的金标准,肺毛细血管楔压(PCWP) ≥ 15 mmHg或左心室舒张末期压力(LVEDP) ≥ 16 mmHg (静息状态) [30] [31] ,负荷状态下PCWP ≥ 25 mmHg可诊断HFpEF [32] ,但因其有创性,并不被推荐作为临床常规检查。

目前,基于评分的两种算法(H2FPEF [33] 和HFA-PEFF [34] )已被临床广泛接受及使用。H2FPEF评分依据2个超声心动图参数(肺动脉收缩压 > 35 mmHg和E/e’ > 9,每个得分1分)和与HFpEF相关的临床变量,包括肥胖(体重指数 > 30 kg/m2,2分),阵发性或永久性房颤(3分),年龄 > 60岁(1分),和使用 ≥ 2种降压药物(1分)。通过计算得分,H2FPEF在较高的评分(6~9分)可考虑诊断HFpEF,2~5分为中间概率,建议完善有创血液动力学检查明确诊断,0~1分可排除HFpEF (见图2)。

基于超声心动图与有创血流动力学测量的相关性,欧洲心脏病学会心力衰竭协会2019年提出了HFA-PEFF [34] 评分。该评分通过超声心动图测量心脏功能和形态学相关指标再结合利钠肽水平进行评估。这3个成分各贡献2分,最高得到6分,评分 ≥ 5可确诊HFpEF,如果评分 ≤ 1,则排除HFpEF,2~4分为中间概率,推荐完善运动负荷超声心动图或有创血流动力学检查(见图3)。

Figure 2. H2FPEF评分表 [33]

图2. H2FPEF score

Figure 3. HFA-PEFF评分表 [34]

图3. HFA-PEFF score

一项由侵入性方法确诊的156例HFpEF患者的单中心研究中,研究者使用HFA-PEFF和H2FPEF评分重新评估了模型的区分能力。Churchill [35] 等人报告了2个评分(HFA-PEFF和H2FPEF的曲线下面积(AUC)分别为0.73和0.74)具有相似的准确性。在另一项由金标准确诊的736例患者的多中心研究中,Yogesh [36] 等人发现在该研究中HFA-PEFF评分的准确性与Churchill等人报告的准确性相似(AUC分别为0.71和0.73,P > 0.05),但使用H2FPEF评分的区分能力较前者更强(AUC分别为0.845和0.74,P < 0.05)。考虑到后者样本量及研究人群的优势,H2FPEF评分模型可能会成为首选工具。

我国2023年专家共识 [15] 亦给出了HFpEF诊断推荐:1) 可疑心力衰竭样症状和(或)体征;2) LVEF ≥ 50%,且满足利钠肽水平升高(窦性心律:BNP ≥ 35 pg/ml 或NT-proBNP ≥ 125 pg/ml;心房颤动:BNP ≥ 105 pg/ml或NT-proBNP ≥ 365 pg/ml)或超声心动图测定E/e’ ≥ 15可考虑诊断HFpEF,并进一步筛查特定病因和分型;3) 若不满足条件2,则推荐负荷超声心动图(E/e’ ≥ 15)或有创血液动力学检查明确诊断。同时需排除其他可引起类似症状的疾病。尽管目前人们对利用运动负荷超声心动图进行早期HFpEF诊断很感兴趣,但因其操作复杂性和患者接受度受限,限制了其应用 [37] 。有创血液动力学检查也给患者增加了负担,还可能会导致不必要的损伤。同时,其诊断性能还需要金标准实验进行评估。

近年来,左房应变及其衍生参数已被证明可用于HFpEF的诊断。Yogesh等 [38] 的研究发现,左房储蓄应变(Left atrial reservoir strain)在区分HFpEF及非心源性呼吸困难人群的准确性较传统超声心动图参数E/e’比值,三尖瓣反流速度峰值(TRPV),左室长轴应变(GLS)及左房容积指数(LAVI)等更加优秀。另一方面,左房应变衍生指标左房僵硬指数亦被证明不仅在HFpEF的诊断方面拥有超越常规超声心动图的性能 [38] [39] ,还与HFpEF的全因死亡率及心衰住院率密切相关 [40] 。虽然多项研究证明了左房应变的诊断价值,但其是否能应用于临床还有待观望。

HFpEF与心肌硬化和充盈压升高有关,可由心音(Heart sound, HS)特征捕捉到。近年来,心音特征在辅助诊断HFpEF方面也有一些进展。一项利用极限学习方法自动提取心音特征用于识别HFpEF的研究中:郑 [41] 等人报告了HS诊断HFpEF的准确性高达为96%,敏感性和特异性分别为95%和97%,证明了HS诊断HFpEF的有效性。舒张期与收缩期时间比值D/S是临床常用的心音指标,已被证实与左室舒张功能不全或HFpEF密切相关 [41] [42] [43] 。此外,QRS波起点到第一心音时间间隔(QS1)也被证明可用于区分E/e’ > 9的可疑HFpEF患者 [44] ,其诊断价值不弱于NT-proBNP (AUC分别为0.72和0.67,P > 0.05)。考虑到心音图还具有采集便捷,无创,成本低,可以远程监测等优点 [45] ,其有望成为继心脏超声后辅助诊断HFpEF又一利刃。

HFpEF最常见的症状是呼吸困难及下肢水肿。然而,老年人普遍存在运动耐量降低的情况,这是衰老的正常生理变化,可能并非心脏方面的原因,且一些疾病与心力衰竭的临床表现及体征很相识;HFpEF患者长期耐受,有时并不会出现“典型”心力衰竭的表现;这些情况都使心力衰竭的诊断变得更加困难,误诊的情况也不少见 [46] 。此外,研究表明,高达三分之一的HFpEF门诊患者的B型钠尿肽水平可能低于标准的诊断阈值 [29] 。用于诊断舒张功能障碍的超声心动图特征预测能力也较为有限,进一步干扰了临床判断。鉴于侵入性试验在世界上许多中心不常规使用,且存在风险,其主要用于科研环境,指南并不推荐对每个患者进行金标准测试来做出诊断。需要注意的是,H2FPEF和HFA-PEFF评分法均难以准确反映HFpEF的异质性,应用基于深度学习的多模态融合技术将HFpEF患者心脏超声,心音及心电等图像、音频、视频、病例文本、生物检测数值等纳入模型,可能会提高非侵入性模型的诊断性能。毫无疑问,在未来一段时间内,HFpEF诊断仍将是临床工作者面临的一大挑战。

4. 治疗

长期以来,由于HFpEF危险因素和共病的复杂多样性,HFpEF相关临床药物的干预实验均已失败告终 [47] [48] [49] [50] ,这些共病与HFpEF发病率和死亡率的增加密切相关 [51] ,识别和治疗HFpEF的危险因素和共病已成为任何HFpEF管理策略的基石 [52] ,对患者预后至关重要。目前指南均推荐使用基于HFpEF病因分型的管理策略 [1] [2] [15] 。

肥胖症在HFpEF患者中很常见,体育锻炼和低热量饮食是重要的,这两者都被证明对HFpEF患者有益 [53] 。高血压可以导致心脏代偿失调 [54] 并促进HFpEF的发展,高血压治疗应是任何HFpEF治疗的基础。心房颤动(AF)是HFpEF患者常见且预后不良的伴随疾病,房颤的发生与心血管事件(心血管死亡率、心脏骤停或心力衰竭住院)的风险增加独立相关 [55] 。导管肺静脉隔离(PVI)已成为房颤治疗的基础,搭配药物治疗,可改善心衰患者的临床结局 [56] 。此外,包括肥厚性心肌病,心肌淀粉样变性,睡眠呼吸暂停综合征,肺动脉高压,糖尿病,贫血,慢性肾脏疾病以及良恶性肿瘤等疾病的管理与治疗也十分关键。

针对心衰的治疗,目前较为一致的推荐是使用利尿剂消除水钠潴留、缓解呼吸困难,改善运动耐量。药物包括袢利尿剂和噻嗪类利尿剂,合并低钠血症还可使用托伐普坦。螺内酯治疗并不能改善心力衰竭的主要复合结局,且有高钾血症和血肌酐升高的风险 [48] 。但亦有研究提示螺内酯能改善HFpEF患者的心脏结构和功能 [57] 。目前对于心力衰竭且射血分数偏低(EF ≥ 45%)的患者,建议使用MRA进行治疗,通常在此基础上加用袢利尿剂 [58] 。PARAGON-HF [59] 研究表明沙库巴曲缬沙坦(ARNI)并不能显著降低HFpEF患者因心血管原因死亡和心力衰竭的住院率,但亚组分析显示ARNI可降低射血分数 ≤ 57%患者和女性患者的心衰再住院风险。在射血分数 ≤ 57%的HFpEF患者中ARNI被推荐使用 [15] 。至于β受体阻滞剂则建议在合并有高血压,冠心病,心肌梗死及快速性心房颤动等疾病时使用 [15] 。虽然常规心力衰竭药物未能表现出良好的治疗效果,但两项随机对照实验EMPEROR-Preserved [60] 和DELIVER [61] 研究发现降糖药物钠-葡萄糖协同转运蛋白2抑制剂(SGLT2i,恩格列净和达格列净)可显著降低HFpEF患者心衰住院或心血管死亡结局风险。2022年3月,欧盟委员会批准对所有有症状的慢性心力衰竭患者进行恩格列净治疗,包括所有LVEF > 50%患者,且对于HFpEF患者为(IIa类推荐)。我国2023年中国专家共识在HFpEF治疗上则给出了(IA类推荐)。SGLT2i治疗心力衰竭的可能机制包括渗透性利尿,降低血压和体重,同时减少心脏前、后负荷,通过抑制炎症反应和纤维化过程改善心脏代谢和保护心肌功能、抑制心室重塑等 [62] 。最新研究表明,SGLT2i还具有降低HFpEF患者静息和运动时的肺毛细血管楔压(PCWP),降低右心房和肺动脉压力等作用 [63] 。使用SGLT2i的不良事件发生率较低,但需注意生殖器、尿路感染和低血压的发生 [64] 。此外,其它作用机制还在进一步探究中。

HFpEF已经发展成一种流行病,治疗方案的缺乏主要是由于HFpEF综合征的复杂性和异质性。随着研究的不断深入,越来越多的研究开始倾向于寻找针对HFpEF特定病理生理学表型的新靶点和新疗法。其中就包括以抗纤维化、抗炎症因子和改善微循环等机制为切入点,寻求开发新的靶向药物,或者利用干细胞和基因治疗等新技术。另外,个体化治疗作为一种新的趋势,也日益受到重视,通过研究评估不同药物组合的协同效应,以期望为HFpEF患者提供更加个性化的治疗方案。除药物治疗外,非药物干预如运动和康复治疗也备受关注,它们在HFpEF的管理中是不可忽视的,其作用已被广泛提及重视。

5. 总结

射血分数保留的心力衰竭是一种异质性综合征,LVEF的分类是不可靠的,诊断过程应引入公认的H2FPEF和HFA-PEFF算法,但与金标准相比两个评分的诊断性能仅在71%至85%之间。未来需要进一步深入研究各种HFpEF的病理生理机制及表型,寻找更具特异性的诊断指标,以改善HFpEF的诊断困境。HFpEF治疗方面,首先需要对危险因素和共病进行管理,因为它们对预后至关重要;利尿剂是体液管理的重要一环;SGLT2i是第一类显著降低HFpEF患者发病及死亡率的药物,应该成为HFpEF治疗的基石;此外,心外膜脂肪组织亦可能成为治疗干预的重要靶点。至今,HFpEF的诊断和治疗仍具有很大的挑战性,需要进一步的研究来增强我们对HFpEF综合征的理解,以改善HFpEF的管理。

NOTES

*通讯作者。

参考文献

[1] Mcdonagh, T.A., Metra, M., Adamo, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726.
https://doi.org/10.1093/eurheartj/ehab368
[2] Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, E895-E1032.
https://doi.org/10.1161/CIR.0000000000001063
[3] Kraigher-Krainer, E., Shah, A.M., Gupta, D.K., et al. (2014) Impaired Systolic Function by Strain Imaging in Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 63, 447-456.
https://doi.org/10.1016/j.jacc.2013.09.052
[4] Ge, J. (2020) Coding Proposal on Phenotyping Heart Failure with Preserved Ejection Fraction: A Practical Tool for Facilitating Etiology-Oriented Therapy. Cardiology Journal, 27, 97-98.
https://doi.org/10.5603/CJ.2020.0023
[5] Kitzman, D.W., Gardin, J.M., Gottdiener, J.S., et al. (2001) Importance of Heart Failure with Preserved Systolic Function in Patients > or = 65 Years of Age. CHS Research Group. Cardiovascular Health Study. American Journal of Cardiology, 87, 413-419.
https://doi.org/10.1016/S0002-9149(00)01393-X
[6] Heidenreich, P.A., Albert, N.M., Allen, L.A., et al. (2013) Forecasting the Impact of Heart Failure in the United States: A Policy Statement from the American Heart Association. Circulation: Heart Failure, 6, 606-619.
https://doi.org/10.1161/HHF.0b013e318291329a
[7] Owan, T.E., Hodge, D.O., Herges, R.M., et al. (2006) Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. The New England Journal of Medicine, 355, 251-259.
https://doi.org/10.1056/NEJMoa052256
[8] Shah, S.J., Kitzman, D.W., Borlaug, B.A., et al. (2016) Phenotype-Specific Treatment of Heart Failure with Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation, 134, 73-90.
https://doi.org/10.1161/CIRCULATIONAHA.116.021884
[9] Vaduganathan, M., Claggett, B.L., Desai, A.S., et al. (2020) Prior Heart Failure Hospitalization, Clinical Outcomes, and Response to Sacubitril/Valsartan Compared with Valsartan in HFpEF. Journal of the American College of Cardiology, 75, 245-254.
https://doi.org/10.1016/j.jacc.2019.11.003
[10] Mohammed, S.F., Borlaug, B.A., Roger, V.L., et al. (2012) Comorbidity and Ventricular and Vascular Structure and Function in Heart Failure with Preserved Ejection Fraction: A Community-Based Study. Circulation: Heart Failure, 5, 710-719.
https://doi.org/10.1161/CIRCHEARTFAILURE.112.968594
[11] Zakeri, R. and Cowie, M.R. (2018) Heart Failure with Preserved Ejection Fraction: Controversies, Challenges and Future Directions. Heart, 104, 377-384.
https://doi.org/10.1136/heartjnl-2016-310790
[12] Pfeffer, M.A., Shah, A.M. and Borlaug, B.A. (2019) Heart Failure with Preserved Ejection Fraction in Perspective. Circulation Research, 124, 1598-1617.
https://doi.org/10.1161/CIRCRESAHA.119.313572
[13] Gevaert, A.B., Kataria, R., Zannad, F., et al. (2022) Heart Failure with Preserved Ejection Fraction: Recent Concepts in Diagnosis, Mechanisms and Management. Heart, 108, 1342-1350.
https://doi.org/10.1136/heartjnl-2021-319605
[14] Camici, P.G., Tschöpe, C., Di Carli, M.F., et al. (2020) Coronary Microvascular Dysfunction in Hypertrophy and Heart Failure. Cardiovascular Research, 116, 806-816.
https://doi.org/10.1093/cvr/cvaa023
[15] 射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023[J]. 中国循环杂志, 2023, 38(4): 375-393.
[16] Haykowsky, M.J., Kouba, E.J., Brubaker, P.H., et al. (2014) Skeletal Muscle Composition and Its Relation to Exercise Intolerance in Older Patients with Heart Failure and Preserved Ejection Fraction. American Journal of Cardiology, 113, 1211-1216.
https://doi.org/10.1016/j.amjcard.2013.12.031
[17] Cowley, A.W., Abe, M., Mori, T., et al. (2015) Reactive Oxygen Species as Important Determinants of Medullary Flow, Sodium Excretion, and Hypertension. American Journal of Physiology-Renal Physiology, 308, F179-F197.
https://doi.org/10.1152/ajprenal.00455.2014
[18] Packer, M. (2018) Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. Journal of the American College of Cardiology, 71, 2360-2372.
https://doi.org/10.1016/j.jacc.2018.03.509
[19] Zile, M.R., Baicu, C.F., Ikonomidis, J.S., et al. (2015) Myocardial Stiffness in Patients with Heart Failure and a Preserved Ejection Fraction: Contributions of Collagen and Titin. Circulation, 131, 1247-1259.
https://doi.org/10.1161/CIRCULATIONAHA.114.013215
[20] Paulus, W.J. (2020) Unfolding Discoveries in Heart Failure. The New England Journal of Medicine, 382, 679-682.
https://doi.org/10.1056/NEJMcibr1913825
[21] Van Woerden, G., Gorter, T.M., Westenbrink, B.D., et al. (2018) Epicardial Fat in Heart Failure Patients with Mid-Range and Preserved Ejection Fraction. European Journal of Heart Failure, 20, 1559-1566.
https://doi.org/10.1002/ejhf.1283
[22] Shah, S.J., Lam, C.S., Svedlund, S., et al. (2018) Prevalence and Correlates of Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF. European Heart Journal, 39, 3439-3450.
https://doi.org/10.1093/eurheartj/ehy531
[23] Venkateshvaran, A., Faxen, U.L., Hage, C., et al. (2022) Association of Epicardial Adipose Tissue with Proteomics, Coronary Flow Reserve, Cardiac Structure and Function, and Quality of Life in Heart Failure with Preserved Ejection Fraction: Insights from the PROMIS-HFpEF Study. European Journal of Heart Failure, 24, 2251-2260.
https://doi.org/10.1002/ejhf.2709
[24] Paulus, W.J. and Tschöpe, C. (2013) A Novel Paradigm for Heart Failure with Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling through Coronary Microvascular Endothelial Inflammation. Journal of the American College of Cardiology, 62, 263-271.
https://doi.org/10.1016/j.jacc.2013.02.092
[25] Richards, A.M. (2018) N-Terminal B-Type Natriuretic Peptide in Heart Failure. Heart Failure Clinics, 14, 27-39.
https://doi.org/10.1016/j.hfc.2017.08.004
[26] Michaud, M., Maurin, V., Simon, M., et al. (2019) Patients with High Left Ventricular Filling Pressure May Be Missed Applying 2016 Echo Guidelines: A Pilot Study. The International Journal of Cardiovascular Imaging, 35, 2157-2166.
https://doi.org/10.1007/s10554-019-01667-w
[27] Chow, S.L., Maisel, A.S., Anand, I., et al. (2017) Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement from the American Heart Association. Circulation, 135, E1054-E1091.
https://doi.org/10.1161/CIR.0000000000000490
[28] Obokata, M., Reddy, Y.N.V., Pislaru, S.V., et al. (2017) Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure with Preserved Ejection Fraction. Circulation, 136, 6-19.
https://doi.org/10.1161/CIRCULATIONAHA.116.026807
[29] Anjan, V, Y., Loftus, T, M., Burke, M, A., et al. (2012) Prevalence, Clinical Phenotype, and Outcomes Associated with Normal B-Type Natriuretic Peptide Levels in Heart Failure with Preserved Ejection Fraction. American Journal of Cardiology, 110, 870-876.
https://doi.org/10.1016/j.amjcard.2012.05.014
[30] Obokata, M., Kane, G.C., Reddy, Y.N., et al. (2017) Role of Diastolic Stress Testing in the Evaluation for Heart Failure with Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation, 135, 825-838.
https://doi.org/10.1161/CIRCULATIONAHA.116.024822
[31] Obokata, M., Olson, T.P., Reddy, Y.N.V., et al. (2018) Haemodynamics, Dyspnoea, and Pulmonary Reserve in Heart Failure with Preserved Ejection Fraction. European Heart Journal, 39, 2810-2821.
https://doi.org/10.1093/eurheartj/ehy268
[32] Sugumar, H., Nanayakkara, S., Vizi, D., et al. (2021) A Prospective Study Using Invasive Haemodynamic Measurements Following Catheter Ablation for AF and Early HFpEF: STALL AF-HFpEF. European Journal of Heart Failure, 23, 785-796.
https://doi.org/10.1002/ejhf.2122
[33] Reddy, Y.N.V., Carter, R.E., Obokata, M., et al. (2018) A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure with Preserved Ejection Fraction. Circulation, 138, 861-870.
https://doi.org/10.1161/CIRCULATIONAHA.118.034646
[34] Pieske, B., Tschöpe, C., De Boer, R.A., et al. (2019) How to Diagnose Heart Failure with Preserved Ejection Fraction: The HFA-PEFF Diagnostic Algorithm: A Consensus Recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). European Heart Journal, 40, 3297-3317.
https://doi.org/10.1093/eurheartj/ehz641
[35] Churchill, T.W., Li, S.X., Curreri, L., et al. (2021) Evaluation of 2 Existing Diagnostic Scores for Heart Failure with Preserved Ejection Fraction against a Comprehensively Phenotyped Cohort. Circulation, 143, 289-291.
https://doi.org/10.1161/CIRCULATIONAHA.120.050757
[36] Reddy, Y.N.V., Kaye, D.M., Handoko, M.L., et al. (2022) Diagnosis of Heart Failure with Preserved Ejection Fraction among Patients with Unexplained Dyspnea. JAMA Cardiology, 7, 891-899.
https://doi.org/10.1001/jamacardio.2022.1916
[37] Smiseth, O.A., Donal, E., Boe, E., et al. (2023) Phenotyping Heart Failure by Echocardiography: Imaging of Ventricular Function and Haemodynamics at Rest and Exercise. European Heart Journal-Cardiovascular Imaging, 24, 1329-1342.
https://doi.org/10.1093/ehjci/jead196
[38] Ma, C.S., Liao, Y.P., Fan, J.L., et al. (2022) The Novel Left Atrial Strain Parameters in Diagnosing of Heart Failure with Preserved Ejection Fraction. Echocardiography, 39, 416-425.
https://doi.org/10.1111/echo.15304
[39] Nagueh, S.F. (2023) Noninvasive Measurement of Left Atrial Stiffness in Patients with Heart Failure and Preserved Ejection Fraction. American College of Cardiology Foundation, Washington DC, 446-449.
https://doi.org/10.1016/j.jcmg.2022.12.003
[40] Kim, D., Seo, J.H., Choi, K.H., et al. (2023) Prognostic Implications of Left Atrial Stiffness Index in Heart Failure Patients with Preserved Ejection Fraction. Cardiovascular Imaging, 16, 435-445.
https://doi.org/10.1016/j.jcmg.2022.11.002
[41] Liu, Y., Guo, X. and Zheng, Y. (2019) An Automatic Approach Using ELM Classifier for HFpEF Identification Based on Heart Sound Characteristics. Journal of Medical Systems, 43, Article No. 285.
https://doi.org/10.1007/s10916-019-1415-1
[42] Zheng, Y., Guo, X., Qin, J., et al. (2015) Computer-Assisted Diagnosis for Chronic Heart Failure by the Analysis of Their Cardiac Reserve and Heart Sound Characteristics. Computer Methods and Programs in Biomedicine, 122, 372-383.
https://doi.org/10.1016/j.cmpb.2015.09.001
[43] Cheng, L., Liao, K., Wang, Y., et al. (2021) Study of the Correlation between the Ratio of Diastolic to Systolic Durations and Echocardiography Measurements and Its Application to the Classification of Heart Failure Phenotypes. International Journal of General Medicine, 14, 5493-5503.
https://doi.org/10.2147/IJGM.S324319
[44] Luo, H., Weerts, J., Bekkers, A., et al. (2023) Association between Phonocardiography and Echocardiography in Heart Failure Patients with Preserved Ejection Fraction. European Heart JournalDigital Health, 4, 4-11.
https://doi.org/10.1093/ehjdh/ztac073
[45] Sujadevi, V.G., Soman, K.P., Vinayakumar, R., et al. (2017) Deep Models for Phonocardiography (PCG) Classification. 2017 International Conference on Intelligent Communication and Computational Techniques: ICCT 2017, Jaipur, 22-23 December 2017, 211-216.
https://doi.org/10.1109/INTELCCT.2017.8324047
[46] Cheng, R.K., Cox, M., Neely, M.L., et al. (2014) Outcomes in Patients with Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction in the Medicare Population. American Heart Journal, 168, 721-730.
https://doi.org/10.1016/j.ahj.2014.07.008
[47] Massie, B.M., Carson, P.E., Mcmurray, J.J., et al. (2008) Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. New England Journal of Medicine, 359, 2456-2467.
https://doi.org/10.1056/NEJMoa0805450
[48] Pitt, B., Pfeffer, M.A., Assmann, S.F., et al. (2014) Spironolactone for Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 370, 1383-1392.
https://doi.org/10.1056/NEJMoa1313731
[49] McCausland, F.R., Lefkowitz, M.P., Claggett, B., et al. (2020) Angiotensin-Neprilysin Inhibition and Renal Outcomes in Heart Failure with Preserved Ejection Fraction. Circulation, 142, 1236-1245.
https://doi.org/10.1161/CIRCULATIONAHA.120.047643
[50] Martin, N., Manoharan, K., Davies, C., et al. (2021) Beta-Blockers and Inhibitors of the Renin-Angiotensin Aldosterone System for Chronic Heart Failure with Preserved Ejection Fraction. Cochrane Database of Systematic Reviews, 6, CD012721.
https://doi.org/10.1002/14651858.CD012721.pub3
[51] Riedel, O., Ohlmeier, C., Enders, D., et al. (2018) The Contribution of Comorbidities to Mortality in Hospitalized Patients with Heart Failure. Clinical Research in Cardiology, 107, 487-497.
https://doi.org/10.1007/s00392-018-1210-x
[52] Tschöpe, C., Birner, C., Böhm, M., et al. (2018) Heart Failure with Preserved Ejection Fraction: Current Management and Future Strategies: Expert Opinion on the Behalf of the Nucleus of the “Heart Failure Working Group” of the German Society of Cardiology (DKG). Clinical Research in Cardiology, 107, 1-19.
https://doi.org/10.1007/s00392-017-1170-6
[53] Hegde, S.M., Claggett, B., Shah, A.M., et al. (2017) Physical Activity and Prognosis in the TOPCAT Trial (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist). Circulation, 136, 982-992.
https://doi.org/10.1161/CIRCULATIONAHA.117.028002
[54] O’rourke, M.F., Namasivayam, M. and Adji, A. (2009) Treatment of Hypertension in Patients 80 Years of Age or Older. Minerva Medica, 100, 25-38.
https://doi.org/10.1016/S0145-4145(08)79311-0
[55] Cikes, M., Claggett, B., Shah, A.M., et al. (2018) Atrial Fibrillation in Heart Failure with Preserved Ejection Fraction: The TOPCAT Trial. JACC: Heart Failure, 6, 689-697.
https://doi.org/10.1016/j.jchf.2018.05.005
[56] Marrouche, N.F., Brachmann, J., Andresen, D., et al. (2018) Catheter Ablation for Atrial Fibrillation with Heart Failure. The New England Journal of Medicine, 378, 417-427.
https://doi.org/10.1056/NEJMoa1707855
[57] Ferreira, J.P., Cleland, J.G., Girerd, N., et al. (2023) Spironolactone Effect on Cardiac Structure and Function of Patients with Heart Failure and Preserved Ejection Fraction: A Pooled Analysis of Three Randomized Trials. European Journal of Heart Failure, 25, 108-113.
https://doi.org/10.1002/ejhf.2726
[58] Yancy, C.W., Jessup, M., Bozkurt, B., et al. (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation, 136, E137-E161.
https://doi.org/10.1161/CIR.0000000000000509
[59] Solomon, S.D., Mcmurray, J.J.V., Anand, I.S., et al. (2019) Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. The New England Journal of Medicine, 381, 1609-1620.
https://doi.org/10.1056/NEJMoa1908655
[60] Anker, S.D., Butler, J., Filippatos, G., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. The New England Journal of Medicine, 385, 1451-1461.
https://doi.org/10.1056/NEJMoa2107038
[61] Butt, J.H., Jhund, P.S., Belohlávek, J., et al. (2022) Efficacy and Safety of Dapagliflozin According to Frailty in Patients with Heart Failure: A Prespecified Analysis of the DELIVER Trial. Circulation, 146, 1210-1224.
https://doi.org/10.1161/CIRCULATIONAHA.122.061754
[62] Pandey, A.K., Bhatt, D.L., Pandey, A., et al. (2023) Mechanisms of Benefits of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction. European Heart Journal, 44, 3640-3651.
https://doi.org/10.1093/eurheartj/ehad389
[63] Borlaug, B.A., Reddy, Y.N.V., Braun, A., et al. (2023) Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure with Preserved Ejection Fraction: The CAMEO-DAPA Trial. Circulation, 148, 834-844.
https://doi.org/10.1161/CIRCULATIONAHA.123.065134
[64] Younes, A.M., Salem, M., Maraey, A., et al. (2022) Safety Outcomes of SGLT2i in the Heart Failure Trials: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 366, 51-56.
https://doi.org/10.1016/j.ijcard.2022.06.059