III型胶原蛋白在乳腺癌中的研究进展
Progress of the Study on Type III Collagen in Breast Cancer
摘要: 乳腺癌(Breast cancer, BC)于2020年在全球新增癌症病例成为了最常见癌症,且发病率逐年升高。胶原蛋白是构成细胞外基质(Extracellular Matrix, ECM)的主要成分,近年来的研究发现III型胶原蛋白(Collagen Type III, COLIII)在乳腺癌的发生、发展过程中发挥重要作用,并对肿瘤微环境(Tumor micro-environment, TME)的维持有重要意义。其中,癌症相关成纤维细胞(Cancer-associated fibroblasts, CAFs)在建立和重塑ECM结构中扮演关键角色,调控肿瘤细胞通过TME入侵的进程。但由于该体系庞大,通过分泌细胞因子和趋化因子与癌细胞相互作用的机制复杂,各成分及其亚型在癌症进展中的角色尚存争议。本文基于TME在乳腺恶性肿瘤中的研究现状以及作为ECM中重要成分的COLIII的性质结构、形态分布,分析COLIII通过改变ECM的机械力与刚度影响乳腺癌行为的机制,同时充分讨论特殊结构、来源的COLIII在微环境中的不同功能及作用方式,评估其应用于癌症治疗的可能性。
Abstract: Breast cancer (BC) became the most common cancer in the world in 2020, and its incidence rate increased year by year. Collagen is the main component of the Extracellular Matrix (ECM), and recent studies have found that Collagen Type III (COLIII) plays an important role in the development of breast cancer and is important for the maintenance of the tumor microenvironment (TME). Among them, Cancer-associated fibroblast (CAF) is a key factor in establishing and remodeling ECM structure, regulating tumor cell invasion through TME. However, due to the complex mechanism by which cytokines and chemokines interact with cancer cells, the roles of various components and their subtypes in cancer progression are still controversial. Herein, based on the current research of TME in breast cancer, and the property, structure, and distribution of COLIII, an important component of ECM, we will explain the potential mechanism by which COLIII affects the behaviour of breast cancer by altering the mechanical force and stiffness of ECM. At the same time, we will also discuss the different functions and modes of action of COLIII with special structures and origins in the microenvironment, as well as evaluate the possibilities of its application in cancer therapy.
文章引用:刘潇蔚, 明佳. III型胶原蛋白在乳腺癌中的研究进展[J]. 临床医学进展, 2024, 14(4): 2295-2304. https://doi.org/10.12677/acm.2024.1441294

1. 引言

IARC发布的报告显示,乳腺癌在女性癌症发病率中居首位(24.2%),并已经在2020年全球新增癌症病例成为了最常见癌症 [1] 。细胞外基质(Extracellular Matrix, ECM)是组织中非细胞的骨架支持结构,在介导细胞信号转导和传递,细胞黏附和增殖等方面发挥重要的生理功能。在组织发育过程中,通过ECM反馈的细胞信号可被相关细胞因子受体识别,准确完成相应的生理活动,从而维持细胞的稳态。肿瘤间质成分的变化对乳腺癌进展具有重要作用,特别是ECM重塑可改变肿瘤细胞的行为,从而影响包括乳腺癌在内的多种肿瘤的生长和转移 [2] [3] [4] [5] [6] 。COLIII作为ECM的主要蛋白成分,在乳腺癌的发生、发展过程中发挥重要作用,并与肿瘤微环境的稳定性密切相关。根据目前针对乳腺癌细胞与ECM相互作用机制的研究现状,深入分析COLIII“亦敌亦友”的角色转换,有助于拓宽抗肿瘤治疗的新途径。

2. 细胞外基质与肿瘤微环境

2.1. 细胞外基质的结构与成分

细胞外基质是一个高度动态的三维大分子网络,存在于所有组织中 [7] ,主要由胶原蛋白、蛋白糖、弹性蛋白、纤维素以及其他几种糖蛋白组成,通过基质与基质、细胞与粘附受体相互结合发挥重要的生理功能 [8] 。ECM可分为间质基质和细胞周基质两种主要类型,它们分别负责为细胞提供结构的完整性及介导细胞间的信号传导等功能 [9] [10] 。胶原蛋白是ECM中最丰富的成分,其超级家族包括28种不同的胶原蛋白,根据同源性及功能性分为7种主要类型,分别为纤维胶原蛋白、网络形成胶原蛋白、伴有中断三螺旋结构的纤维相关胶原蛋白、伴有中断三螺旋结构的膜相关胶原蛋白、自组装成形锚定物、自组装成形特征性豆状物以及多聚胶原蛋白。

2.2. 细胞外基质的机械力与刚度影响乳腺癌行为

ECM传递调节肿瘤组织中特定细胞状态的信号,是一个复杂的生物力学实体 [11] 。一方面,ECM僵化可激活机械传感器Piezo1,Piezo1是一类通过机械力诱导癌症转移的介质 [12] ,在其下游,YAP的激活可通过刺激有氧糖酵解和MMP-7的表达从而促进肿瘤细胞迁移 [13] 。另一方面,TRPV1 (transient receptor potential vanilloid 1)是另一种ECM机械敏感性离子通道,可通过促进Akt激活和YAP/TAZ转运至细胞核以调节肿瘤细胞行为 [14] 。

相较于单一的线性弹性材料,ECM表现出复杂的机械行为,包括粘弹性、机械塑性和非线性弹性 [15] [16] 。基于肿瘤细胞与基质间的双向作用,越来越多的证据表明,细胞外生物力学信号对肿瘤进展至关重要 [17] [18] 。来自ECM的机械力能调节乳腺癌细胞的肿瘤干性和细胞静止状态。Cong Li等人 [19] 的研究显示,来自细胞外基质的约45 Pa的机械力能激活整合素β1/3受体,通过cytoskeleton/AIRE轴刺激干细胞信号通路,促进肿瘤生长。然而,更大的机械力会使干样癌细胞进入静止状态,而在去除机械力后,静止的肿瘤干细胞又会出现高度的增殖能力,其中,机械力促进细胞周期停滞以诱导静止的过程,依赖于DDR2/STAT1/P27轴的信号转导。因此,ECM的机械力可通过刚度的改变控制乳腺癌细胞的活性与增殖能力。

Berger等人在乳腺癌研究中使用三维体外模型 [20] [21] ,重现癌细胞和细胞外基质之间的相互作用,解释了ECM的刚度影响乳腺癌细胞的侵袭能力的潜在机制。该研究发现刚度从低到高增加可使细胞入侵行为从不依赖蛋白水解切换到依赖蛋白水解的表型,同时,随着EGFR和PLCγ1的激活,与乳腺癌转移相关的侵袭性伪足(Invadopodia)蛋白的表达也随之升高 [22] ,诠释了细胞物理特性在乳腺肿瘤进展中的重要角色。

2.3. 肿瘤微环境与癌症相关成纤维细胞

由非肿瘤事件驱动的ECM重塑可以在这些组织中创造支持肿瘤的微环境,增强循环肿瘤细胞的未来定殖 [23] ,这些纤维化组织中的基质重塑与转移前龛(Niche)的形成相似,近年来引起广泛的关注。癌症相关成纤维细胞(Cancer-associated fibroblasts, CAFs)能介导肿瘤生长、炎症、ECM重塑从而促进肿瘤发生,近期被认为与肿瘤微环境(tumor microenvironment, TME)相互作用,帮助癌细胞的免疫逃逸 [6] 。在机械上,CAF建立和重塑ECM结构,使肿瘤细胞能够通过TME入侵,并通过生长因子、细胞因子和趋化因子的分泌与癌细胞或其他基质细胞相互作用 [24] ,具体而言,转化生长因子-β (Transforming Growth Factor-β, TGF-β)、白细胞介素-6 (IL-6)和趋化因子CCL2 (Chemokine C-C motif Ligand 2),将免疫细胞聚集到肿瘤外基质中帮助免疫逃避 [25] [26] 。因此,一方面,CAFs帮助沉积ECM成分,可以在肿瘤中起到防止免疫浸润的物理屏障或用于细胞间相互作用的结构支架,从而调节肿瘤发生和免疫逃逸 [27] 。另一方面,CAFs产生的基质金属蛋白酶(Matrix Metalloproteinases, MMPs)允许血管内皮生长因子A (Vascular Endothelial Growth Factor A, VEGFA)与VEGF受体(Vascular Endothelial Growth Factor receptors, VEGFrs)相互作用,从而促进血管生成 [28] 。值得注意的是,具有极性缺陷的癌细胞在CAF的诱导下可以在ECM重塑所产生的细胞外空间中自由迁移 [29] 。特别地,在结缔组织生成(Desmoplasia)的动态过程中,活化成纤维细胞大量合成各种类型的胶原蛋白(以一型胶原蛋白为主)、透明质酸、纤维连接蛋白和层粘连蛋白,构成ECM和基底膜 [25] 。研究显示局部ECM微环境的重塑会诱导组织机械性僵硬和母细胞纤维化,同时大大增加组织张力,而该基质僵硬的进程与乳腺癌患者的预后紧密相关 [30] 。

尽管过去关于CAF的报道大多集中于其强大的促肿瘤作用,但近年来的研究提示不能因此对CAF的性质一概而论,一些CAF亚型已被报道具有显著的肿瘤抑制功能 [25] ,这也进一步支持了TME中的CAF异质性的概念。其中,乳腺癌TME至少包含两个CAF亚型,可以通过CD146表达来区分 [31] 。具体而言,CD146+的CAFs可增强Luminal型乳腺癌细胞对他莫昔芬的敏感性,而CD146的CAFs则可抑制雌激素受体的表达和癌细胞对雌激素的反应性,从而导致他莫昔芬耐药。此外,在胰腺导管腺癌的小鼠模型中也发现,消除α-SMA+的CAF或抑制维持基质成纤维细胞的Hedgehog信号,都与疾病进展及患者的不良预后有关 [32] [33] 。这些研究提示,一些CAF亚型在常见癌症类型中具有抗肿瘤特性,因此在癌症治疗策略中非选择性地靶向CAFs可能导致效果不佳,甚至促进肿瘤的进展。因此,找到特殊、可靠的细胞表面标志物以区分促癌与抑癌作用的CAF亚型,可能是未来实现精准治疗的潜在方案。

3. 三型胶原蛋白是细胞外基质的重要成分

3.1. 三型胶原蛋白的结构和性质

在胶原蛋白的众多种类中,I、II、III、VXI、XXIV和XXVII型都归属于纤维胶原蛋白类型,它们代表了组织中最丰富广泛的胶原蛋白 [7] [34] 。其中,COLIII是一类作用突出的结构蛋白,又被称为纤维状胶原蛋白,约占人体全部胶原蛋白含量的5%~20%。COLIII是由三个相同的α1链组成的长三螺旋结构,其螺旋区域内的分子内巯基键发挥重要的生理功能 [26] 。首先,COLIII具有强大的凝血功能。在组织受创时,血小板表面的糖蛋白Ia/IIa与非整合素蛋白p65和p47识别并黏附COLI与COLIII,从而激活凝血级联反应 [35] 。其次,COLIII作为皮肤组织修复和重塑中关键的细胞外成分,通常参与伤口愈合过程中的三个基本阶段:炎症阶段、增殖阶段、重塑阶段。其中,胶原蛋白不仅被证明具有一定的抗炎保护特性,还被证实可促进皮肤再生与瘢痕愈合。更重要的是,在人体内,COLIII能通过形成临时基质,引导炎症细胞和成纤维细胞趋向伤口部位,并提供细胞脚手架,维持真皮、血管、子宫、胃肠道等空心器官及肝肺等内脏器官的结构完整性,在伤口愈合、胶原纤维化和人类正常心血管发育过程中是不可或缺的角色 [36] [37] [38] [39] [40] 。此外,目前已知的COLIII影响组织修复进程的另一个机制是调控间质细胞和内皮细胞的活性,因此可以通过参与细胞粘附、迁移、增殖和分化,进而协调组织形成和再生中的细胞活动。

3.2. 三型胶原蛋白的生理功能

研究显示,成熟的真皮一般由80%的I型胶原蛋白、10%~15%的III型胶原蛋白和少量的V型胶原蛋白组成 [41] [42] 。尽管I型胶原蛋白在含量上远超III型胶原蛋白,但是III型胶原蛋白的多方面功能特性强于I型胶原蛋白。首先,经实验证明,COLIII在体外诱导血小板聚合的能力显著优于COL1 [35] 。此外,就乳腺癌而言,有研究表明COL1的表达与患者的预后呈现负相关性 [43] ,而COLIII在乳腺癌中对组织和器官的保护起着关键性作用 [44] 。同时,有研究证明COLIII能通过调节COL1起到限制肌纤维细胞的密度进而促进再上皮化,防止瘢痕的形成 [44] 。

近年来,COLIII的多样化功能已经被广泛应用于临床治疗。首先,重组胶原蛋白常被用作止血材料,例如,胶原蛋白海绵在腔镜甲状腺手术及填塞拔牙窝中起着安全有效的止血作用 [45] ;其次,III型重组胶原蛋白可有效促进伤口愈合,不仅常被用作口腔溃疡的防护凝胶,还在加快穿孔鼓膜后期愈合的速度、改善人体皮肤的弹性、减少人面部的皱纹以抵抗衰老等领域初显成效 [46] [47] ;同时,在组织工程中,重组III型胶原蛋白可作为自体皮肤细胞移植的输送工具,其水凝胶能够充当良好的角膜置入替代物,该生物材料作为临时基质,可防止伤口的感染及液体的损失。动物源性胶原蛋白材料还在诸多的领域中饶有建树。例如,重组人III型胶原蛋白水凝胶在心肌梗死一周后注射能够有效保护心脏功能 [48] [49] ,还可作为培养神经干/祖细胞的生物材料,使细胞能够保持干细胞样状态或有效分化为神经元,在神经系统疾病的治疗中成为输送细胞的脚手架 [50] ;特别地,测定III型胶原蛋白的含量既可以作为肌肉骨骼病理学诊断的重要指标,还可作为评价下肢淋巴水肿患者的皮肤纤维化程度的生物学指标 [51] 。由此可见,III型胶原蛋白是一种优秀的生物材料和医疗评估指标,广泛应用于医学治疗的多个领域。

3.3. 乳腺组织与乳腺癌中的胶原蛋白

一般而言,人、猪与小鼠乳腺组织的ECM主要由I型、II型、III型和V型胶原蛋白构成 [52] ,它们是ECM的主要机械支撑、细胞受体和结构组织者 [53] 。胶原蛋白除了在介导腺泡形成能力外,其机械特性还可能调节腺泡结构的大小和形状 [54] 。一项研究根据人乳腺组织ECM的弹性系数,使用2 mg/ml (从原生ECM中提取的富含胶原的水凝胶聚合到ECM刚度的最佳浓度 [55] )的胶原蛋白水凝胶进行腺泡形成实验,发现水凝胶表现出独特的微观结构特征和机械性能 [52] [56] [57] ,并且在不同基质上生长的乳腺上皮细胞对药物的反应也不同 [58] [59] ,因此胶原蛋白的硬度、构成和微观结构的变化与乳腺的病理生理密切相关。

乳腺恶性肿瘤进展伴随着组织ECM结构的破坏、过量的胶原蛋白沉积和促结缔组织增生 [60] 。特别是COLI沉积会导致组织硬化、癌细胞增殖迁移、肿瘤血管生成和肿瘤相关巨噬细胞招募 [61] [62] 。然而,目前针对肿瘤中胶原蛋白沉积如何影响患者预后的研究中,匮乏的关键在于不同类型胶原蛋白在结构和成分上是否正确聚合 [52] 。

4. 三型胶原蛋白在乳腺癌中的研究进展

4.1. 三型胶原蛋白与乳腺癌

由于ECM沉积导致肿瘤耐药与免疫逃逸的理论,胶原蛋白在癌症领域的作用被广泛研究的同时尚存争议。首先,胶原蛋白参与的ECM纤维化之所以被认为可能促进肿瘤转移,其重要原因是,如果诱导了高度的肿瘤炎症会最终触发基质僵化 [62] ,这种病理行为在纤维化和癌症等状态下尤为普遍,其中严重的ECM重塑和致密的胶原蛋白是这些病变的标志 [63] 。然而,Brisson等人鉴于胶原蛋白在调节再生和肿瘤微环境的生化、物理及机械方面中的关键角色,首先发现了在原位乳腺癌动物模型中,全长COLIII (Full-length Collagen Type III)的减少增强了皮肤伤口中肌成纤维细胞的活化和疤痕的形成,并促进了肿瘤的生长和转移 [64] 。接着,基于N-末端前肽是涉及ECM重塑的生物标志物 [65] [66] ,设计了N-末端区域包含CR结构域(含10个半胱氨酸残基)的富含半胱氨酸片段的COLIII (Cysteine-rich N-propeptide Collagen type III, CR-COLIII),通过体内外实验证实了CR-COLIII对乳腺癌的抑制作用 [67] 。更重要的是,该机制依赖于CR肽直接结合并降低细胞外TGF-β活性来减少TGF-β信号传导,诱导形成抑制癌细胞活性的肿瘤微环境。有趣的是,该研究还发现CR肽的生理浓度减少TGF-β信号传导的效果为部分衰减并非完全消除,这种抑制方式能巧妙地防止过低的TGF-β信号所导致的细胞和基质之间发生前馈反应,从而避免进一步促进成纤维细胞激活、基质沉积和TGF-β活性。

本研究组亦使用由人类COLIII关键功能区域的重复序列所构建的重组人源化胶原蛋白(Recombinant Humanized Collagen Type III, rhCOLIII)验证了rhCOLIII对乳腺癌的抑制作用,且RNA测序结果显示下调的TGF-β通路与上述研究具有一致性,再加上生信分析提示rhCOLIII诱导的DDR1与肿瘤炎症呈现高度负相关 [68] 。由此可以推测,COLIII的抑癌机制依赖于其特殊功能区域对TGF-β信号的精准调控,同时能有效避免胶原蛋白堆积诱导的基质僵化而诱导的肿瘤侵袭。

4.2. 三型胶原蛋白与肿瘤休眠

肿瘤的转移性定植并不一定要求癌细胞在到达部位后立即分裂,也不一定立刻伴随临床上明显的进展或病变。相反,绝大多数转移的肿瘤细胞都是单个的有丝分裂静止细胞 [69] ,这种转移性休眠常见于许多实体肿瘤 [70] [71] 。因此,一方面,龛抑制了癌细胞的增殖和远处定植,另一方面,也帮助癌细胞避开了免疫系统的监测与清除 [72] 。

Julie Di Martino等人 [73] 就如何维持乳腺癌细胞的休眠状态展开了研究。该研究从ECM的三维结构组织入手,发现休眠的肿瘤细胞在体内为单细胞或小细胞簇,而增殖的肿瘤细胞在体内形成具有高度活性的团块簇。更重要的是,休眠癌细胞的ECM中富含大量的胶原蛋白(55%),而增殖活性肿瘤的明显较少(36%),且测序结果显示III型胶原蛋白是休眠肿瘤ECM中最为丰富的胶原蛋白种类。此外,该项研究还阐明了COL3A1/DDR1/STA1信号轴的正反馈机制,为探究防止休眠癌细胞“苏醒”、减少乳腺癌患者局部和远端复发的干预措施奠定了坚实基础。

值得注意的是,在多光子二次谐波成像中可以观察到 [73] ,休眠乳腺肿瘤细胞周围的胶原纤维具有非线性排列和波状结构的特征,而在肿瘤细胞“苏醒”过程中则转换到高度线性的排列方式,因此,异常重塑的ECM中胶原蛋白的结构与分布方式也是决定乳腺癌患者预后的关键因素与探索新治疗方案的着手点。

5. 基于三型胶原蛋白的乳腺癌治疗策略

Danielle E. Desa等人 [74] 应用二次谐波成像评估了新辅助化疗对肿瘤胶原蛋白特征的影响,发现在乳腺肿瘤中,肿瘤团块的方向性、胶原蛋白交联发生了变化,特别地,三阴型乳腺癌ECM中的纤维排列显著改变。这些结果表明,新辅助化疗会影响肿瘤细胞外胶原蛋白,破坏微环境稳态,从而导致患者肿瘤耐药及不良生存预后。尽管大量临床应用表明新辅助治疗能有效缩小乳腺肿瘤体积,但最新的研究显示新辅助化疗能诱发TME紊乱,促进肿瘤血管生成、炎症反应和细胞应激 [75] [76] ,与局部复发风险相关 [77] 。由此,功能性胶原蛋白如rhCOLIII的干预可能通过胶原蛋白正确排列并稳定TME,成为潜在的防止乳腺癌化疗耐药及进展的手段。

前文提及CAFs不同亚型对肿瘤具有不同作用,就促进乳腺癌进展的CAFs亚型而言,已有大量研究针对抑制其活性并阻断信号传导以达到消耗CAFs的目的,如靶向HGF-MET-FRA1-HEY1级联中的信号可增强转移性乳癌对内分泌治疗的敏感性 [78] 。除了直接消耗法,已有研究报道通过间接将促肿瘤性CAF的激活状态恢复为静止状态、诱导它们获得抑制性肿瘤表型的可能性 [25] 。这种表型反转可通过抑制肿瘤内WNT-β-catenin信号或增加小鼠模型中CD8+ T细胞浸润来抑制肿瘤进展 [79] 。因此,促进CAFs正常化或改变其表型可能为另一种间接手段。更重要的是,在肝癌研究中发现,肝星状细胞在TGF-β的激活下能诱导TME中的CAF生成,促进肿瘤进展 [80] ,然而,肝星状细胞分泌的胶原蛋白能却通过有效抑制CAF从而限制肿瘤的生长、增殖及转移 [81] ,提示胶原蛋白可能在该机制中发挥重要作用。因此,外源性补充重组人源化III型胶原蛋白可能通过改变微环境与CAF的状态来抑制癌细胞的转移、提高对化疗药物的敏感性。

6. 展望

目前为止,许多以干预肿瘤环境为机制的抗癌药物已被批准用于临床治疗,这一根据肿瘤基质特性治疗不同肿瘤的方案也为个性化、以患者为中心的提供了一种广阔的思路。彼时,由于一些固体肿瘤在进展中出现了相似的ECM过度重塑,特定的分子靶向或合理的ECM结构重塑可以在泛癌中应用,但由于基质成分的复杂性,要到达靶向于基质的精准有效治疗还有很长的路要走。可以确定的是,过度的基质沉积和重塑并不单一地为乳腺恶性肿瘤细胞设立物理屏障,异常的胶原排列和机械力、增强的基质刚度还有细胞与间质之间的相互作用产生的信号传导是深入渗透到整个肿瘤中的。然而,基于目前COLIII的研究现状,打破局部治疗肿瘤的局限性,探讨其在肿瘤免疫微环境中的作用方式,有望减少肿瘤复发及全身转移,进一步改善乳腺癌患者的生存。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Najafi, M., Farhood, B. and Mortezaee, K. (2019) Extracellular Matrix (ECM) Stiffness and Degradation as Cancer Drivers. Journal of Cellular Biochemistry, 120, 2782-2790.
https://doi.org/10.1002/jcb.27681
[3] Bahcecioglu, G., Basara, G., Ellis, B.W., et al. (2020) Breast Cancer Models: Engineering the Tumor Microenvironment. Acta Biomaterialia, 106, 1-21.
https://doi.org/10.1016/j.actbio.2020.02.006
[4] Jolly, L.A., Novitskiy, S., Owens, P., et al. (2016) Fibroblast-Mediated Collagen Remodeling within the Tumor Microenvironment Facilitates Progression of Thyroid Cancers Driven by BrafV600E and Pten Loss. Cancer Research, 76, 1804-1813.
https://doi.org/10.1158/0008-5472.CAN-15-2351
[5] Dong, Y., Zheng, Q., Wang, Z., et al. (2019) Higher Matrix Stiffness as an Independent Initiator Triggers Epithelial-Mesenchymal Transition and Facilitates HCC Metastasis. Journal of Hematology & Oncology, 12, Article No. 112.
https://doi.org/10.1186/s13045-019-0795-5
[6] Arpinati, L. and Scherz-Shouval, R. (2023) From Gatekeepers to Providers: Regulation of Immune Functions by Cancer-Associated Fibroblasts. Trends in Cancer, 9, 421-443.
https://doi.org/10.1016/j.trecan.2023.01.007
[7] Theocharis, A.D., Skandalis, S.S., Gialeli, C., et al. (2016) Extracellular Matrix Structure. Advanced Drug Delivery Reviews, 97, 4-27.
https://doi.org/10.1016/j.addr.2015.11.001
[8] Theocharis, A.D., Manou, D. and Karamanos, N.K. (2019) The Extracellular Matrix as a Multitasking Player in Disease. The FEBS Journal, 286, 2830-2869.
https://doi.org/10.1111/febs.14818
[9] Frantz, C., Stewart, K.M. and Weaver, V.M. (2010) The Extracellular Matrix at a Glance. Journal of Cell Science, 123, 4195-4200.
https://doi.org/10.1242/jcs.023820
[10] Hynes, R.O. (2009) The Extracellular Matrix: Not Just Pretty Fibrils. Science (New York, N.Y.), 326, 1216-1219.
https://doi.org/10.1126/science.1176009
[11] Malandrino, A., Mak, M., Kamm, R.D., et al. (2018) Complex Mechanics of the Heterogeneous Extracellular Matrix in Cancer. Extreme Mechanics Letters, 21, 25-34.
https://doi.org/10.1016/j.eml.2018.02.003
[12] Dombroski, J.A., Hope, J.M., Sarna, N.S., et al. (2021) Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells, 10, Article No. 2815.
https://doi.org/10.3390/cells10112815
[13] Liu, Q.P., Luo, Q., Deng, B., et al. (2020) Stiffer Matrix Accelerates Migration of Hepatocellular Carcinoma Cells through Enhanced Aerobic Glycolysis via the MAPK-YAP Signaling. Cancers, 12, Article No. 490.
https://doi.org/10.3390/cancers12020490
[14] Lee, W.H., Choong, L.Y., Jin, T.H., et al. (2017) TRPV4 Plays a Role in Breast Cancer Cell Migration via Ca2 -Dependent Activation of AKT and Downregulation of E-Cadherin Cell Cortex Protein. Oncogenesis, 6, E338.
https://doi.org/10.1038/oncsis.2017.39
[15] Nam, S., Hu, K.H., Butte, M.J., et al. (2016) Strain-Enhanced Stress Relaxation Impacts Nonlinear Elasticity in Collagen Gels. Proceedings of the National Academy of Sciences of the United States of America, 113, 5492-5497.
https://doi.org/10.1073/pnas.1523906113
[16] Chaudhuri, O., Cooper-White, J., Janmey, P.A., et al. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546.
https://doi.org/10.1038/s41586-020-2612-2
[17] Cox, T.R. (2021) The Matrix in Cancer. Nature Reviews. Cancer, 21, 217-238.
https://doi.org/10.1038/s41568-020-00329-7
[18] Gong, Z., Szczesny, S.E., Caliari, S.R., et al. (2018) Matching Material and Cellular Timescales Maximizes Cell Spreading on Viscoelastic Substrates. Proceedings of the National Academy of Sciences of the United States of America, 115, E2686-E2695.
https://doi.org/10.1073/pnas.1716620115
[19] Li, C., Qiu, S., Liu, X., et al. (2023) Extracellular Matrix-Derived Mechanical Force Governs Breast Cancer Cell Stemness and Quiescence Transition through Integrin-DDR Signaling. Signal Transduction and Targeted Therapy, 8, Article No. 247.
https://doi.org/10.1038/s41392-023-01453-0
[20] Lepucki, A., Orlińska, K., Mielczarek-Palacz, et al. (2022) The Role of Extracellular Matrix Proteins in Breast Cancer. Journal of Clinical Medicine, 11, Article No. 1250.
https://doi.org/10.3390/jcm11051250
[21] Huerta-Reyes, M. and Aguilar-Rojas, A. (2021) Three‑Dimensional Models to Study Breast Cancer (Review). International Journal of Oncology, 58, 331-343.
https://doi.org/10.3892/ijo.2021.5176
[22] Berger, A.J., Renner, C.M., Hale, I., et al. (2020) Scaffold Stiffness Influences Breast Cancer Cell Invasion via EGFR-Linked Mena Upregulation and Matrix Remodeling. Matrix Biology: Journal of the International Society for Matrix Biology, 85-86, 80-93.
https://doi.org/10.1016/j.matbio.2019.07.006
[23] Cox, T.R., Bird, D., Baker, A.M., et al. (2013) LOX-Mediated Collagen Crosslinking Is Responsible for Fibrosis-Enhanced Metastasis. Cancer Research, 73, 1721-1732.
https://doi.org/10.1158/0008-5472.CAN-12-2233
[24] Lu, P., Takai, K., Weaver, V.M., et al. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, A005058.
https://doi.org/10.1101/cshperspect.a005058
[25] Chen, X. and Song, E. (2019) Turning Foes to Friends: Targeting Cancer-Associated Fibroblasts. Nature Reviews. Drug Discovery, 18, 99-115.
https://doi.org/10.1038/s41573-018-0004-1
[26] Flavell, R.A., Sanjabi, S., Wrzesinski, S.H., et al. (2010) The Polarization of Immune Cells in the Tumour Environment by TGFbeta. Nature Reviews. Immunology, 10, 554-567.
https://doi.org/10.1038/nri2808
[27] Laklai, H., Miroshnikova, Y.A., Pickup, M.W., et al. (2016) Genotype Tunes Pancreatic Ductal Adenocarcinoma Tissue Tension to Induce Matricellular Fibrosis and Tumor Progression. Nature Medicine, 22, 497-505.
https://doi.org/10.1038/nm.4082
[28] Baeriswyl, V. and Christofori, G. (2009) The Angiogenic Switch in Carcinogenesis. Seminars in Cancer Biology, 19, 329-337.
https://doi.org/10.1016/j.semcancer.2009.05.003
[29] Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., et al. (2007) Fibroblast-Led Collective Invasion of Carcinoma Cells with Differing Roles for RhoGTPases in Leading and Following Cells. Nature Cell Biology, 9, 1392-1400.
https://doi.org/10.1038/ncb1658
[30] Tsujino, T., Seshimo, I., Yamamoto, H., et al. (2007) Stromal Myofibroblasts Predict Disease Recurrence for Colorectal Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13, 2082-2090.
https://doi.org/10.1158/1078-0432.CCR-06-2191
[31] Brechbuhl, H.M., Finlay-Schultz, J., Yamamoto, T.M., et al. (2017) Fibroblast Subtypes Regulate Responsiveness of Luminal Breast Cancer to Estrogen. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23, 1710-1721.
https://doi.org/10.1158/1078-0432.CCR-15-2851
[32] Özdemir, B.C., Pentcheva-Hoang, T., Carstens, J.L., et al. (2014) Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell, 25, 719-734.
https://doi.org/10.1016/j.ccr.2014.04.005
[33] Rhim, A.D., Oberstein, P.E., Thomas, D.H., et al. (2014) Stromal Elements Act to Restrain, Rather than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell, 25, 735-747.
https://doi.org/10.1016/j.ccr.2014.04.021
[34] Sorushanova, A., Delgado, L.M., Wu, Z., et al. (2019) The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Advanced Materials (Deerfield Beach, Fla.), 31, E1801651.
https://doi.org/10.1002/adma.201801651
[35] King S. (2005) Catrix: An Easy-to-Use Collagen Treatment for Wound Healing. British Journal of Community Nursing, 10, S31-S34.
https://doi.org/10.12968/bjcn.2005.10.Sup3.19697
[36] San Antonio, J.D., Zoeller, J.J., Habursky, K., et al. (2009) A Key Role for the Integrin Alpha2beta1 in Experimental and Developmental Angiogenesis. The American Journal of Pathology, 175, 1338-1347.
https://doi.org/10.2353/ajpath.2009.090234
[37] Iozzo, R.V. and San Antonio, J.D. (2001) Heparan Sulfate Proteoglycans: Heavy Hitters in the Angiogenesis Arena. The Journal of Clinical Investigation, 108, 349-355.
https://doi.org/10.1172/JCI200113738
[38] Kuivaniemi, H. and Tromp, G. (2019) Type III Collagen (COL3A1): Gene and Protein Structure, Tissue Distribution, and Associated Diseases. Gene, 707, 151-171.
https://doi.org/10.1016/j.gene.2019.05.003
[39] Levi, B., Glotzbach, J.P., Sorkin, M., et al. (2013) Molecular Analysis and Differentiation Capacity of Adipose-Derived Stem Cells from Lymphedema Tissue. Plastic and Reconstructive Surgery, 132, 580-589.
https://doi.org/10.1097/PRS.0b013e31829ace13
[40] Liu, X., Wu, H., Byrne, M., et al. (1997) Type III Collagen Is Crucial for Collagen I Fibrillogenesis and for Normal Cardiovascular Development. Proceedings of the National Academy of Sciences of the United States of America, 94, 1852-1856.
https://doi.org/10.1073/pnas.94.5.1852
[41] Sekiguchi, M. and Suzuki, J. (1992) An Overview on Takayasu Arteritis. Heart and Vessels. Supplement, 7, 6-10.
https://doi.org/10.1007/BF01744537
[42] Morris, M.M. and Powell, S.N. (1997) Irradiation in the Setting of Collagen Vascular Disease: Acute and Late Complications. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 15, 2728-2735.
https://doi.org/10.1200/JCO.1997.15.7.2728
[43] Li, Y., Rouhi, O., Chen, H., et al. (2015) RNA-Seq and Network Analysis Revealed Interacting Pathways in TGF-β-Treated Lung Cancer Cell Lines. Cancer Informatics, 13, 129-140.
https://doi.org/10.4137/CIN.S14073
[44] Volk, S.W., Wang, Y., Mauldin, E.A., et al. (2011) Diminished Type III Collagen Promotes Myofibroblast Differentiation and Increases Scar Deposition in Cutaneous Wound Healing. Cells, Tissues, Organs, 194, 25-37.
https://doi.org/10.1159/000322399
[45] Yang, C., Hillas, P., Tang, J., et al. (2004) Development of a Recombinant Human Collagen-Type III Based Hemostat. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 69, 18-24.
https://doi.org/10.1002/jbm.b.20030
[46] Ohto-Fujita, E., Shimizu, M., Sano, S., et al. (2019) Solubilized Eggshell Membrane Supplies a Type III Collagen-Rich Elastic Dermal Papilla. Cell and Tissue Research, 376, 123-135.
https://doi.org/10.1007/s00441-018-2954-3
[47] Parkin, J.D., San Antonio, J.D., Persikov, A.V., et al. (2017) The CollαGen III Fibril Has a “Flexi-Rod” Structure of Flexible Sequences Interspersed with Rigid Bioactive Domains Including Two with Hemostatic Roles. PLOS ONE, 12, E0175582.
https://doi.org/10.1371/journal.pone.0175582
[48] Pupkaite, J., Sedlakova, V., Eren Cimenci, C., et al. (2020) Delivering More of an Injectable Human Recombinant Collagen III Hydrogel Does Not Improve Its Therapeutic Efficacy for Treating Myocardial Infarction. ACS Biomaterials Science & Engineering, 6, 4256-4265.
https://doi.org/10.1021/acsbiomaterials.0c00418
[49] Shamhart, P.E. and Meszaros, J.G. (2010) Non-Fibrillar Collagens: Key Mediators of Post-Infarction Cardiac Remodeling? Journal of Molecular and Cellular Cardiology, 48, 530-537.
https://doi.org/10.1016/j.yjmcc.2009.06.017
[50] Que, R.A., Arulmoli, J., Da Silva, N.A., et al. (2018) Recombinant Collagen Scaffolds as Substrates for Human Neural Stem/Progenitor Cells. Journal of Biomedical Materials Research. Part A, 106, 1363-1372.
https://doi.org/10.1002/jbm.a.36343
[51] Karayi, A.K., Basavaraj, V., Narahari, S.R., et al. (2020) Human Skin Fibrosis: Up-Regulation of Collagen Type III Gene Transcription in the Fibrotic Skin Nodules of Lower Limb Lymphoedema. Tropical Medicine & International Health: TM & IH, 25, 319-327.
https://doi.org/10.1111/tmi.13359
[52] Keller, C.R., Ruud, K.F., Martinez, S.R., et al. (2022) Identification of the Collagen Types Essential for Mammalian Breast Acinar Structures. Gels (Basel, Switzerland), 8, Article No. 837.
https://doi.org/10.3390/gels8120837
[53] Bella, J. and Hulmes, D.J. (2017) Fibrillar Collagens. Sub-Cellular Biochemistry, 82, 457-490.
https://doi.org/10.1007/978-3-319-49674-0_14
[54] Paszek, M.J., Zahir, N., Johnson, K.R., et al. (2005) Tensional Homeostasis and the Malignant Phenotype. Cancer Cell, 8, 241-254.
https://doi.org/10.1016/j.ccr.2005.08.010
[55] Ruud, K.F., Hiscox, W.C., Yu, I., et al. (2020) Distinct Phenotypes of Cancer Cells on Tissue Matrix Gel. Breast Cancer Research: BCR, 22, Article No. 82.
https://doi.org/10.1186/s13058-020-01321-7
[56] Keller, C.R., Hu, Y., Ruud, K.F., et al. (2021) Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers, 13, Article No. 5857.
https://doi.org/10.3390/cancers13225857
[57] Rijal, G., Wang, J., Yu, I., et al. (2018) Porcine Breast Extracellular Matrix Hydrogel for Spatial Tissue Culture. International Journal of Molecular Sciences, 19, Article No. 2912.
https://doi.org/10.3390/ijms19102912
[58] Rijal, G. and Li, W. (2017) A Versatile 3D Tissue Matrix Scaffold System for Tumor Modeling and Drug Screening. Science Advances, 3, E1700764.
https://doi.org/10.1126/sciadv.1700764
[59] Shinsato, Y., Doyle, A.D., Li, W., et al. (2020) Direct Comparison of Five Different 3D Extracellular Matrix Model Systems for Characterization of Cancer Cell Migration. Cancer Reports (Hoboken, N.J.), 3, E1257.
https://doi.org/10.1002/cnr2.1257
[60] Acerbi, I., Cassereau, L., Dean, I., et al. (2015) Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integrative Biology: Quantitative Biosciences from Nano to Macro, 7, 1120-1134.
https://doi.org/10.1039/c5ib00040h
[61] Doyle, A.D., Carvajal, N., Jin, A., et al. (2015) Local 3D Matrix Microenvironment Regulates Cell Migration through Spatiotemporal Dynamics of Contractility-Dependent Adhesions. Nature Communications, 6, Article No. 8720.
https://doi.org/10.1038/ncomms9720
[62] Ng, M.R. and Brugge, J.S. (2009) A Stiff Blow from the Stroma: Collagen Crosslinking Drives Tumor Progression. Cancer Cell, 16, 455-457.
https://doi.org/10.1016/j.ccr.2009.11.013
[63] Rybinski, B., Franco-Barraza, J. and Cukierman, E. (2014) The Wound Healing, Chronic Fibrosis, and Cancer Progression Triad. Physiological Genomics, 46, 223-244.
https://doi.org/10.1152/physiolgenomics.00158.2013
[64] Brisson, B.K., Mauldin, E.A., Lei, W., et al. (2015) Type III Collagen Directs Stromal Organization and Limits Metastasis in a Murine Model of Breast Cancer. The American Journal of Pathology, 185, 1471-1486.
https://doi.org/10.1016/j.ajpath.2015.01.029
[65] Fessler, L.I., Timpl, R. and Fessler, J.H. (1981) Assembly and Processing of Procollagen Type III in Chick Embryo Blood Vessels. The Journal of Biological Chemistry, 256, 2531-2537.
https://doi.org/10.1016/S0021-9258(19)69815-7
[66] Gay, S., Müller, P.K., Lemmen, C., et al. (1976) Immunohistological Study on Collagen in Cartilage-Bone Metamorphosis and Degenerative Osteoarthrosis. Klinische Wochenschrift, 54, 969-976.
https://doi.org/10.1007/BF01468947
[67] Brisson, B.K., Stewart, D.C., Burgwin, C., et al. (2022) Cysteine-Rich Domain of Type III Collagen N-Propeptide Inhibits Fibroblast Activation by Attenuating TGFβ Signaling. Matrix Biology: Journal of the International Society for Matrix Biology, 109, 19-33.
https://doi.org/10.1016/j.matbio.2022.03.004
[68] Liu, X., Li, H., Wang, T., et al. (2023) Recombinant Humanized Collagen Type III with High Antitumor Activity Inhibits Breast Cancer Cells Autophagy, Proliferation, and Migration through DDR1. International Journal of Biological Macromolecules, 243, Article ID: 125130.
https://doi.org/10.1016/j.ijbiomac.2023.125130
[69] Pantel, K., Alix-Panabières, C. and Riethdorf, S. (2009) Cancer Micrometastases. Nature Reviews. Clinical Oncology, 6, 339-351.
https://doi.org/10.1038/nrclinonc.2009.44
[70] Goddard, E.T., Bozic, I., Riddell, S.R., et al. (2018) Dormant Tumour Cells, Their Niches and the Influence of Immunity. Nature Cell Biology, 20, 1240-1249.
https://doi.org/10.1038/s41556-018-0214-0
[71] Phan, T.G. and Croucher, P.I. (2020) The Dormant Cancer Cell Life Cycle. Nature Reviews. Cancer, 20, 398-411.
https://doi.org/10.1038/s41568-020-0263-0
[72] Altorki, N.K., Markowitz, G.J., Gao, D., et al. (2019) The Lung Microenvironment: An Important Regulator of Tumour Growth and Metastasis. Nature Reviews. Cancer, 19, 9-31.
https://doi.org/10.1038/s41568-018-0081-9
[73] Di Martino, J.S., Nobre, A.R., Mondal, C., et al. (2022) A Tumor-Derived Type III Collagen-Rich ECM Niche Regulates Tumor Cell Dormancy. Nature Cancer, 3, 90-107.
https://doi.org/10.1038/s43018-021-00291-9
[74] Desa, D.E., Wu, W., Brown, R.M., et al. (2022) Second-Harmonic Generation Imaging Reveals Changes in Breast Tumor Collagen Induced by Neoadjuvant Chemotherapy. Cancers, 14, Article No. 857.
https://doi.org/10.3390/cancers14040857
[75] Perelmuter, V.M., Tashireva, L.A., Savelieva, O.E., et al. (2019) Mechanisms Behind Prometastatic Changes Induced by Neoadjuvant Chemotherapy in the Breast Cancer Microenvironment. Breast Cancer (Dove Medical Press), 11, 209-219.
https://doi.org/10.2147/BCTT.S175161
[76] Volk-Draper, L., Hall, K., Griggs, C., et al. (2014) Paclitaxel Therapy Promotes Breast Cancer Metastasis in a TLR4-Dependent Manner. Cancer Research, 74, 5421-5434.
https://doi.org/10.1158/0008-5472.CAN-14-0067
[77] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2018) Long-Term Outcomes for Neoadjuvant versus Adjuvant Chemotherapy in Early Breast Cancer: Meta-Analysis of Individual Patient Data from Ten Randomised Trials. The Lancet. Oncology, 19, 27-39.
[78] Sansone, P., Berishaj, M., Rajasekhar, V.K., et al. (2017) Evolution of Cancer Stem-Like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Research, 77, 1927-1941.
https://doi.org/10.1158/0008-5472.CAN-16-2129
[79] Froeling, F.E., Feig, C., Chelala, C., et al. (2011) Retinoic Acid-Induced Pancreatic Stellate Cell Quiescence Reduces Paracrine Wnt-β-Catenin Signaling to Slow Tumor Progression. Gastroenterology, 141, 1486-1497.E14.
https://doi.org/10.1053/j.gastro.2011.06.047
[80] Yin, C., Evason, K.J., Asahina, K., et al. (2013) Hepatic Stellate Cells in Liver Development, Regeneration, and Cancer. The Journal of Clinical Investigation, 123, 1902-1910.
https://doi.org/10.1172/JCI66369
[81] Chen, Y., Yang, S., Tavormina, J., et al. (2022) Oncogenic Collagen I Homotrimers from Cancer Cells Bind to α3β1 Integrin and Impact Tumor Microbiome and Immunity to Promote Pancreatic Cancer. Cancer Cell, 40, 818-834.E9.
https://doi.org/10.1016/j.ccell.2022.06.011