SPECT在缺血伴非阻塞性冠状动脉疾病的应用进展
The Application Progress of SPECT in Ischemia with Non-Obstructive Coronary Arteries
摘要: 缺血伴非阻塞性冠状动脉疾病(INOCA)患病率持续上升,目前仍缺乏简便有效的确诊方法,且对其进行准确的危险度分层以实现个体化治疗仍面临重大挑战。单光子发射计算机断层扫描(SPECT)不仅可以评估心肌灌注与左心室功能,而且有望实现血流的精确量化分析,为INOCA的诊疗提供重要价值。本文旨在对SPECT在INOCA诊断和预后评估中的各种应用及其临床意义进行综述。
Abstract: The prevalence of ischemia with non-obstructive coronary arteries (INOCA) continues to rise, and there is still a lack of convenient and effective diagnostic methods. It remains a major challenge to achieve accurate risk stratification and individualized treatment. Single-photon emission computed tomography (SPECT) can not only evaluate myocardial perfusion and left ventricular function, but also has the potential to precisely quantify the blood flow, providing important value for the diagnosis and treatment of INOCA. The review elaborates the various applications of SPECT in the diagnosis and prognosis of INOCA and its clinical significance.
文章引用:黄佳慧, 袁耿彪. SPECT在缺血伴非阻塞性冠状动脉疾病的应用进展[J]. 临床医学进展, 2024, 14(4): 2390-2397. https://doi.org/10.12677/acm.2024.1441306

1. 引言

高达70%的心绞痛患者在冠状动脉造影(coronary angiography, CAG)后未检测出阻塞性冠状动脉病变(心外膜血管狭窄 ≥ 50%) [1] 。这种存在心肌缺血症状和(或)体征,但冠状动脉造影无明显血管狭窄(即狭窄 < 50%)的疾病被称为缺血伴非阻塞性冠状动脉疾病(ischemia with non-obstructive coronary arteries, INOCA) [2] 。正电子发射计算机断层扫描(positron emission computed tomography, PET)是早期诊断和准确评估INOCA的非侵入性“金标准”,但由于费用高昂、配置复杂以及尚未普及等因素,其在临床中的应用受到限制 [3] 。相比之下,单光子发射计算机断层扫描(single-photon emission computed tomography, SPECT)安装普遍,其使用的显像剂相对便宜且易于获取;另外,越来越多研究表明SPECT在INOCA的诊断和预后评估中有巨大潜力 [4] [5] [6] [7] 。这意味着应用SPECT诊疗INOCA更具实际意义、高效益、推广价值且易于推广。本文将对SPECT在INOCA诊断和预后评估中的应用进展进行综述,有助于加深对SPECT的认识,扩大SPECT在临床中的使用,并为INOCA的无创诊断和预后评估提供证据。

2. INOCA

据我国数据显示,在因心绞痛接受CAG的患者中,约有20%为非阻塞性冠状动脉疾病(non-obstructive coronary artery disease, non-obCAD)。与此同时,我国现有冠心病患者数量高达1139万 [8] 。由此可见,我国INOCA疾病负担较重。

INOCA主要因冠状动脉微血管疾病(coronary microvascular disease, CMVD)和/(或)冠状动脉痉挛(coronary artery spasm, CAS)导致心肌供氧失衡,从而导致缺血相关表现,且常常合并有非阻塞性冠状动脉粥样硬化的基础 [9] 。CMVD包括结构重塑(微血管的壁腔比增加、心肌毛细血管密度降低)和/(或)功能异常(内皮依赖性/非内皮依赖性血管舒张障碍、血管平滑肌反常收缩) [10] [11] [12] 。CAS的机制主要与血管内皮细胞功能紊乱及平滑肌细胞收缩反应性增高有关。此外,自主神经功能障碍、炎症反应、钙离子通道异常等也可能与痉挛发生有关。由于目前冠状动脉微血管的直观评估手段有限,INOCA患者最终常被误诊为非心源性胸痛而出院。实际上,他们的主要不良心血管事件(major adverse cardiovascular events, MACE)风险常常被低估,若未及时得到恰当的诊疗护理,可能会出现反复住院的情况,导致生活质量下降,甚至发生急性心血管事件 [13] [14] 。

3. 灌注缺损的应用

心肌灌注显像(myocardial perfusion imaging, MPI)是利用心肌对核素的摄取来观察局部心肌血流灌注情况的检查方法。其摄取量与心肌血流量呈正比,并且与心肌细胞的活性紧密相关。在静息状态下,即使冠状动脉出现严重狭窄,心肌供血和供氧仍可得到维持,因此很难检测出心肌缺血。然而,在负荷(药物或运动)状态下,冠状动脉储备功能障碍,病变血管可由于心肌血流增加受限造成心肌供氧失衡,表现为相应心肌区域显像剂分布稀疏或缺损。因此,准确诊断心肌缺血通常需要进行负荷–静息心肌显像并进行对比。

3.1. 可逆性灌注缺损

可逆性灌注缺损(负荷心肌灌注显像灌注减低/缺损,静息心肌灌注显像部分或完全恢复正常)是心肌缺血的典型表现 [15] 。INOCA最早以“X综合征”出现,指代冠脉造影正常的心绞痛综合征,随着研究的深入,我们逐渐认识到这主要是由于小动脉功能障碍所引起的,故现称“微血管心绞痛” [16] 。MPI可以同时反映冠脉大血管及微血管病变的程度和范围,当冠脉造影显示没有狭窄,并且排除了心肌桥及冠脉痉挛,则可临床诊断为微血管心绞痛。

3.2. 反向再分布

反向再分布的特征是,负荷心肌灌注显像放射性分布正常,但静息或延迟显像时放射性分布稀疏或缺损;或者负荷心肌灌注显像时出现分布缺损,静息或延迟显像时这种缺损现象更为明显。研究发现,反向再分布是CAS的显著特征,而联合临床症状、运动心电图的特异改变以及核素心肌灌注显像的反向再分布特征,是诊断CAS的主要非创伤性手段 [17] 。无创CAS激发试验包括过度换气试验、清晨运动试验、冷加压试验等,Ana等 [18] 的研究发现,联合应用两种激发试验(过度换气与运动试验联合)有效提高了对INOCA的诊断。Ahmed等 [19] 对163名INOCA女性患者进行了冷加压试验及冠脉内注射乙酰胆碱,并评估了冠状动脉直径的变化,研究结果表明,冷加压试验有助于识别冠状动脉内径变化,对诊断冠状动脉内皮功能障碍具有一定的应用价值。Gobbo等 [20] 的研究表明,冷加压试验有助识别出内皮依赖性微循环功能障碍但双嘧达莫药物负荷试验阴性的INOCA患者。综上所述,联合无创激发试验可作为CAS的初步筛查方法,有助于提高CAS的检出率,并进一步区分具体的病理机制。

4. 门控采集的发展

门控心肌灌注显像(gated myocardial perfusion imaging, GMPI)通过心电图R波触发,系统地采集一系列心动周期从收缩到舒张的心肌灌注图像,经专用软件的图像处理和断层重建后,我们不仅能获得心肌血流灌注的相关信息,还可以评估室壁运动、左心室功能以及左心室的机械收缩同步性等多个方面的数据。

4.1. 短暂缺血性扩张

短暂缺血性扩张(transient ischemia dilation, TID)是左心室在负荷和静息状态下的容积比值。弥漫性心内膜下心肌缺血时,负荷状态下,心内膜放射性摄取减低导致左心室假性心腔扩大,此时TID升高,对INOCA具有一定的提示作用 [21] 。鹿存芝等 [22] 探讨了TID对INOCA患者发生缺血的诊断价值,研究结果显示,TID > 1.2时,阳性检出率为65.5%,敏感性高达81.6%。Chen等 [23] 的研究表明,单纯性短暂缺血性扩张(TID > 1.11)可能是冠状动脉微血管功能障碍的标志。目前尚无统一的TID正常值标准,多采用健康参照组的平均数加减2倍标准差作为界定值,且TID在不同年龄、性别之间存在差异,因此,对于不同人群的TID值也需要分别进行评估 [24] 。

4.2. 室壁运动

利用边缘检测技术、心肌体膜校准等方法来确定三维左心室心内膜的边界。同时,通过观察从舒张末期开始的局部计数变化,来判断心内膜的位置变化,从而评估室壁运动。Pantely等 [25] 发现,心内膜下血流减少10%~20%通常不会导致明显的灌注异常,但这种减少足以引起严重的局部室壁功能障碍。近年来,越来越多的研究证实了室壁运动异常与微循环病变的相关性,即便是冠状动脉非阻塞性微循环心肌梗死,梗死区域检测到室壁运动异常的患者始终比无室壁运动异常的患者具有更高的MACE风险 [26] [27] 。

4.3. 舒张功能

左心室舒张功能障碍是心肌缺血的初期迹象,已经通过GMPI证明了评估其功能的可行性 [28] 。其中,高峰充盈率(peak filling rate, PFR)是最常用的指标,它指的是左心室充盈时间曲线舒张部分的第一个峰值。当左心室舒张功能出现问题时,PFR降低,同时峰值充盈时间延长。Gimelli等 [29] 的研究结果表示,non-obCAD患者的PFR比冠脉造影正常患者的PFR明显更低。Nitta等 [30] 对4小时后的再分布图像进行分析,发现PFR有助于检测non-obCAD患者的心肌缺血,且PFR = 1.7是预测这类患者心肌缺血的最佳截断值。张娟等 [31] 随访了139例行两日法静息–负荷GMPI的患者,研究结果显示,PFR < 2.1 EDV/s是预测不良心血管事件的独立因素,联合PFR可强化灌注参数对不良心血管事件的预测价值。

5. SPECT定量MBF、CFR

冠状动脉血流储备(coronary flow reserve, CFR)是心肌在最大充血状态下与静息时状态心肌血流量(myocardial blood flow, MBF)的比值。它反映的是心肌细胞氧需求量增加时心外膜冠脉和微循环血管血流相应增加的能力。将CFR与血流储备分数(fractional flow reserve, FFR)联合应用可提高微循环疾病的诊断(见表1)。

Table 1. CFR combined with FFR to identify endocardial and epicardial ischemia

表1. CFR联合FFR鉴别心内膜及心外膜缺血

注:CFR为冠状动脉血流储备,FFR为血流储备分数,“-”为正常,“↓”减低,“↓↓”为明显减低。

5.1. 传统碘化钠晶体SPECT

利用传统SPECT动态平面采集与静态采集结合法,我们可以基于“微球模型”实现SPECT定量MBF及CFR。在负荷或静息状态下,静脉“弹丸”式注射显像剂后立即行动态平面显像,再通过勾画感兴趣区域(ROI)——左心室和主肺动脉等,获得区域时间放射性曲线(time activity curve, TAC)。TAC作为动脉输入函数,用于对动脉血流进行首过分析(first-pass analysis)。将静态SPECT MPI获得的局部心肌放射性计数及动脉输入函数的数据代入相应数学公式,以计算MBF及CF [32] 。多项研究使用此方法证明了SPECT定量MBF及CFR的结果与PET具有良好相关性 [33] ,但增强信号检测灵敏度,优化系统固有分辨率,开发心脏专用后处理软件,有助于更广泛地利用传统SPECT进行INOCA的诊断和治疗 [34] 。

5.2. 碲锌镉SPECT的出现

采用新型的碲锌镉(cadmium zinc telluride, CZT)固态半导体探测器的心脏专用SPECT设备,其像素切割尺寸缩小至2~3 mm,提高了空间分辨率,是传统SPECT的1.7~2.5倍。此外,该设备的能量分辨率也显著提升,达到3%~6%@140 keV,是传统SPECT的1.65倍。这一技术进步使得SPECT能够实现快速动态断层采集 [35] [36] 。研究证实,CZT-SPECT定量得出的MBF和CFR与PET的结果高度一致(见表2)。此外,越来越多的研究显示,这种方法对不良心血管结局具有很好的预测能力(见表3)。更有学者提出了综合CFR和灌注缺损(iMFR)的方法 [37] ,为鉴别局灶性动脉粥样硬化和弥漫性冠状动脉疾病的影响提供了一种新的无创性手段。

Table 2. Some researches of CZT SPECT dynamic acquisition for CFR and MBF

表2. CZT SPECT动态采集测定CFR和MBF的部分研究

注:CFR为冠状动脉血流储备,MBF为心肌血流量,sMBF为负荷心肌血流量,rMBF为静息心肌血流量,AC为衰减校正,NAC为非衰减校正,MIBI为甲氧基异丁基异腈,PET为正电子发射计算机断层扫描。

Table 3. Some researches of CZT-SPECT quantification of MBF and CFR on prognosis

表3. CZT-SPECT定量MBF和CFR关于预后的部分研究

注:CFR为冠状动脉血流储备,sMBF为负荷心肌血流量,INOCA为缺血伴非梗阻性冠状动脉疾病,MACE为主要不良心血管事件,CMD为冠状动脉微血管功能障碍。

6. 总结

尽管近年来INOCA领域的研究已经取得了较大的进展,但我们对INOCA的认识仍然不够全面。由于各种限制,目前有创检查和PET检查无法在临床大量开展。然而,随着技术的不断进步,SPECT在INOCA的诊断和预后评估中得到了不断发展和卓越的进步。从传统SPECT到新型的CZT-SPECT,SPECT技术经历了许多改进。另外,SPECT在评估灌注缺损方面的常规应用以及门控显像的增益价值都为INOCA的诊断提供了重要的信息。更重要的是,定量血流储备的显著效能使得SPECT成为INOCA诊疗的重要工具。但由于显像剂与成像物理基础不同,SPECT检查目前尚不能完全替代PET,在硬件、校正技术与图像处理软件等方面仍需进一步的优化和完善。此外,SPECT检查结果的正常范围也尚未确立。另一方面,我们还需要开展大规模的临床试验以对INOCA患者进行危险度分层,为实现个性化和精确诊疗,改善患者的预后奠定基础。

NOTES

*通讯作者。

参考文献

[1] Kunadian, V., Chieffo, A., Camici, P.G., et al. (2020) An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. European Heart Journal, 41, 3504-3520.
https://doi.org/10.1093/eurheartj/ehaa503
[2] Bairey Merz, C.N., Pepine, C.J., Walsh, M.N., et al. (2017) Ischemia and No Obstructive Coronary Artery Disease (INOCA) Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation, 135, 1075-1092.
https://doi.org/10.1161/CIRCULATIONAHA.116.024534
[3] 汪静, 李思进. 2020年全国核医学现状普查结果简报[J]. 中华核医学与分子影像杂志, 2020, 40(12): 747-749.
[4] Fu, B., Wei, X., Lin, Y., et al. (2022) Pathophysiologic Basis and Diagnostic Approaches for Ischemia with Non-Obstructive Coronary Arteries: A Literature Review. Frontiers in Cardiovascular Medicine, 9, Article 731059.
https://doi.org/10.3389/fcvm.2022.731059
[5] He, M., Han, W., Shi, C., et al. (2023) A Comparison of Dynamic SPECT Coronary Flow Reserve with TIMI Frame Count in the Treatment of Non-Obstructive Epicardial Coronary Patients. Clinical Interventions in Aging, 18, 1831-1839.
https://doi.org/10.2147/CIA.S429450
[6] Verna, E., Ghiringhelli, S., Provasoli, S., et al. (2018) Epicardial and Microvascular Coronary Vasomotor Dysfunction and Its Relation to Myocardial Ischemic Burden in Patients with Non-Obstructive Coronary Artery Disease. Journal of Nuclear Cardiology, 25, 1760-1769.
https://doi.org/10.1007/s12350-017-0871-6
[7] Lampas, E., Syrmali, K., Nikitas, G., et al. (2023) Five-Year Morbidity and Mortality of Patients with Ischemia with Non-Obstructive Coronary Artery Disease and Myocardial Single-Photon Emission Computed Tomography Perfusion Defects. Revista Portuguesa De Cardiologia, 42, 519-524.
https://doi.org/10.1016/j.repc.2022.07.018
[8] 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国心血管杂志, 2023, 28(4): 297-312.
[9] Camici, P.G., D’Amati, G. and Rimoldi, O. (2015) Coronary Microvascular Dysfunction: Mechanisms and Functional Assessment. Nature Reviews Cardiology, 12, 48-62.
https://doi.org/10.1038/nrcardio.2014.160
[10] Beltrame, J.F., Crea, F., Kaski, J.C., et al. (2017) International Standardization of Diagnostic Criteria for Vasospastic Angina. European Heart Journal, 38, 2565-2568.
[11] Real, C., Morales, T. and Viana-Tejedor, A. (2021) An Unusual Call From the Urology Ward. Circulation, 144, 324-327.
https://doi.org/10.1161/CIRCULATIONAHA.121.055185
[12] Mejía-Rentería, H., Van Der Hoeven, N., Van De Hoef, T.P., et al. (2017) Targeting the Dominant Mechanism of Coronary Microvascular Dysfunction with Intracoronary Physiology Tests. The International Journal of Cardiovascular Imaging, 33, 1041-1059.
https://doi.org/10.1007/s10554-017-1136-9
[13] Shimokawa, H., Suda, A., Takahashi, J., et al. (2021) Clinical Characteristics and Prognosis of Patients with Microvascular Angina: An International and Prospective Cohort Study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. European Heart Journal, 42, 4592-4600.
https://doi.org/10.1093/eurheartj/ehab282
[14] Radico, F., Zimarino, M., Fulgenzi, F., et al. (2018) Determinants of Long-Term Clinical Outcomes in Patients with Angina But without Obstructive Coronary Artery Disease: A Systematic Review and Meta-Analysis. European Heart Journal, 39, 2135-2146.
https://doi.org/10.1093/eurheartj/ehy185
[15] Oikonomou, E., Theofilis, P., Lampsas, S., et al. (2022) Current Concepts and Future Applications of Non-Invasive Functional and Anatomical Evaluation of Coronary Artery Disease. Life, 12, Article 1803.
https://doi.org/10.3390/life12111803
[16] Mandell, B.F. (2021) We Have a Greater Understanding of ‘Cardiac Syndrome X,’ But Questions Remain. Cleveland Clinic Journal of Medicine, 88, 532-533.
https://doi.org/10.3949/ccjm.88b.10021
[17] Sueda, S. (2020) Clinical Usefulness of Myocardial Scintigraphy in Patients with Vasospastic Angina. Journal of Cardiology, 75, 494-499.
https://doi.org/10.1016/j.jjcc.2019.10.003
[18] Dikic, A.D., Dedic, S., Jovanovic, I., et al. (2024) Noninvasive Evaluation of Dynamic Microvascular Dysfunction in Ischemia and No Obstructive Coronary Artery Disease Patients with Suspected Vasospasm. Journal of Cardiovascular Medicine, 25, 123-131.
https://doi.org/10.2459/JCM.0000000000001562
[19] AlBadri, A., Wei, J., Mehta, P.K., et al. (2017) Acetylcholine versus Cold Pressor Testing for Evaluation of Coronary Endothelial Function. PLOS ONE, 12, e0172538.
https://doi.org/10.1371/journal.pone.0172538
[20] Gobbo, M., Meretta, A., Sciancalepore, M., et al. (2021) INOCA: Unraveling the Pathophysiological Mechanisms, Non-Invasively. European Heart JournalCardiovascular Imaging, 22, Jeab111.049.
https://doi.org/10.1093/ehjci/jeab111.049
[21] Alama, M., Labos, C., Emery, H., et al. (2018) Diagnostic and Prognostic Significance of Transient Ischemic Dilation (TID) in Myocardial Perfusion Imaging: A Systematic Review and Meta-Analysis. Journal of Nuclear Cardiology, 25, 724-737.
https://doi.org/10.1007/s12350-017-1040-7
[22] 鹿存芝, 骆秉铨, 王亚楠, 等. 核素TID比值诊断非梗阻性冠心病心肌缺血[J]. 标记免疫分析与临床, 2021, 28(2): 243-245, 250.
[23] Chen, L., Zhang, M., Jiang, J., et al. (2021) Coronary Microvascular Dysfunction: An Important Interpretation on the Clinical Significance of Transient Ischemic Dilation of the Left Ventricle on Myocardial Perfusion Imaging. Journal of X-Ray Science Technology, 29, 347-360.
https://doi.org/10.3233/XST-200803
[24] Juweid, M.E., Alhouri, A., Baniissa, B., et al. (2021) Transient Ischemic Dilatation with Adenosine 99m Tc-Sestamibi Stress: Prognostic Significance in Patients with Normal Myocardial Perfusion. Annals of Nuclear Medicine, 35, 569-579.
https://doi.org/10.1007/s12149-021-01599-3
[25] Pantely, G.A., Malone, S.A., Rhen, W.S., et al. (1990) Regeneration of Myocardial Phosphocreatine in Pigs Despite Continued Moderate Ischemia. Circulation Research, 67, 1481-1493.
https://doi.org/10.1161/01.RES.67.6.1481
[26] Schock, A., Haller, P., Kellner, C., et al. (2023) Prognostic Value of Transthoracic Echocardiography in the Evaluation of Suspected Myocardial Infarction. European Heart Journal, 44, ehad655.1237.
https://doi.org/10.1093/eurheartj/ehad655.1237
[27] Hausvater, A., Smilowitz, N., Espinosa, D., et al. (2018) Left Ventricular Wall Motion Findings in Myocardial Infarction with Nonobstructive Coronary Artery Disease (Minoca). Journal of the American College of Cardiology, 71, A135.
https://doi.org/10.1016/S0735-1097(18)30676-4
[28] Nakajima, K., Taki, J., Kawano, M., et al. (2001) Diastolic Dysfunction in Patients with Systemic Sclerosis Detected by Gated Myocardial Perfusion SPECT: An Early Sign of Cardiac Involvement. Journal of Nuclear Medicine, 42, 183-188.
[29] Gimelli, A., Liga, R., Pasanisi, E.M., et al. (2017) Myocardial Ischemia in the Absence of Obstructive Coronary Lesion: the Role of Post-Stress Diastolic Dysfunction in Detecting Early Coronary Atherosclerosis. Journal of Nuclear Cardiology, 24, 1542-1550.
https://doi.org/10.1007/s12350-016-0456-9
[30] Nitta, K., Kurisu, S., Sumimoto, Y., et al. (2020) Diagnostic Value of Peak Filling Rate Derived From ECG-Gated Myocardial Perfusion SPECT for Detecting Myocardial Ischaemia in Patients with Non-Obstructive Coronary Artery Disease. Acta Cardiologica, 75, 37-41.
https://doi.org/10.1080/00015385.2018.1544698
[31] 张娟, 姚稚明, 郭悦, 等. 门控心肌灌注显像左室舒张功能对不良心脏事件的预测价值[J]. 中华核医学与分子影像杂志, 2017, 37(6): 326-330.
[32] Sugihara, H., Yonekura, Y., Kataoka, K., et al. (2001) Estimation of Coronary Flow Reserve with the Use of Dynamic Planar and SPECT Images of Tc-99m Tetrofosmin. Journal of Nuclear Cardiology, 8, 575-579.
https://doi.org/10.1067/mnc.2001.115934
[33] Hsu, B., Hu, L.H., Yang, B.H., et al. (2017) SPECT Myocardial Blood Flow Quantitation toward Clinical Use: A Comparative Study with 13 N-Ammonia PET Myocardial Blood Flow Quantitation. European Journal of Nuclear Medicine Molecular Imaging, 44, 117-128.
https://doi.org/10.1007/s00259-016-3491-5
[34] Dickson, J.C., Armstrong, I.S., Gabiña, P.M., et al. (2023) EANM Practice Guideline for Quantitative SPECT-CT. European Journal of Nuclear Medicine Molecular Imaging, 50, 980-995.
https://doi.org/10.1007/s00259-022-06028-9
[35] 陈炜佳, 石洪成. 碲锌镉心脏专用SPECT的临床应用进展[J]. 国际放射医学核医学杂志, 2020, 44(6): 394-398.
[36] 薛冰冰, 李剑明. SPECT定量心肌血流及冠状动脉血流储备的研究进展[J]. 国际放射医学核医学杂志, 2019, 43(2): 160-165.
[37] Poitrasson-Rivière, A., Moody, J.B., Renaud, J.M., et al. (2023) Integrated Myocardial Flow Reserve (IMFR) Assessment: Optimized PET Blood Flow Quantification for Diagnosis of Coronary Artery Disease. European Journal of Nuclear Medicine Molecular Imaging, 51, 136-146.
https://doi.org/10.1007/s00259-023-06455-2
[38] Agostini, D., Roule, V., Nganoa, C., et al. (2018) First Validation of Myocardial Flow Reserve Assessed by Dynamic 99m Tc-Sestamibi CZT-SPECT Camera: Head to Head Comparison with 15 O-Water PET and Fractional Flow Reserve in Patients with Suspected Coronary Artery Disease. The WATERDAY Study. European Journal of Nuclear Medicine Molecular Imaging, 45, 1079-1090.
https://doi.org/10.1007/s00259-018-3958-7
[39] Nkoulou, R., Fuchs, T.A., Pazhenkottil, A.P., et al. (2016) Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. Journal of Nuclear Medicine, 57, 1887-1892.
https://doi.org/10.2967/jnumed.115.165498
[40] De Souza, A.C.D.A., Harms, H.J., Martell, L., et al. (2022) Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients with Known or Suspected Coronary Artery Disease. Circulation: Cardiovascular Imaging, 15, e013987.
https://doi.org/10.1161/CIRCIMAGING.122.013987
[41] Bailly, M., Thibault, F., Metrard, G., et al. (2023) Precision of Myocardial Blood Flow and Flow Reserve Measurement during CZT SPECT Perfusion Imaging Processing: Intra-and Interobserver Variability. Journal of Nuclear Medicine, 64, 260-265.
https://doi.org/10.2967/jnumed.122.264454
[42] Bailly, M., Thibault, F., Courtehoux, M., et al. (2021) Impact of Attenuation Correction for CZT-SPECT Measurement of Myocardial Blood Flow. Journal of Nuclear Cardiology, 28, 2560-2568.
https://doi.org/10.1007/s12350-020-02075-7
[43] Kaminek, M., Havel, M., Kincl, V., et al. (2024) the Prognostic Value of CZT SPECT Stress Myocardial Blood Flow (MBF) Quantification—Opportunity for Stress-First/Stress-Only Protocol. European Journal of Nuclear Medicine Molecular Imaging, 51, 344-345.
https://doi.org/10.1007/s00259-023-06531-7
[44] Zhang, H., Caobelli, F., Che, W., et al. (2023) the Prognostic Value of CZT SPECT Myocardial Blood Flow (MBF) Quantification in Patients with Ischemia and No Obstructive Coronary Artery Disease (INOCA): A Pilot Study. European Journal of Nuclear Medicine Molecular Imaging, 50, 1940-1953.
https://doi.org/10.1007/s00259-023-06125-3
[45] Li, L., Pang, Z., Wang, J., et al. (2023) Prognostic Value of Myocardial Flow Reserve Measured with CZT Cardiac-Dedicated SPECT Low-Dose Dynamic Myocardial Perfusion Imaging in Patients with INOCA. Journal of Nuclear Cardiology, 30, 2578-2592.
https://doi.org/10.1007/s12350-023-03332-1
[46] Kopeva, K., Grakova, E., Maltseva, A., et al. (2023) Coronary Microvascular Dysfunction: Features and Prognostic Value. Journal of Clinical Medicine, 12, Article 2964.
https://doi.org/10.3390/jcm12082964
[47] Moody, J.B., Poitrasson-Rivière, A., Renaud, J.M., et al. (2023) Integrated Myocardial Flow Reserve (IMFR) Assessment: Diffuse Atherosclerosis and Microvascular Dysfunction Are More Strongly Associated with Mortality than Focally Impaired Perfusion. European Journal of Nuclear Medicine Molecular Imaging, 51, 123-135.
https://doi.org/10.1007/s00259-023-06448-1