系统性炎症指标在心力衰竭中的应用
Application of Systemic Inflammation Markers in Heart Failure
摘要: 心力衰竭是多种心血管病的严重表现或中晚期阶段,是严重危及生命的临床综合征,具有发病率高、病死率高、住院率高、患者生活质量差以及医疗花费高等特点,努力减轻其造成的社会经济负担已成为全球公共卫生的主要优先事项。系统性炎症指标如中性粒细胞淋巴细胞比率(NLR)、淋巴细胞单核细胞比率(LMR)、血小板淋巴细胞比率(PLR)、全身性免疫炎症指数(SII)等已成为目前的研究热点,多项研究表明其与心血管疾病的发生发展有着紧密联系,同时易于计算和获取。现就系统性炎性指标在心力衰竭中的应用进行综述,加强对上述指标的监测有助于临床上预测心力衰竭的发生风险及预后。
Abstract: Heart failure is a severe manifestation or middle to late stage of a variety of cardiovascular diseases. It is a serious life-threatening clinical syndrome characterized by high morbidity, high mortality, high hospitalization rate, poor quality of life of patients and high medical costs. Efforts to reduce the socio-economic burden caused by heart failure have become a major global public health priority. Systemic inflammation indicators such as neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index (SII) have become the focus of current research, and many studies have shown that they are closely related to the occurrence and development of cardiovascular diseases, and they are easy to calculate and obtain. This article reviews the application of systemic inflammatory indicators in heart failure. Strengthening the monitoring of these indicators is helpful to predict the risk and prognosis of heart failure in clinic.
文章引用:付茗婕, 周晓莉. 系统性炎症指标在心力衰竭中的应用[J]. 临床医学进展, 2024, 14(4): 2526-2532. https://doi.org/10.12677/acm.2024.1441324

1. 引言

心力衰竭(Heart failure, HF)是各种原因引起心脏结构和/或功能异常,导致心室舒张功能和/或收缩功能受损,出现相应临床症状和/或体征的一种复杂的临床综合征,常伴有利钠肽水平升高和/或影像学提示心源性肺淤血或全身性淤血,或血流动力学提示心室充盈压升高 [1] 。目前由于人口老龄化加重、医疗水平提升、HF患者的生存期延长,HF患病率呈持续增长趋势 [2] 。2023年的数据显示我国HF标准化患病率为1.1% [3] 。尽管HF患者的治疗有了显著改善,但HF的发病率和死亡率仍然很高。因此,早期诊断及治疗具有重要的临床意义。

炎症已经被证实在HF的发生发展过程中起着重要作用 [4] 。近年来,中性粒细胞淋巴细胞比率(Neutrophil-to-Lymphocyte Ratio, NLR)、淋巴细胞单核细胞比率(Lymphocyte-to-Monocyte Ratio, LMR)、血小板淋巴细胞比率(Platelet-to-Lymphocyte Ratio, PLR)、全身性免疫炎症指数(Systemic immune inflammation index, SII)等系统性炎症指标因其具有经济实惠和检测方便的优点而备受关注,越来越多的研究关注到这些指标与心血管疾病的相关性,尤其指出其对HF的诊断及预后有重要价值 [5] 。本文综述了NLR、LMR、PLR、SII等指标在HF中的应用,并探讨了其临床意义和前景。

2. 全身炎症指标与心力衰竭的关系

全身炎症指标被认为是急性HF (Acute heart failure, AHF)和慢性HF (Chronic heart failure, CHF)的常见病理生理学特征,通过多种机制促进HF的发病机制和进展,具体如下:① 冠状动脉微血管内皮细胞的炎症会导致活性氧生成增加和一氧化氮生成受损,使蛋白激酶G活性下降、心肌细胞内的巨型细胞骨架蛋白titin低磷酸化,导致心肌细胞的静息张力、僵硬增加和心肌细胞肥大,进一步加剧舒张功能障碍。② 先天免疫系统在损伤相关分子模式(DAMP)或病原体相关分子模式(PAMP)与模式识别受体(如Toll样受体4 (TLR4))相互作用时被激活,启动信号转导级联反应,激活NLRP3炎症小体以及多种促炎基因和介质(如NFκB、TNF-α和IL-6)的表达,进而激活体液免疫。TLR4的激活短期内会对心脏产生细胞保护,但长期信号转导适应不良会导致促炎细胞因子和细胞黏附分子扩增,造成炎症细胞募集和不良心脏重塑。③ 终末期HF患者中大部分具有可能针对多种心脏蛋白或酶的抗心肌抗体。血清游离kappa和lambda轻链在慢性炎症性疾病中升高,可诱导心肌细胞凋亡和心脏成纤维细胞增殖。④ 心肌缺血性损伤时,促炎单核细胞从脾脏迁移并浸润心脏引起局部炎症,这可能预示着脾脏充当炎症细胞的储存库,参与缺血性CHF的心脏重塑。⑤ 脂肪组织分泌的多种脂肪因子可能具有促炎或抗炎作用,肥胖会改变脂肪因子的表达,释放主要促炎细胞因子。⑥ 炎性细胞因子还会影响运动期间骨骼肌的氧气摄取,加重贫血和少肌症,促进肾脏钠潴留,增加血浆容量,肺血管收缩而增加运动期间的肺压,进一步导致呼吸困难和运动耐量降低 [6] 。这些病理机制均显示出了炎症是HF发生发展中的重要环节。因此,不少研究者继续探讨了其他炎症指标如NLR、LMR、PLR、SII与HF的关系。

3. 中性粒细胞淋巴细胞比率

中性粒细胞在先天免疫系统中起着关键作用,是宿主抵抗入侵病原体的第一道防线,代表炎症反应的急性期,淋巴细胞代表适应性免疫系统并促进自身免疫性炎症的诱导,尤其是在慢性炎症反应中 [7] [8] 。NLR整合了先天免疫和适应性免疫系统,成为近期较为热门的反应炎症的生物标志物,是恶性肿瘤和血液系统疾病的重要研究热点 [9] [10] ,也有越来越多研究将NLR用于评估心血管疾病的预后 [11] [12] 。Bo Bai等 [13] 的一项回顾性研究通过二元logistic回归分析和受试者工作特征曲线评估NLR与HFpEF的相关性以及NLR对HFpEF的预测性能,结果表示NLR与HFpEF呈独立关联,它预测HFpEF下ROC面积为0.796,该研究指出高NLR与中性粒细胞转录激活相结合,与HFpEF患者的全身炎症和功能障碍相关,这可能提示中性粒细胞在该病的发病机制中的致病作用。同时NLR在预测HF患者死亡率及评估预后方面有更重要的意义。Tao Liu等人 [14] 纳入1169名入住重症监护病房(ICU)的AHF患者,多变量logistic回归分析表明基线NLR是院内死亡率的独立危险因素(OR 1.04, 95% CI 1.02~1.07, P = 0.001),在入住ICU后的第一周,幸存者和非幸存者之间的NLR差异逐渐增加,提示NLR的早期上升与较高的住院死亡率有关,因此随访NLR的早期变化可能有助于确定AHF危重患者的短期预后。Shunsuke Tamaki等 [15] 对1026名射血分数保留的HF患者进行了前瞻性多中心观察研究预测心源性死亡,根据受试者工作特征曲线分析中NLR和PLR的最佳临界值将患者分为3组(低NLR和PLR,高NLR或PLR,以及高NLR和PLR),结果表明高NLR值和PLR值与心源性死亡独立相关,两者的组合是最强的预测因子(HR 2.66, 95% CI 1.51%~4.70%, P = 0.0008)。Xu Zhu等 [16] 对538例AHF患者进行了一项前瞻性研究,中位随访34个月,采用LASSO回归模型筛选最有价值的炎症生物标志物建立炎症预后评分(IPS)系统,将C反应蛋白(CRP)、红细胞分布宽度(RDW)和中性粒细胞与淋巴细胞比值(NLR)纳入IPS系统(IPS = 0.301 × CRP + 0.263 × RDW + 0.091 × NLR),进行Kaplan-Meier分析,结果显示较高的IPS意味着长期预后明显更差,最佳临界值为0.301分(P < 0.001),值得一提的是,该研究还使用多变量Cox回归模型及随机森林变量重要性和最小深度分析进一步验证了IPS系统对AHF患者全因死亡率的预测性最强。Artemio García-Escobar等 [17] 的研究提示高NLR与更大的炎症反应相关,是一种预后标志物,高NLR是选择可能从抗细胞因子治疗中获益的合适候选药物的潜在标志物,同时抗细胞因子治疗后的正常NLR是动脉粥样硬化和炎症性疾病治疗反应性的预测指标。

4. 淋巴细胞单核细胞比率

单核细胞的主要功能是吞噬和清除体内的细菌、病毒、细胞残骸、异物和其他有害物质,起到免疫防御的作用。它们还参与调节免疫反应和组织修复过程。LMR反映了机体内淋巴细胞与单核细胞的相对数量,是炎症状态和免疫功能的指标之一,对各种恶性肿瘤、血液系统疾病的预后评估具有重要意义 [18] [19] [20] 。较低的LMR常被认为与炎症状态的加重以及免疫功能的下降相关,近期有研究表明LMR在HF患者的诊断中有重要意义。Zhaojun Liu等 [21] 纳入了385例HF住院患者,根据年龄、性别、BMI、合并症等因素选取同期住院的非HF患者进行1:1匹配,采用Logistic单因素和多因素回归分析探索各指标与HF的相关性,结果显示系统性炎症指标hs-CRP (P < 0.001)、LMR (P < 0.001)、MHR (P < 0.001)是HF发生的独立预测因子,对HF有一定的诊断价值。Ruxin Wang等 [22] 选取189例HFpEF住院患者,分为对照组(48例)和研究组(141例),发现在HFpEF患者中,LMR (OR 0.463, 95% CI 0.348~0.617, P < 0.001)、NLR和N末端B型利钠肽前体(NT-proBNP)是HF存在的独立预测因子,LMR (OR 2.630, 95% CI 2.016~3.435, P = 0.000)、NLR、FAG、MHR、AGR和NT-proBNP是NYHA功能分级增加的独立预测因子。目前关于LMR与HF的临床研究不多,未来需要进一步开展前瞻性、多中心研究来评估其的应用价值。

5. 血小板淋巴细胞比率

血小板的数量和功能对于维持正常的血液凝固功能至关重要,血小板数量过高可能会增加血栓形成的风险,有研究发现,PLT释放各种介质,包括血栓素,可引起炎症,可能在心血管不良事件发生发展中起着重要作用 [23] [24] 。PLR作为一项反映全身炎症的指标,已被应用于各种恶性肿瘤预后监测及生存期预测 [25] [26] ,目前PLR在评估心血管事件的预后方面的应用也日益增多 [27] 。Shunsuke Tamaki等 [15] 的研究已经指出高NLR值和PLR值与心源性死亡独立相关,且两者的组合具有较强的预测作用。Ryan Enast Intan等 [28] 对PLR与急性冠脉综合征患者6个月内新发症状性HF发生率之间的关系进行了探讨,最终模型显示,LVEF和PLR水平对新发症状性HF具有较好的区分性,C统计量为0.939 (P < 0.001)。多因素Cox回归分析显示PLR水平 ≥ 87是ACS后6个月症状性HF发病率的独立预测因子(HR 4.5, 95% CI 1.8~11, P = 0.001)。但该实验样本数量较小,且受地域等因素影响,可能存在一些潜在的偏倚。Tomasz Powrózek等 [29] 在老年CHF患者中进行NLR、PLR和CAR(C反应蛋白与白蛋白比值)与心脏、实验室和营养参数的相关性分析,结果提示CAR与CHF患者不利的临床表现相关,反映患者的心脏和营养状况,而NLR和PLR可作为CAR评价的补充检查。Zhaojun Liu等 [30] 通过Cox多因素回归分析,提出年龄(P = 0.011)、BMI (P = 0.048)、NYHA分类(P < 0.001)、肌酐(P < 0.001)等传统预后因素以及LMR (P = 0.001)、PLR (P = 0.015)等全身炎症标志物是CHF患者的独立预后因素。但PLR与AHF之间的关联机制尚不清楚,仍需要进一步的研究来明确相关机制之间的关系及确认其在疾病过程中的作用。

6. 全身性免疫炎症指数

SII是一种复合炎症指标,结合了三种重要的免疫细胞,包括中性粒细胞、淋巴细胞和血小板,被认为是局部免疫应答和全身炎症的极好指标。中性粒细胞、血小板及其产生的细胞因子主要与非特异性免疫反应有关,而淋巴细胞被认为主要与特异性免疫通路有关。与单个免疫细胞的绝对计数相比,SII在反映机体炎症状态方面具有更好的代表性,具有更好的稳定性。迄今为止,SII已被证实与恶性肿瘤患者手术治疗后的预后 [31] 、多种心血管疾病如高血压、冠脉病变、感染性心内膜炎等不良预后密切相关 [32] [33] [34] ,显示出良好的应用前景。目前已有部分研究对SII与HF患者的不良预后的关系进行了探讨。Zeyu Wang等 [35] 探究了SII与终点事件全因死亡ACM和主要心血管不良事件MACE之间的关系,多因素COX回归分析表明,在高SII水平组患者中,ACM的发病率增加了70.3% (HR 1.703; 95% CI 1.200~2.337, P = 0.002),MACE的发生率增加了58.3% (HR 1.583, 95% CI 1.213~2.065, P = 0.001)。Kaplan-Meier (K-M)生存分析进一步表明,SII水平高的患者在30个月内患ACM (log-rank P < 0.001)和MACE (log-rank P < 0.001)的风险增加。提示SII可能是晚期CHF和肾功能障碍患者ACM和MACE发生的一种新的预测指标。Huizhen Zheng等 [36] 的研究也提示了SII水平升高与HF风险密切相关,而SII与HF呈非线性相关。目前仍需要大规模的前瞻性实验来验证SII与HF患者不良结局之间的关系,以及对SII作为一项简便易得的反映机体炎症状态的指标应用于临床评估进行进一步理论及试验支持。

7. 总结与展望

炎症已经被证实在HF的发生发展中起着重要的作用,已有许多炎症指标如TNF-α、IL-6、促炎细胞因子受体(sST2)、半乳糖凝集素-3 (Gal-3)等在HF方发生发展的过程中扮演重要角色,但由于检测技术及费用等问题,有些指标目前尚未广泛应用于临床。而NLR、LMR、PLR、SII等系统性炎症指标来源于血常规,易于获得与计算,相较于单独的血细胞计数指标,具有更好的稳定性及应用前景。目前已经开展了许多针对系统性炎症指标与HF相关性的研究,但大多数为单中心、回顾性研究,样本量较为有限,且对同一指标的界定值也不同,缺乏高级别的循证医学证据支持,此外,系统性炎症指标受全身炎症情况及药物的影响较大,在设计试验时需谨慎考虑,因此今后仍需要更多前瞻性、大样本、多中心研究来增加临床研究的准确度。但不可否认的是,联合系统性炎症指标与常见炎症因子如CRP、PCT、IL-6及HF的指标NT-proBNP等可能对HF的诊断及预后价值更高,有望建立更加简便且敏感的联合评价指标,同时在HF的治疗方面,是否能通过干预炎症指标而达到治疗HF的目的,需要深入探讨系统性炎症指标在HF生理病理中的作用,从而进一步为临床用药决策提供新的思考及循证支持。

NOTES

*通讯作者。

参考文献

[1] Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032.
https://doi.org/10.1161/CIR.0000000000001063
[2] Savarese, G., Becher, P.M., Lund, L.H., et al. (2023) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287.
https://doi.org/10.1093/cvr/cvac013
[3] 王华, 刘宇佳, 杨杰孚. 心力衰竭流行病学[J]. 临床心血管病杂志, 2023, 39(4): 243-247.
[4] Adamo, L., Rocha-Resende, C., Prabhu, S.D., et al. (2020) Reappraising the Role of Inflammation in Heart Failure. Nature Reviews Cardiology, 17, 269-285.
https://doi.org/10.1038/s41569-019-0315-x
[5] Haybar, H., Pezeshki, S.M.S. and Saki, N. (2019) Evaluation of Complete Blood Count Parameters in Cardiovascular Diseases: An Early Indicator of Prognosis? Experimental and Molecular Pathology, 110, Article ID: 104267.
https://doi.org/10.1016/j.yexmp.2019.104267
[6] Murphy, S.P., Kakkar, R., McCarthy, C.P., et al. (2020) Inflammation in Heart Failure: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 1324-1340.
https://doi.org/10.1016/j.jacc.2020.01.014
[7] Mantovani, A., Cassatella, M.A., Costantini, C., et al. (2011) Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nature Reviews Immunology, 11, 519-531.
https://doi.org/10.1038/nri3024
[8] Joseph, A.M., Monticelli, L.A. and Sonnenberg, G.F. (2018) Metabolic Regulation of Innate and Adaptive Lymphocyte Effector Responses. Immunological Reviews, 286, 137-147.
https://doi.org/10.1111/imr.12703
[9] Ouyang, H., Xiao, B., Huang, Y., et al. (2023) Baseline and Early Changes in the Neutrophil-Lymphocyte Ratio (NLR) Predict Survival Outcomes in Advanced Colorectal Cancer Patients Treated with Immunotherapy. International Immunopharmacology, 123, Article ID: 110703.
https://doi.org/10.1016/j.intimp.2023.110703
[10] Guo, Y., Xiang, D., Wan, J., et al. (2022) Focus on the Dynamics of Neutrophil-to-Lymphocyte Ratio in Cancer Patients Treated with Immune Checkpoint Inhibitors: A Meta-Analysis and Systematic Review. Cancers, 14, Article 5297.
https://doi.org/10.3390/cancers14215297
[11] Qiao, S., Gao, W. and Guo, S. (2020) Neutrophil-Lymphocyte Ratio (NLR) for Predicting Clinical Outcomes in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus: A Propensity Score Matching Analysis. Therapeutics and Clinical Risk Management, 16, 437-443.
https://doi.org/10.2147/TCRM.S244623
[12] Zhan, L., Liu, Y., Cheng, Y., et al. (2021) Predictive Value of Neutrophil/Lymphocyte Ratio (NLR) on Cardiovascular Events in Patients with COVID-19. International Journal of General Medicine, 14, 3899-3907.
https://doi.org/10.2147/IJGM.S317380
[13] Bai, B., Cheng, M., Jiang, L., et al. (2021) High Neutrophil to Lymphocyte Ratio and Its Gene Signatures Correlate with Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine, 8, Article 614757.
https://doi.org/10.3389/fcvm.2021.614757
[14] Liu, T., Wang, B., Xiao, S., et al. (2023) Correlation Analysis between the Static and the Changed Neutrophil-to-Lymphocyte Ratio and In-Hospital Mortality in Critical Patients with Acute Heart Failure. Postgraduate Medicine, 135, 50-57.
https://doi.org/10.1080/00325481.2022.2129177
[15] Tamaki, S., Nagai, Y., Shutta, R., et al. (2023) Combination of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as a Novel Predictor of Cardiac Death in Patients with Acute Decompensated Heart Failure with Preserved Left Ventricular Ejection Fraction: A Multicenter Study. Journal of the American Heart Association, 12, e026326.
https://doi.org/10.1161/JAHA.122.026326
[16] Zhu, X., Cheang, I., Xu, F., et al. (2022) Long-Term Prognostic Value of Inflammatory Biomarkers for Patients with Acute Heart Failure: Construction of an Inflammatory Prognostic Scoring System. Frontiers in Immunology, 13, Article 1005697.
https://doi.org/10.3389/fimmu.2022.1005697
[17] García-Escobar, A., Vera-Vera, S., Tébar-Márquez, D., et al. (2023) Neutrophil-To-Lymphocyte Ratio an Inflammatory Biomarker, and Prognostic Marker in Heart Failure, Cardiovascular Disease and Chronic Inflammatory Diseases: New Insights for a Potential Predictor of Anti-Cytokine Therapy Responsiveness. Microvascular Research, 150, Article ID: 104598.
https://doi.org/10.1016/j.mvr.2023.104598
[18] Gawiński, C., Michalski, W., Mróz, A., et al. (2022) Correlation between Lymphocyte-to-Monocyte Ratio (LMR), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Tumor-Infiltrating Lymphocytes (TILs) in Left-Sided Colorectal Cancer Patients. Biology, 11, Article 385.
https://doi.org/10.3390/biology11030385
[19] Lin, Z.Q., Ma, C., Cao, W.Z., et al. (2022) Prognostic Significance of NLR, PLR, LMR and Tumor Infiltrating T Lymphocytes in Patients Undergoing Surgical Resection for Hilar Cholangiocarcinoma. Frontiers in Oncology, 12, Article 908907.
https://doi.org/10.3389/fonc.2022.908907
[20] Chen, S., Zhang, J., Qian, C., et al. (2023) Prognostic Value of Combined LMR and CEA Dynamic Monitoring in Postoperative Colorectal Cancer Patients. Journal of Inflammation Research, 16, 4229-4250.
https://doi.org/10.2147/JIR.S422500
[21] Liu, Z., Xv, Y., Liu, X. and Zhou, X.L. (2022) Associations of Systemic Inflammatory Markers with the Risks of Chronic Heart Failure: A Case-Control Study. Clinics, 77, Article ID: 100056.
https://doi.org/10.1016/j.clinsp.2022.100056
[22] Wang, R., Wu, J., Ye, H., et al. (2022) Application Value of Systemic Inflammatory Indexes in the Clinical Evaluation of Patients with Heart Failure with Preserved Ejection Fraction (HFpEF). Medicina, 58, Article 1473.
https://doi.org/10.3390/medicina58101473
[23] Feldman, C. and Anderson, R. (2020) Platelets and Their Role in the Pathogenesis of Cardiovascular Events in Patients with Community-Acquired Pneumonia. Frontiers in Immunology, 11, Article 577303.
https://doi.org/10.3389/fimmu.2020.577303
[24] Saad, H., Soliman, H.A., Mahmoud, B., et al. (2023) the Pathogenic Role of Oxidative Stress, Cytokine Expression, and Impaired Hematological Indices in Diabetic Cardiovascular Diseases. Inflammation, 46, 146-160.
https://doi.org/10.1007/s10753-022-01718-w
[25] Liu, D., Czigany, Z., Heij, L.R., et al. (2022) The Value of Platelet-to-Lymphocyte Ratio as a Prognostic Marker in Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Cancers, 14, Article 438.
https://doi.org/10.3390/cancers14020438
[26] Zhou, K., Cao, J., Lin, H., et al. (2022) Prognostic Role of the Platelet to Lymphocyte Ratio (PLR) in the Clinical Outcomes of Patients with Advanced Lung Cancer Receiving Immunotherapy: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 12, Article 962173.
https://doi.org/10.3389/fonc.2022.962173
[27] Zhai, G., Wang, J., Liu, Y., et al. (2021) Platelet-Lymphocyte Ratio as a New Predictor of In-Hospital Mortality in Cardiac Intensive Care Unit Patients. Scientific Reports, 11, Article No. 23578.
https://doi.org/10.1038/s41598-021-02686-1
[28] Intan, R.E., Alkaff, F.F., Oktaviono, Y.H., et al. (2022) Retrospective Study of the Association between Platelet-to-Lymphocyte Ratio in Patients with Acute Coronary Syndrome on Admission to a Rural Referral Center in East Java, Indonesia, and the Incidence of New Symptomatic Heart Failure at 6 Months. Medical Science Monitor, 28, e935002.
https://doi.org/10.12659/MSM.935002
[29] Powrózek, T., Skwarek-Dziekanowska, A., Sobieszek, G., et al. (2024) Correlation between Neutrophil-to-Lymphocyte Ratio, Platelets-to-Lymphocyte Ratio, C-Reactive Protein-to-Albumin Ratio and Clinical Picture of Elderly Chronic Heart Failure Patients. Journal of Clinical Medicine, 13, Article 433.
https://doi.org/10.3390/jcm13020433
[30] Liu, Z., Zhang, R., Xv, Y., et al. (2022) A Novel Nomogram Integrated with Systemic Inflammation Markers and Traditional Prognostic Factors for Adverse Events’ Prediction in Patients with Chronic Heart Failure in the Southwest of China. Journal of Inflammation Research, 15, 6785-6800.
https://doi.org/10.2147/JIR.S366903
[31] Meng, L., Yang, Y., Hu, X., et al. (2023) Prognostic Value of the Pretreatment Systemic Immune-Inflammation Index in Patients with Prostate Cancer: A Systematic Review and Meta-Analysis. Journal of Translational Medicine, 21, Article No. 79.
https://doi.org/10.1186/s12967-023-03924-y
[32] Huang, T., Peng, Q., Zhang, Y., et al. (2024) The Systemic Immune-Inflammation Index (SII) and Coronary Artery Lesions in Kawasaki Disease. Clinical and Experimental Medicine, 24, Article No. 4.
https://doi.org/10.1007/s10238-023-01265-0
[33] Wang, H., Nie, H., Bu, G., et al. (2023) Systemic Immune-Inflammation Index (SII) and the Risk of All-Cause, Cardiovascular, and Cardio-Cerebrovascular Mortality in the General Population. European Journal of Medical Research, 28, Article No. 575.
https://doi.org/10.1186/s40001-023-01529-1
[34] Yang, Y.L., Wu, C.H., Hsu, P.F., et al. (2020) Systemic Immune-Inflammation Index (SII) Predicted Clinical Outcome in Patients with Coronary Artery Disease. European Journal of Clinical Investigation, 50, e13230.
https://doi.org/10.1111/eci.13230
[35] Wang, Z., Qin, Z., Yuan, R., et al. (2023) Systemic Immune-Inflammation Index as a Prognostic Marker for Advanced Chronic Heart Failure with Renal Dysfunction. ESC Heart Failure, 10, 478-491.
https://doi.org/10.1002/ehf2.14217
[36] Zheng, H., Yin, Z., Luo, X., et al. (2024) Associations between Systemic Immunity-Inflammation Index and Heart Failure: Evidence from the NHANES 1999-2018. International Journal of Cardiology, 395, Article ID: 131400.
https://doi.org/10.1016/j.ijcard.2023.131400