基于CT的细胞外容积在腹部肿瘤的研究进展
Advances in CT-Based Extracellular Volume in Abdominal Tumors
DOI: 10.12677/acm.2024.1441328, PDF, HTML, XML, 下载: 23  浏览: 37 
作者: 陈良潇, 郭大静*:重庆医科大学附属第二医院放射科,重庆
关键词: 腹部肿瘤细胞外容积计算机断层扫描术前诊断Abdominal Tumors Extracellular Volume Computed Tomography Preoperative Diagnosis
摘要: 疾病的发生及发展都与其细胞微环境密切相关,而细胞外基质是细胞微环境的重要组成部分,因此对病变细胞外基质的评估对疾病的术后疗效及远期预后有重要意义,能够帮助临床医生制定治疗方案。影像学检查是一种能够无创并定量地评估细胞外基质的一种有效手段。本文将对目前基于CT计算的细胞外容积在腹部肿瘤的应用及研究进展进行综述。
Abstract: Diseases’ occurrence and development are closely related to its cellular microenvironment, and the extracellular matrix (ECM) is an important part of the cellular microenvironment, so the evaluation of the extracellular matrix (ECM) of the lesion is important for the postoperative efficacy and long-term prognosis of the disease, it can help clinicians to formulate a treatment plan. Imaging is an effective tool to assess the extracellular matrix (ECM) non-invasively and quantitatively. In this review, we will summarize the current research progress of extracellular volume (ECV) based on computed tomography (CT) in abdominal tumors.
文章引用:陈良潇, 郭大静. 基于CT的细胞外容积在腹部肿瘤的研究进展[J]. 临床医学进展, 2024, 14(4): 2559-2564. https://doi.org/10.12677/acm.2024.1441328

1. 引言

细胞外基质(ECM)是位于机体细胞外的非细胞性的不溶性结构成分,是一个大分子的动态三维网络,为细胞和组织提供结构支持,包括多种生物学活性的生命大分子,例如蛋白质/糖蛋白,如胶原蛋白、弹性蛋白、层粘连蛋白及各种基质代谢酶和细胞因子,一些细胞过程和功能,例如细胞增殖和存活、迁移等都受到某些基质成分影响,其结构改变也与疾病进展密切相关 [1] 。

细胞外基质的量化用细胞外体积分数表示,即细胞外容积(Extracellular Volume, ECV),是血管外体积与血管内空间之和。基于CT和MRI的图像数据,可以对图像进行分割并定量分析,并计算出ECV,从而评估ECV与疾病发生、发展的关系,影像学为我们提供了一种方便简洁且无创的方法。在心肌病变中,心肌纤维化是影响心肌的几种疾病的共同终点 [2] ,心肌纤维化定量的参考标准是侵入性心肌内活检,其固定的程序风险和采样错误的可能,因此只能评估一小部分心肌 [3] 。而心肌ECV的无创定量它能够对心肌纤维化进行全局评估 [4] 。近年研究证实,基于影像学检查所得ECV与组织活检测量的细胞外间质的结果具有良好一致性 [5] [6] [7] 。先前的研究表明,基于术前增强CT及MRI检查确定的ECV用于可评估心脏、乳腺、甲状腺等病变并且已经得到很好的验证 [8] [9] [10] [11] 。SCHELBERT E B等人的研究结果表明心肌ECV与心肌纤维化、淀粉样蛋白沉积或水肿有关,并与患者的预后有关 [12] 。ZHOU Y [11] 等人证明了基于双能CT的ECV可以预测甲状腺乳头状癌患者颈部淋巴结转移,且模型诊断性能良好AUC = 0.756。除了应用于前面所提部位,ECV在其他部位,尤其是腹部应用广泛,本文将重点介绍ECV在腹部肿瘤的一些研究及进展。

2. 肿瘤CT的ECV计算方法及特点

选取患者CT平扫和平衡期肿瘤最大层面所在横轴位图像,在平衡期选取瘤内高强化区、低强化区以及同层面的腹主动脉区域设置圆形感兴趣区(Region of Interest, ROI)并测量CT值。腹主动脉ROI避开血管壁(包括管壁的钙化及附壁血栓)勾画ROI,肿瘤高、低强化区域(避开明显坏死和出血)勾画ROI,计算其平均CT值,于平扫同层面瘤内对应区域勾画大致相同的ROI,计算平均CT值。收集患者的血细胞比容(Hematocrit, Hct),分别计算病灶高、低强化区的ECV分数:ECV (%) = (1 − 血细胞比容) × (∆HU病灶/∆HU主动脉) × 100% (∆HU病灶和∆HU主动脉是肿瘤区域及主动脉在平衡期CT值减去相应平扫期CT值) [13] 。

CT虽较MRI组织分辨力低,对病变细节显示有限,但能节省成本,有低的扫描时间和高的空间分辨率,此外它还能够评估金属植入物、幽闭恐惧症或身体基础条件较差的患者,并且CT在评估腹部肿瘤的形态、大小、部位、转移及血管侵犯具有巨大优势。

目前,组织活检仍是评估间质改变的“金标准”,但组织活检为有创性操作,可能导致例如气胸、血肿等严重并发症;其次因病灶多不均质,穿刺可能少穿、漏穿而致不能做到全面评价 [14] 。基于CT计算的ECV虽然具有无创、定量、可重复操作的优点。有研究表明,许多因素例如:平衡期时间、血细胞比容、层面校准、细胞外基质的过量沉积、成纤维细胞的活化和富集、炎症细胞的浸润以及肿瘤新生血管网基底膜不完整等均可导致ECV的差异 [15] - [21] 。

3. ECV在腹部肿瘤的应用及研究进展

肿瘤的发生和发展是一个复杂的动态过程,涉及肿瘤细胞与其周围微环境相互作用和共同演化,并能以多种方式促进肿瘤的生长、扩散和侵袭能力的提高,例如肿瘤血管生成、细胞外基质重塑、免疫逃逸和转移扩散等重要过程。肿瘤的发生发展过程伴随细胞外微环境的改变,不同肿瘤其ECV都有不同程度的增加,有证据表明,细胞外基质(ECM)是肿瘤生长、增殖或侵袭的调节器 [22] 。

胃癌是全球第五大最常见和致死率第三癌症,现如今仍是全球范围内预后很差的一种恶性肿瘤,其不同的病理类型预后也大不相同 [23] 。Nishimuta [24] 等人为了探讨胃癌术前增强CT (CE-CT)测量ECV与组织病理学特征的关系,计算了66例经病理证实为胃癌患者术前增强CT的肿瘤ECV值,结果显示单因素回归中肿瘤静脉侵犯(P = 0.0487)与肿瘤侵袭类型(P < 0.0001)与肿瘤ECV值显著相关;线性回归中,肿瘤侵犯类型与ECV为显著相关(P < 0.0001),且AUC值为0.89,表明了平衡期CE-CT测定的肿瘤ECV与胃癌的侵袭性显著相关。

先前的研究已经表明,慢性肝炎患者的ECV值对于评估肝纤维化及肝纤维化分级具有重要价值,是一种可以无创且定量评估的方法 [25] [26] 。Kenichiro Tago [27] 等人在此实验基础上,为了评估肝癌患者术前CT容积分数(CTV)和ECV值对于预测部分肝切除后肝纤维化的几率,结果显示ECV值模型对于预测术后纤维化有较高的诊断性能AUC (0.75)。肝切除术后肝功能衰竭(Post-Hepatectomy Liver Failure, PHLF)是肝切除术后的严重并发症,YAGHMAI V [28] 等人对393名可切除肝癌患者术后发生肝衰竭的情况进行了研究,测量了所有患者术前增强CT的ECV值,结果表明,ECV值是预测术后发生肝衰竭的独立预测因子,除此之外,测量的未来肝残留率(mFLR)和血清白蛋白同样是独立的预测因子,并且其模型的AUC值显著高于传统的白蛋白–胆红素评分(ALBI Grade)。在此基础上,PENG Y [29] 等人结合肝癌患者术前增强CT计算的ECV值、血清白蛋白、血清总胆红素构建预测模型及列线图,结果显示列线图预测性能明显高于传统的白蛋白–胆红素预测模型性能(AUC: 0.821 vs AUC: 0.630, P < 0.001)。以上研究表明术前CT肝癌ECV可作为肝癌患者术后肝纤维化、肝衰竭的独立预测因子,对于患者的预后有重要价值。

胰腺癌是一种高度恶性消化道肿瘤,预后差,死亡率高。大多数患者发现已系晚期,手术切除是治愈的唯一机会,对于晚期患者,辅助化疗仍然是主要的治疗手段 [30] 。但是对于不可切除的局部进展期或合并远处转移的胰腺癌总体化疗效果不佳 [31] 。NOID G [32] 等人为了验证术前CT的ECV与胰腺癌患者放化疗反应的相关性,对25例患者行双能CT (DE-CT)扫描,ECV值为基于ROI碘密度与Hct的比值,肿瘤的化疗效率用CA19-9来反应并排除了肿瘤远程转移导致的CA19-9异常升高,结果显示ECV与CA19-9的变化呈线性相关,相关性有统计学意义(P = 0.006),证明了根据DE-CT碘图计算出的ECV可用于预测胰腺癌辅助放化疗后的治疗反应。FUKUKURA Y [33] 等人的研究已经证明了基于CT的ECV可作为一个预测不可切除胰腺癌预测化疗后患者生存期的影像学指标。在此基础上,FUKUKURA Y [34] [35] 的研究结果表明,平衡增强DE-CT测定的ECV可预测IV期胰腺导管腺癌(PDAC)患者化疗后的的无进展生存期(PFS)和总生存期(OS)。胰腺神经内分泌肿瘤(Pancreatic Neuroendocrine Neoplasm, pNEN)是一种异质性肿瘤,起源于胰腺的内分泌细胞,占所有胰腺肿瘤的不到5% [36] 。IWAYA H [37] 对80例病理诊断为pNEN的患者进行了研究,在平扫和平衡期CECT上使用pNEN和主动脉的ROI测量计算原发病灶的ECV,采用Cox比例风险模型进行单因素和多因素分析,评估临床因素和肿瘤ECV对无进展生存期(PFS)和总生存期(OS)的影响,结果表明肿瘤ECV是预测pNEN的PFS的独立预测因子,能够预测pNEN患者的生存期。

肾脏恶性肿瘤占全球癌症的2%,其发病率正在上升 [38] 。肾癌有多种组织学亚型,最常见的为透明细胞肾细胞癌(Clear Cell Renal Cell Carcinoma, ccRCC),占所有病例的75%,起源于肾单位的近端小管细胞 [38] 。其病理学分级与癌症的恶性程度及预后密切相关 [39] 。Adams等 [13] 研究结果显示肾细胞癌较低级别组ECV值明显低于较高级别组,表明ECV值可作为肾细胞癌病理分级的预测因子,无创性区分较高级别与较低级别肾细胞癌。除应用于肾脏肿瘤性病变,PENG Y等 [40] 研究结果显示,醛固酮结节(APN)的ECV显著低于非功能性肾上腺结节(NFN),证明了双能CT (DE-CT) ECV对于区分APN和NFN有较高的诊断性能。

综上所述,ECV对于腹部肿瘤的诊断、鉴别诊断及其预后具有重要价值。还有部分学者将ECV用于盆腔肿瘤的评估。LI S [41] 等研究结果显示ECV对于宫颈鳞癌(Cervical Squamous Cell Carcinoma, CSCC)的分期和宫旁浸润与正常宫颈的差异具有统计学意义(P < 0.05),证明了基于MRI的ECV能为宫颈鳞癌的不良预后因素提供更多的定量指标,并有助于CSCC患者术前风险评估。在直肠肿瘤中,LI Q [42] 等对43例直肠癌患者进行了研究,测量了患者术前CT的ECV用于评估ECV鉴别直肠癌分化程度的效能,结果表明高分组的ECV明显高于低分化组,且预测模型AUC值高达0.89。LUO Y [43] 等研究显示,基于CT的ECV能够预测晚期直肠癌新辅助化疗后的疗效,这对于患者的预后及临床方案的选择有重要价值。对于外周血管疾病(Peripheral Vascular Diseases, PAD),ECV也有少许研究。LIN Y C [44] 等文章结果显示基于MRI的ECV用于评价外周血管疾病患者骨纤维化程度是可行的,研究结果还表明ECV有助于确定存在侧支血管形成的PAD患者。

4. 小结和展望

总体而言,基于术前CT计算的ECV可以为腹部肿瘤的评估和治疗提供重要的辅助信息,但在胆道、脾脏等其他部位研究较少。然而,尽管基于术前CT计算的ECV在腹部肿瘤中有广泛应用及潜力,但仍面临一些挑战和限制。例如,ECV的计算方法和标准化仍需进一步研究和建立,以确保结果的准确性和可比性。此外,大样本和多中心的临床研究仍然需要进行,以验证ECV在腹部肿瘤中的临床实用性。随着技术的进一步发展和临床研究的不断推进,相信ECV能为其他领域带来更多的进展和突破。

NOTES

*通讯作者。

参考文献

[1] Karamanos, N.K., Theocharis, A.D., Piperigkou, Z., et al. (2021) A Guide to the Composition and Functions of the Extracellular Matrix. The FEBS Journal, 288, 6850-6912.
https://doi.org/10.1111/febs.15776
[2] Wong, T.C., Piehler, K., Meier, C.G., et al. (2012) Association between Extracellular Matrix Expansion Quantified by Cardiovascular Magnetic Resonance and Short-Term Mortality. Circulation, 126, 1206-1216.
https://doi.org/10.1161/CIRCULATIONAHA.111.089409
[3] Anderson, K.R., Sutton, M.G. and Lie, J.T. (1979) Histopathological Types of Cardiac Fibrosis in Myocardial Disease. The Journal of Pathology, 128, 79-85.
https://doi.org/10.1002/path.1711280205
[4] Scully, P.R., Bastarrika, G., Moon, J.C., et al. (2018) Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Current Cardiology Reports, 20, Article No. 15.
https://doi.org/10.1007/s11886-018-0961-3
[5] Altabella, L., Borrazzo, C., Carnì, M., et al. (2017) A Feasible and Automatic Free Tool for T1 and ECV Mapping. Physica Medica, 33, 47-55.
https://doi.org/10.1016/j.ejmp.2016.12.002
[6] Treibel, T.A., Fontana, M., Maestrini, V., et al. (2016) Automatic Measurement of the Myocardial Interstitium: Synthetic Extracellular Volume Quantification without Hematocrit Sampling. JACC Cardiovascular Imaging, 9, 54-63.
https://doi.org/10.1016/j.jcmg.2015.11.008
[7] Bluemke, D.A. and Kawel-Boehm, N. (2016) Can a MR Imaging Scanner Accurately Measure Hematocrit to Determine ECV Fraction? JACC Cardiovascular Imaging, 9, 64-66.
https://doi.org/10.1016/j.jcmg.2015.11.009
[8] Lee, H.J., Im, D.J., Youn, J.C., et al. (2016) Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-Enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging. Radiology, 280, 49-57.
https://doi.org/10.1148/radiol.2016151289
[9] Wang, X., Du, L., Cao, Y., et al. (2024) Comparing Extracellular Volume Fraction with Apparent Diffusion Coefficient for the Characterization of Breast Tumors. European Journal of Radiology, 171, Article ID: 111268.
https://doi.org/10.1016/j.ejrad.2023.111268
[10] Bandula, S., White, S.K., Flett, A.S., et al. (2013) Measurement of Myocardial Extracellular Volume Fraction by Using Equilibrium Contrast-Enhanced CT: Validation against Histologic Findings. Radiology, 269, 396-403.
https://doi.org/10.1148/radiol.13130130
[11] Zhou, Y., Geng, D., Su, G.Y., et al. (2022) Extracellular Volume Fraction Derived from Dual-Layer Spectral Detector Computed Tomography for Diagnosing Cervical Lymph Nodes Metastasis in Patients with Papillary Thyroid Cancer: A Preliminary Study. Frontiers in Oncology, 12, Article ID: 851244.
https://doi.org/10.3389/fonc.2022.851244
[12] Schelbert, E.B., Sabbah, H.N., Butler, J., et al. (2017) Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics. Circulation Cardiovascular Imaging, 10, e005619.
https://doi.org/10.1161/CIRCIMAGING.116.005619
[13] Adams, L.C., Jurmeister, P., Ralla, B., et al. (2019) Assessment of the Extracellular Volume Fraction for the Grading of Clear Cell Renal Cell Carcinoma: First Results and Histopathological Findings. European Radiology, 29, 5832-5843.
https://doi.org/10.1007/s00330-019-06087-x
[14] 王亚娟, 包磊. 临床病理活检的必要性与病理诊断的局限性[J]. 中国全科医学, 2010, 13(2B): 567-568.
[15] Guo, S.L., Su, L.N., Zhai, Y.N., et al. (2017) The Clinical Value of Hepatic Extracellular Volume Fraction Using Routine Multiphasic Contrast-Enhanced Liver CT for Staging Liver Fibrosis. Clinical Radiology, 72, 242-246.
https://doi.org/10.1016/j.crad.2016.10.003
[16] Engblom, H., Kanski, M., Kopic, S., et al. (2018) Importance of Standardizing Timing of Hematocrit Measurement When Using Cardiovascular Magnetic Resonance to Calculate Myocardial Extracellular Volume (ECV) Based on Pre-and Post-Contrast T1 Mapping. Journal of Cardiovascular Magnetic Resonance, 20, 46.
https://doi.org/10.1186/s12968-018-0464-9
[17] Shinagawa, Y., Sakamoto, K., Sato, K., et al. (2018) Usefulness of New Subtraction Algorithm in Estimating Degree of Liver Fibrosis by Calculating Extracellular Volume Fraction Obtained from Routine Liver CT Protocol Equilibrium Phase Data: Preliminary Experience. European Journal of Radiology, 103, 99-104.
https://doi.org/10.1016/j.ejrad.2018.04.012
[18] 崔凤娇, 罗娅红. 基于影像学的腹部病变细胞外容积的研究进展[J]. 放射学实践, 2020, 35(9): 1196-1198.
[19] Pickup, M.W., Mouw, J.K. and Weaver, V.M. (2014) The Extracellular Matrix Modulates the Hallmarks of Cancer. EMBO Reports, 15, 1243-1253.
https://doi.org/10.15252/embr.201439246
[20] Erdogan, B. and Webb, D.J. (2017) Cancer-Associated Fibroblasts Modulate Growth Factor Signaling and Extracellular Matrix Remodeling to Regulate Tumor Metastasis. Biochemical Society Transactions, 45, 229-236.
https://doi.org/10.1042/BST20160387
[21] Lee, S.W., Kwak, H.S., Kang, M.H., et al. (2018) Fibroblast-Associated Tumour Microenvironment Induces Vascular Structure-Networked Tumouroid. Scientific Reports, 8, Article No. 2365.
https://doi.org/10.1038/s41598-018-20886-0
[22] Ulyte, A., Katsaros, V.K., Liouta, E., et al. (2016) Prognostic Value of Preoperative Dynamic Contrast-Enhanced MRI Perfusion Parameters for High-Grade Glioma Patients. Neuroradiology, 58, 1197-1208.
https://doi.org/10.1007/s00234-016-1741-7
[23] Smyth, E.C., Nilsson, M., Grabsch, H.I., et al. (2020) Gastric Cancer. The Lancet (London, England), 396, 635-648.
https://doi.org/10.1016/S0140-6736(20)31288-5
[24] Nishimuta, Y., Tsurumaru, D., Kai, S., et al. (2023) Extracellular Volume Fraction Determined by Equilibrium Contrast-Enhanced Computed Tomography: Correlation with Histopathological Findings in Gastric Cancer. Japanese Journal of Radiology, 41, 752-759.
https://doi.org/10.1007/s11604-023-01393-3
[25] Luetkens, J.A., Klein, S., Träber, F., et al. (2018) Quantification of Liver Fibrosis at T1 and T2 Mapping with Extracellular Volume Fraction MRI: Preclinical Results. Radiology, 288, 748-754.
https://doi.org/10.1148/radiol.2018180051
[26] Yoon, J.H., Lee, J.M., Klotz, E., et al. (2015) Estimation of Hepatic Extracellular Volume Fraction Using Multiphasic Liver Computed Tomography for Hepatic Fibrosis Grading. Investigative Radiology, 50, 290-296.
https://doi.org/10.1097/RLI.0000000000000123
[27] Tago, K., Tsukada, J., Sudo, N., et al. (2022) Comparison between CT Volumetry and Extracellular Volume Fraction Using Liver Dynamic CT for the Predictive Ability of Liver Fibrosis in Patients with Hepatocellular Carcinoma. European Radiology, 32, 7555-7565.
https://doi.org/10.1007/s00330-022-08852-x
[28] Yaghmai, V. (2022) CT-Derived Extracellular Volume to Predict Post-Hepatectomy Liver Failure: A Simple Approach to a Very Complex Problem. European Radiology, 32, 8527-8528.
https://doi.org/10.1007/s00330-022-09100-y
[29] Peng, Y., Shen, H., Tang, H., et al. (2022) Nomogram Based on CT-Derived Extracellular Volume for the Prediction of Post-Hepatectomy Liver Failure in Patients with Resectable Hepatocellular Carcinoma. European Radiology, 32, 8529-8539.
https://doi.org/10.1007/s00330-022-08917-x
[30] Mizrahi, J.D., Surana, R., Valle, J.W., et al. (2020) Pancreatic Cancer. The Lancet (London, England), 395, 2008-2020.
https://doi.org/10.1016/S0140-6736(20)30974-0
[31] 虞先濬, 刘亮, 徐华祥, 武春涛, 李浩. 胰腺癌综合诊治指南(2018版) [J]. 临床肝胆病杂志, 2018, 34(10): 2109-2120.
[32] Noid, G., Godfrey, G., Hall, W., et al. (2023) Predicting Treatment Response from Extracellular Volume Fraction for Chemoradiation Therapy of Pancreatic Cancer. International Journal of Radiation Oncology, Biology, Physics, 115, 803-808.
https://doi.org/10.1016/j.ijrobp.2022.09.084
[33] Fukukura, Y., Kumagae, Y., Higashi, R., et al. (2019) Extracellular Volume Fraction Determined by Equilibrium Contrast-Enhanced Multidetector Computed Tomography as a Prognostic Factor in Unresectable Pancreatic Adenocarcinoma Treated with Chemotherapy. European Radiology, 29, 353-361.
https://doi.org/10.1007/s00330-018-5570-4
[34] Fukukura, Y., Kumagae, Y., Higashi, R., et al. (2020) Extracellular Volume Fraction Determined by Equilibrium Contrast-Enhanced Dual-Energy CT as a Prognostic Factor in Patients with Stage IV Pancreatic Ductal Adenocarcinoma. European Radiology, 30, 1679-1689.
https://doi.org/10.1007/s00330-019-06517-w
[35] Fukukura, Y., Kumagae, Y., Higashi, R., et al. (2019) Estimation of Extracellular Volume Fraction with Routine Multiphasic Pancreatic Computed Tomography to Predict the Survival of Patients with Stage IV Pancreatic Ductal Adenocarcinoma. Pancreas, 48, 1360-1366.
https://doi.org/10.1097/MPA.0000000000001427
[36] Bezzi, C., Mapelli, P., Presotto, L., et al. (2021) Radiomics in Pancreatic Neuroendocrine Tumors: Methodological Issues and Clinical Significance. European Journal of Nuclear Medicine and Molecular Imaging, 48, 4002-4015.
https://doi.org/10.1007/s00259-021-05338-8
[37] Iwaya, H., Fukukura, Y., Hashimoto, S., et al. (2021) Prognostic Significance of Extracellular Volume Fraction with Equilibrium Contrast-Enhanced Computed Tomography for Pancreatic Neuroendocrine Neoplasms. Pancreatology, 21, 779-786.
https://doi.org/10.1016/j.pan.2021.02.020
[38] Turajlic, S., Swanton, C. and Boshoff, C. (2018) Kidney Cancer: The Next Decade. The Journal of Experimental Medicine, 215, 2477-2479.
https://doi.org/10.1084/jem.20181617
[39] Dagher, J., Delahunt, B., Rioux-Leclercq, N., et al. (2019) Percentage Grade 4 Tumour Predicts Outcome for Clear Cell Renal Cell Carcinoma. Pathology, 51, 349-352.
https://doi.org/10.1016/j.pathol.2019.01.004
[40] Peng, Y., Tang, G., Sun, M., et al. (2024) Feasibility of Spectral CT-Derived Extracellular Volume Fraction for Differentiating Aldosterone-Producing from Nonfunctioning Adrenal Nodules. European Radiology, 34, 50-59.
https://doi.org/10.1007/s00330-023-10077-5
[41] Li, S., Liu, J., Guo, R., et al. (2023) T1 Mapping and Extracellular Volume Fraction Measurement to Evaluate the Poor-Prognosis Factors in Patients with Cervical Squamous Cell Carcinoma. NMR in Biomedicine, 36, E4918.
https://doi.org/10.1002/nbm.4918
[42] Li, Q., Bao, J., Zhang, Y., et al. (2023) Predictive Value of CT-Based Extracellular Volume Fraction in the Preoperative Pathologic Grading of Rectal Adenocarcinoma: A Preliminary Study. European Journal of Radiology, 163, Article ID: 110811.
https://doi.org/10.1016/j.ejrad.2023.110811
[43] Luo, Y., Liu, L., Liu, D., et al. (2023) Extracellular Volume Fraction Determined by Equilibrium Contrast-Enhanced CT for the Prediction of the Pathological Complete Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. European Radiology, 33, 4042-4051.
https://doi.org/10.1007/s00330-022-09307-z
[44] Lin, Y.C., Chuang, W.Y., Wei, F.C., et al. (2020) Peripheral Arterial Disease: The Role of Extracellular Volume Measurements in Lower Limb Muscles with MRI. European Radiology, 30, 3943-3950.
https://doi.org/10.1007/s00330-020-06730-y