基于过氧化物酶体增殖物激活受体探索治疗非酒精性脂肪肝的新视角
Exploring a New Perspective on Treating Non-Alcoholic Fatty Liver Disease Based on Peroxisome Proliferator-Activated Receptor
摘要: 非酒精性脂肪肝(Nonalcoholic fatty liver disease, NAFLD)涉及到脂代谢紊乱、炎症反应、纤维化、肝血管功能障碍等一系列复杂的病理生理过程。昼夜节律的不协调也在NAFLD的发展中扮演重要角色。过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs)作为核受体超家族的重要成员,包括PPARα、PPARβ/δ和PPARγ,在脂质代谢、炎症、肝星状细胞激活、维持正常血管功能以及昼夜节律等多个生理方面都发挥关键作用。PPARs参与调节NAFLD发病机制的多个方面。本文旨在从多个角度探讨PPARs作为潜在的NAFLD治疗靶点的可能性。
Abstract: Nonalcoholic fatty liver disease (NAFLD) involves a complex pathological process encompassing lipid metabolism disruption, inflammatory responses, fibrosis, and hepatic vascular dysfunction. The dysregulation of circadian rhythms also plays a significant role in NAFLD development. Peroxisome proliferator-activated receptors (PPARs), pivotal members of the nuclear receptor superfamily, including PPARα, PPARβ/δ, and PPARγ, play critical roles in multiple physiological aspects such as lipid metabolism, inflammation, hepatic stellate cell activation, maintenance of normal vascular function, and circadian rhythms. PPARs are involved in regulating various aspects of the pathogenesis of NAFLD. This paper aims to explore the potential of PPARs as therapeutic targets for NAFLD from multiple perspectives.
文章引用:谭永娇, 吴蓉. 基于过氧化物酶体增殖物激活受体探索治疗非酒精性脂肪肝的新视角[J]. 临床医学进展, 2024, 14(4): 2674-2684. https://doi.org/10.12677/acm.2024.1441345

1. 引言

非酒精性脂肪肝病(NAFLD)是一种在全球范围内快速增加的慢性肝病,已经成为卫生领域的一项重大公共卫生挑战。根据全球卫生组织的统计,约有32.4%的人口受到NAFLD的影响 [1] ,而这一数字还在不断攀升。

NAFLD的定义主要基于对肝脏组织的病理学特征的评估,即在没有过量酒精摄入和其他慢性肝病因素影响的情况下,肝内脂肪异常沉积,导致肝脏脂肪占肝脏重量的5%以上。随着疾病进展,其疾病谱愈发多样,从单纯脂肪变性发展到非酒精性脂肪性肝炎(NASH) [2] ,最终可能演变为肝硬化甚至肝癌等更为严重的后果,对个体和社会的健康造成了巨大的负担。NAFLD的确切机制仍然是一个复杂而令人困扰的问题。脂质代谢异常、胰岛素抵抗、炎症反应和昼夜节律紊乱等因素交织在一起 [2] [3] [4] ,共同推动了NAFLD的发展。在这一复杂网络中,具有改善脂代谢和胰岛素抵抗、抗炎、调节生物钟等多种作用的过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs)家族成为了备受关注的焦点 [5] [6] 。

PPARs属于配体激活转录因子的核受体家族,涵盖三个亚型,即PPARα、PPARβ/δ、PPARγ。PPAR是脂质传感器,感知脂质信号,主要通过反式激活和反式抑制两种机制来调节细胞中的基因表达。在前一种机制中,激活的PPARs与视黄酸X受体(retinoid X receptor, RXR)异二聚化,通过结合到PPARs响应元件(PPREs)来实现调控基因的表达。PPREs是一种特殊的DNA序列,存在于目标基因的启动子区域,其结合激活了基因的转录,从而驱动脂质代谢、葡萄糖稳态调节、细胞增殖和分化等多个功能。除了正向调节基因表达外,PPARs还可以与其他转录因子相互作用,妨碍这些转录因子与其靶基因的结合,从而减少它们的转录活性,抑制基因的表达 [7] 。不同亚型的PPARs在组织分布和基因调控方面都存在差异,这种差异性有助于它们发挥不同的生理功能 [8] [9] 。

PPARα在肝脏、心脏和骨骼肌中高度表达。它在肝脏中发挥主要功能,参与脂质代谢的各个方面,包括调节脂肪酸(FA)转运、结合、摄取和合成。此外,PPARα还承担增强对禁食的适应性反应的作用,促进禁食状态下肝脏产生酮体的过程,使肝脏更好的适应饥饿状态 [7] [10] 。研究表明,当PPARα基因被敲除时,小鼠血浆中游离FA含量显著增加 [11] ,这表明FA的代谢受到抑制;此外,PPARα还调节成纤维细胞生长因子21 (FGF21)等脂质代谢基因的产生和释放 [7] 。FGF21是一种激素,它在脂质代谢和能量平衡中发挥调节作用,有助于促使脂肪酸的氧化,提供额外的能量 [12] 。

PPARγ主要在脂肪组织中表达,是脂肪细胞分化、维持其功能的主要调控者。通过激活一系列基因,推动脂肪细胞从前体细胞分化为成熟的脂肪细胞,确保形成结构和功能完整的脂肪组织。不仅如此,PPARγ的激活会促进脂肪细胞内脂质的储存,并抑制脂肪细胞中脂肪的分解过程。这一作用导致机体更倾向于使用葡萄糖作为主要能源来源,同时增强细胞对胰岛素的敏感性,进而改善全身葡萄糖代谢能力。更重要的是,脂肪组织通过存储FA,阻断高通量的FA流入到其他组织,特别是肝脏和骨骼肌,被誉为“脂质窃取”作用 [7] [13] ,有助于保护这些组织免受过度脂肪酸的暴露,从而减轻脂肪酸过量摄取相关的代谢问题。

PPARβ/δ则在人体多个组织中广泛表达,其中包括肝脏、心脏、肾脏和胃肠道。特别是在骨骼肌中,它的特殊作用显得尤为引人注目。PPARβ/δ被激活时,它会与RXR异二聚体化,形成PPARβ/δ-RXR (Retinoid X Receptor)复合物,结合到PPERs,同时招募PPARγ-共激活因子-1α (PGC-1α)增强PPARβ/δ在基因上的活性,调节骨骼肌纤维的代谢方向,使其从依赖于糖类代谢转变为更依赖脂质氧化 [14] 。这个机制不仅使得骨骼肌能够更有效地利用能量资源,而且还可能对防治与NAFLD相关的肌骨脂肪增生症和肌肉减少症产生积极影响。除了改善脂质代谢外,PPARβ/δ还对葡萄糖代谢产生积极影响;PPARβ/δ甚至可以减少炎症反应信号在循环系统中的传递,避免肝损伤 [7] 。综上意味着PPARs可能在整体代谢平衡和免疫调节中扮演更加综合和协调的角色,为预防和治疗NAFLD提供了一个全面而有前景的研究方向。因此本综述旨在描述PPARs在NAFLD中潜在作用的分子机制,并从多个新视角总结PPARs在NAFLD治疗中的潜力。

2. 不同亚型的PPARs在肝脏脂肪变性中的作用

PPARα是细胞能量稳态主要的调节因子,在肝脏中主要参与调节脂肪酸氧化代谢和能量消耗。当机体处于饥饿或者禁食状态时,机体中脂肪分解增加,随着脂质代谢产物的积累,作为脂质传感器的PPARα被激活,通过结合到PPARα响应元件(PPREs),调节了过氧化物酶体和线粒体中脂肪酸氧化(FAO)相关基因的表达。这些基因编码参与脂肪酸氧化的酶,例如脂肪酰辅酶A氧化酶(FAO酶) [7] [10] ,从而加速脂肪酸氧化,提高细胞内能量水平和脂质代谢的效率。并且,它诱导HMGCS (3-羟基-3-甲基戊二酰辅酶A合成酶)表达增加,促使脂肪酸β氧化产生的乙酰辅酶A转化为酮体(CoA) [15] 。不仅如此,PPARα激活促使脂蛋白和脂蛋白相关蛋白,如胆固醇携带蛋白和脂联素等的表达,这些蛋白充当脂质的载体、促进细胞内外脂质交换和细胞器间脂质转运 [16] 。确保脂质在身体各个部位之间的平衡分配,以满足不同细胞和器官对脂质的需求。更有趣的是,禁食期间,PPARα还会增加自噬相关基因的转录,导致脂肪自噬 [17] [18] ,这是促进肝脂质分解代谢的又一新途径。此外,PPARα的激活加速FGF21基因的转录和翻译,生成FGF21蛋白,促进脂肪酸分解并抑制脂肪从头合成,有助于减轻肝脏脂肪变性的发展 [12] 。

与PPARα不同的是,PPARγ主要在进食状态下活跃,通过促进脂肪细胞储存脂质、诱导脂肪因子的表达和增加胰岛素的敏感性来减轻肝脏脂质堆积。PPARγ作为一种脂肪生成因子,它调节包括脂肪酸结合蛋白4 (FABP4)、CD36和甘油三酯酶(LPL)等一系列与脂肪生成和脂肪酸摄取相关的基因,促进脂肪细胞的发育和成熟,将脂质储存在脂肪细胞中,从而减少流入肝脏的脂肪酸通量 [7] 。不仅如此,PPARγ通过多种机制增加全身胰岛素的敏感性。一方面,通过将肝脏中的脂质转移到白色脂肪组织中,直接减轻肝内脂质沉积,间接增加肝脏内葡萄糖利用率 [6] ,使损害胰岛素信号传导的脂毒性得到缓解;另一方面,诱导脂联素等脂肪因子表达增加,激活肝细胞内腺苷酸活化蛋白激酶AMPK (AMP-activated protein kinase),促进肝细胞内的葡萄糖摄取和脂肪酸氧化 [19] ,从而改善胰岛素的敏感性。无独有偶,PPARγ的激活也能诱导FGF21的产生,并通过抑制PPARγ与SUMO化蛋白修饰件共价连接(SUMOylation),调控白色脂肪组织内不同基因网络的表达,从而针对性地提升PPARγ对胰岛素的增敏作用 [20] 。此外还有研究表明,支链氨基酸(BCAA)也在能量代谢和胰岛素信号传导中扮演重要角色,而PPARγ还将通过调节BCAA水平改善胰岛素抵抗 [21] 。

作为PPAR受体家族的一份子,PPARβ/δ同样在脂质代谢的过程中扮演者举足轻重的作用,通过抑制脂肪细胞分化和促进脂肪氧化来改善肥胖和肝脂肪变性。研究报道,用PPARβ/δ选择性激活剂L-165041作用于表达PPARγ的3T3-L1前体脂肪细胞,可以是显著促进其增殖,但却限制这些细胞群落进一步分化为成熟脂肪细胞 [6] [13] [22] ,最终减少脂肪堆积,这一点在特异性PPARβ/δ转基因小鼠表现出消瘦体型中被进一步验证 [23] ,因此尽管PPAR β/δ调节脂肪产生的确切机制仍有待阐明,但调节PPAR β/δ活性的药物却有极大希望成为治疗肥胖的新药。此外,PPARβ/δ激活参与调控棕色脂肪中的解耦连蛋白-1 (UCP1),促使脂肪分解产热维持体温;并参与骨骼肌、白色脂肪组织和肝脏中脂肪酸氧化酶(FAO)的表达,促进脂肪酸氧化,延缓肝脂肪变性 [7] 。在一项针对六名受试者的小型试验中发现,GW501516,一种PPARβ/δ激动剂被证明可以显著降低肝脏脂肪含量 [6] [24] ;此外,选择性PPARβ/δ激动剂seladelpar (MBX-8025)也被发现可以通过自噬介导的FAO机制减少糖尿病肥胖小鼠的肝脂肪变性 [25] ,消除脂毒性并逆转NASH。

3. PPARs与肝脏炎症反应

NAFLD常常伴随着低度炎症状态,且这种炎症状态在疾病的进展过程中发挥关键性的作用。其特征是趋化因子和细胞因子分泌增加 [26] 。过多的TNF-α、IL-1、IL-6等炎症因子都会加剧脂代谢紊乱和胰岛素抵抗。PPARs除了调节脂代谢、增强胰岛素敏感性以外,还参与调节肝脏和全身炎症反应 [6] 。

PPARα主要通过反式抑制下调急性反应期基因的表达、抑制炎症转录因子活性发挥抗炎作用。急性期反应基因编码一系列炎症因子和蛋白质,PPARα能负性调控IL-1β刺激的C反应蛋白基因表达,有效降低急性期C反应蛋白的血浆水平 [27] 。NF-κB作为一个重要的炎症转录因子,调控许多炎症反应基因的表达 [28] ;而PPARα能与NF-κB亚单位结合,竞争性地占据转录激活位点,阻止NF-κB启动基因的转录,从而减少炎症基因的表达 [27] [29] 。研究表明,具有PPARα DBD基因突变的小鼠(将其转录活性限制为反式抑制)能下调炎症介质基因表达,减轻小鼠的肝脏炎症反应 [30] 。与之相对的是,具有肝细胞特异性PPARα缺陷的小鼠将表现出肝脏炎症加剧 [31] 。此外,PPARα还通过上调过氧化氢酶的表达,有效降低肝脏内的氧化应激水平 [32] [33] 。

PPARγ在抗炎过程中发挥着重要作用,它的激活促使巨噬细胞朝向M2型(抗炎性)状态转化 [34] [35] [36] 。M2型巨噬细胞主要参与组织修复和抗炎反应,减少炎症因子的释放 [37] 。此外,与PPARα有异曲同工之处的是,PPARγ同样能降低炎症转录因子(包括AP-1、STAT1和NF-κB)的活性,从而抑制活化的巨噬细胞标志物的表达,延缓炎症反应程度 [38] [39] 。

PPARβ/δ在炎症中作用研究相对较少,但已发现它在M2型巨噬细胞活化和脂质稳态中发挥作用 [40] 。它对Kupffer细胞(肝脏内的特殊巨噬细胞)的活化也起到调节作用,降低炎症介质基因(如TNFα,IL-1β和CCL2)的表达 [41] 。

4. PPARs在肝星状细胞(Hepatic Stellate Cells, HSCs)激活中的作用

不同PPAR亚型在HSC激活中的作用呈现多样性,其对肝纤维化进程的影响存在着互补和相互作用。转化生长因子β1 (TGF-β1)信号转导是在肝纤维化过程中驱动肝星状细胞(HSC)激活的重要因素,一项研究表明,PPARα可能干预TGFβ1信号转导过程,抑制HSC激活 [42] [43] 。PPARγ在人类HSC中的表达水平与其活化状态和增殖都密切相关 [44] 。生理状态下,PPARγ有助于维持HSC的非活化状态,抑制其转变为纤维细胞;此外,PPARγ的转录激活会降低血小板衍生生长因子(PDGF)诱导的HSC的增殖,并抑制α-平滑肌肌动蛋白(α-SMA)的表达 [45] [46] 。PPARβ/δ在HSC激活中所扮演的角色仍悬而未决,其对HSC的激活作用可能是双向的,这取决于所研究的激动剂 [47] [48] [49] 。

5. PPARs与昼夜节律

昼夜节律即生物钟,生物钟对肝脏代谢的调节已经广为人知。证据表明,生物钟中核心时钟基因及时钟蛋白对肝脏中脂质代谢、糖代谢和炎症反应起着关键作用 [50] 。因而生物钟的紊乱可能导致肝代谢失调,进而可能触发NAFLD。PPARs与生物钟之间有着双向、复杂的调节网络,这些受体的表达受到生物钟的调控,而它们也可以通过影响核心时钟基因和时钟机制,对生物钟的活性产生影响。这种双向的相互作用构成了一个复杂而关键的调控网络,揭示了生物钟与PPARs在肝脏代谢调节和NAFLD发展中的重要联系。

生物钟是一种生物体内部的时间系统,控制着生物体在24小时内的周期性生理和行为变化。这种时间系统以24小时的周期性驱动,具有内在的节律性。生物钟主要由核心时钟基因和蛋白质组成。CLOCK (Circadian Locomotor Output Cycles Kaput)和BMAL1 (Brain and Muscle ARNT-like 1)是两个核心成分,它们构成了分子钟的正向调节环节。它们形成异二聚体并在细胞核中结合到基因启动子的特定DNA结合序列,称为E-box (5′-CACGTG-3′),从而启动了下游基因的转录。这些下游基因包括周期(PER1、PER2和PER3)和隐花色素(CRY1和CRY2),这些基因是分子钟的负向调节环节。PER和CRY在细胞质中积累,并随着时间的推移逐渐增加。在细胞质中,它们受到酪蛋白激酶(CK1ε、CK1δ)和F-box/LRR重复蛋白(FBXL3)等的进一步调节。CK1ε和CK1δ通过磷酸化PER促进其降解,而FBXL3则促进CRY的降解。这些修饰和降解过程使得PER和CRY的水平降低,逐渐减少它们的抑制作用。但是,如果CK1ε在与CRY结合后磷酸化PER,它会导致PER和CRY复合物迁移到细胞核中,并抑制CLOCK:BMAL1异二聚体的功能。PER和CRY通过抑制其自身的激活因子(CLOCK:BMAL1异二聚体)来抑制自身基因的转录,形成负反馈调控环路。这样的负反馈环路在维持生物钟周期性方面起着关键作用。一旦PER和CRY的水平降低到一定程度,新的生物钟周期开始,CLOCK:BMAL1重新结合到现在开放的E-box结合位点上,启动下一个昼夜节律周期的开始。此外,在E-box位点附近存在ROR反应元件(RORE),受到Ror和Rev-Erb (视黄酸受体β或NR1D1的两个亚型)的调控,Rorα和Rorγ促进基因表达,而Rev-Erbα和Rev-Erbβ则抑制基因的表达,构成了生物钟第二个反馈环。这两种受体的相互作用和对E-box元件的调节使得数百个基因表达呈现出昼夜节律性,其中包括核心的生物钟基因Bmal1的转录 [3] 。这种调控使得生物体内的时钟系统能够在24小时的周期内保持稳定的节律性,为生理和行为过程提供准确的时序调控 [51] 。

PPARs受体的功能呈现昼夜节律,其表达由核心时钟基因和时钟控制基因调控。反之,PPARs的活性也可能影响核心时钟基因的表达。这种复杂的交互作用,使得PPARs作为分子连接器,将时钟基因和特定的代谢节律连接起来。因而这两个系统的错乱可能是代谢紊乱和NAFLD发生发展的关键因素 [52] 。

PPARα在调节昼夜节律和脂质代谢中都发挥关键作用。PPARα的表达受昼夜节律的影响,在多个器官中呈现周期性波动。它通过与Bmal1基因的启动子结合来调节其转录,直接参与维持Bmal1基因的昼夜节律波动 [53] 。一项研究表明,Pparα基因敲除小鼠显示出肝脏中Bmal1和Per3的昼夜节律表达发生改变 [54] 。而更为有趣的是,BMAL1反过来也可作为Pparα的上游调节因子 [54] ,CLOCK-BMAL1异二聚体也能反式激活Pparα,节律性的调控PPARα的表达和活性 [55] 。此外,时钟蛋白PER2与PPARα相互作用并作为其转录辅助调节因子,在体内有节律地结合PPARα靶基因的启动子 [56] ,使得PPARα呈现节律性波动。更为巧妙的是,脂质的稳态同样受到生物钟节律性的调节,在人体中,13%的脂质代谢物呈现昼夜节律变化 [57] ,因此生物钟节律的破坏将导致血脂异常和肥胖的发生。研究显示,对生物钟基因Clock和Bmal1进行基因敲除可能导致小鼠出现类似NAFLD的症状 [58] [59] 。此外,脂肪组织中包括Npas2、Bmal1、Per1-3和Cry1-2等在内的时钟基因显示出周期性的波动,而这种波动往往与PPARα密切相关 [60] 。PPARα控制多个参与脂质代谢、胆固醇代谢和能量稳态的基因。在脂质代谢和胆固醇合成中,PPARα通常被认为是一个正调节因子,它促进脂肪酸的氧化和代谢,以及胆固醇合成途径的调节,Fas (脂肪酸合成酶)和HMG-CoA还原酶则分别参与着脂肪酸合成和胆固醇合成,它们的昼夜节律表达与PPARα的波动呈现明显的负相关。当PPARα基因被敲除时,动物肝脏脂肪酸和胆固醇合成的昼夜变化也被消除 [53] 。

基于PPARα对昼夜节律和脂质代谢的桥接作用,利用PPARα激动剂来调节昼夜节律以调控脂质代谢,防治NAFLD是一个值得深思的治疗策略。已有研究表明,一些PPARα激动剂能够通过调节BMAL1、PER和REV-ERBα等生物钟相关基因的表达,改变生物钟系统的节律性,进而影响脂质代谢的调节。这种影响涉及多种组织,包括肝脏和脂肪组织 [53] 。

无独有偶,PPARβ/δ在脂质代谢中同样扮演重要角色。研究证实,PPARβ/δ调节肝脏内脂肪合成基因的昼夜节律性表达,与脂质代谢密切相关 [61] 。有趣的是,PPARβ/δ还是mir-122的靶点 [62] 。miR-122是肝脏中最丰富的miRNA之一,在调节肝内胆固醇代谢、脂质代谢和病毒感染方面发挥着关键作用 [62] 。因此,这意味着这种miR-122对于PPARβ/δ的调控将会影响细胞内胆固醇和脂质合成。更为重要的是,mir-122转录受REV-ERBα节律性调控 [62] ,而PPARβ/δ本身也参与昼夜节律调节。PPARβ/δ在人体内的表达呈现出昼夜节律性,峰值出现在夜间,与分子时钟基因Bmal1的表达模式相一致 [63] 。不仅如此,PPARβ/δ还在大脑视交叉上核(SCN)中高度表达。SCN是哺乳动物的中央昼夜节律起搏器,它通过内部节律生成和对外部光信号的接收,调控着整个生物体的生物钟。PPARβ/δ通过影响谷氨酸的释放介导生物钟对光信号的适应 [64] 。这些发现暗示了利用PPARβ/δ激动剂来调节昼夜节律以调控脂质代谢,可能是一种有潜力的治疗策略。

与之相似,PPARγ与昼夜节律调节和脂质代谢同样密不可分。它与核心时钟基因存在双向调节:一方面,PPARγ诱导Bmal1 [65] 和Rev-erbα [66] 的表达;而且与PPARγ相互作用的PGC-1α在小鼠肝脏和肌肉中呈现出节律性波动,它也能够刺激Bmal1和Rev-erbα的转录 [67] 。当PGC-1α被敲除后,小鼠表现出体温和能量代谢的异常,这与代谢和时钟基因的异常表达息息相关 [67] 。相应地,时钟基因同样刺激PPARγ靶基因的表达。使得Pparγ在小鼠脂肪、血管和肝脏中显示昼夜节律表达模式,尤其是在主动脉中,这种模式表达更为强烈,其在白天和黑夜周期内变化幅度超过20倍。因此当Pparγ缺失后,典型的时钟基因在脂肪组织和肝脏中表现出节律性受损 [65] [68] [69] 。这种节律性的紊乱导致膳食脂质吸收、脂质转运、脂肪储存和甘油三酯水平异常。PPARγ不仅参与调节生物钟的稳定性,还作为一种脂肪生成因子,促进脂肪细胞的分化和成熟,激活脂肪酸合成酶和脂肪酸运输蛋白基因的表达 [66] ,促进脂质的合成和储存,对维持整体的脂质代谢平衡至关重要。

而对脂肪代谢调节同样重要的还有生物钟。核心时钟蛋白通过周期性的表达对编码限速脂解酶(限制脂肪分解的酶)的基因表达产生调控作用。研究证实,脂肪细胞特异性的Bmal1基因敲除会导致小鼠肥胖,源于摄食节律的减弱(即白天增加进食),进而影响血液循环中多不饱和脂肪酸的浓度和食欲调节神经递质的表达模式。然而,肥胖既是果,也是因,它反过来通过抑制PPARγ转录,下调SLC1A5,使得脂肪细胞内谷氨酸和甲硫氨酸水平降低(这两者是Bmal1的表观遗传激活因子) [68] ,进一步导致了Bmal1及其他生物钟基因的紊乱,陷入生物钟–脂质代谢紊乱的恶性循环。这些突出的发现暗示着PPARγ在协调生物钟和脂质代谢的可塑性。为探索代谢相关性疾病的治疗策略开创一个新的研究方向。

6. PPARs与肝微血管功能障碍

肝微血管功能障碍是NAFLD进展过程中不可或缺的一部分。正常肝脏中,肝窦内皮细胞(LSECs)与HSCs紧密相连,LSECs释放一氧化氮(NO)等扩血管因子,为HSCs所感知,从而调节肝血管舒张。然而,当处于NAFLD期间,LSECs合成NO的能力降低,加之HSCs对NO敏感性降低,这将导致肝微血管功能失调 [70] [71] 。同时,持续的炎症刺激血管壁,导致血管壁结构异常,并损伤肝内皮细胞,加剧肝微血管功能障碍 [71] 。PPARs参与调节肝脏的微血管功能,通过多种机制来影响血管活性和血液流动。

PPARs在血管张力调节中发挥着关键作用。三者PPAR激活有助于提升eNOS(内皮型一氧化氮合酶)的表达和活性,增加一氧化氮(NO)的生成和释放,促进血管舒张 [72] 。此外,PPARγ在血管内皮细胞中高表达,激活PPARγ可能调节内皮素-1 (ET-1)的产生 [73] ,这是一种强效的血管收缩剂,其减少可能有助于促进血管舒张。实验证明,内皮细胞中PPARγ的敲除可导致高脂肪饮食下血管功能障碍的增加 [74] 。不仅如此,PPARs还参与调节血管生成过程。它们调控诸如血管内皮生长因子(VEGF)、基本成纤维细胞生长因子(bFGF)等多种血管生成相关因子的表达。这些因子在血管生成中扮演重要角色,促进内皮细胞增殖和血管管腔形成。相应地,血管内皮细胞屏障功能也受到PPARs调节。它们影响细胞间连接的稳定性、抑制黏附分子的表达、调节炎症和氧化应激等多个方面。这些作用有助于保持血管壁的完整性和正常的通透性,对于预防炎症性反应和维持组织功能至关重要 [75] 。

7. 总结与展望

PPARs在非酒精性脂肪肝(NAFLD)治疗中的潜在作用已引起广泛关注。作为核受体超家族的重要成员,它们在脂质代谢、炎症调节、血管功能和昼夜节律平衡等生理过程中扮演关键角色。本文探讨了PPARs在调节NAFLD发病机制的多方面作用,旨在窥探其作为治疗靶点的可能性。随着进一步研究和临床试验的展开,我们或许能阐明PPARs激动剂在NAFLD治疗中的具体作用机制和临床应用前景。了解PPARs在不同病理生理过程中的调节作用,尤其是在NAFLD发展中的影响,将有助于制定针对性治疗策略。深入理解PPARs对NAFLD的调控,或将为应对这一健康问题提供新的治疗方向和策略。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861.
https://doi.org/10.1016/S2468-1253(22)00165-0
[2] Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., et al. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922.
https://doi.org/10.1038/s41591-018-0104-9
[3] Saran, A.R., Dave, S. and Zarrinpar, A. (2020) Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology, 158, 1948-1966.E1.
https://doi.org/10.1053/j.gastro.2020.01.050
[4] Khan, R.S., Bril, F., Cusi, K., et al. (2019) Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology (Baltimore, Md), 70, 711-724.
https://doi.org/10.1002/hep.30429
[5] Berthier, A., Johanns, M., Zummo, F.P., et al. (2021) PPARs in Liver Physiology. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867, Article ID: 166097.
https://doi.org/10.1016/j.bbadis.2021.166097
[6] Qiu, Y.Y., Zhang, J., Zeng, F.Y., et al. (2023) Roles of the Peroxisome Proliferator-Activated Receptors (PPARs) in the Pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Pharmacological Research, 192, Article ID: 106786.
https://doi.org/10.1016/j.phrs.2023.106786
[7] Dubois, V., Eeckhoute, J., Lefebvre, P., et al. (2017) Distinct but Complementary Contributions of PPAR Isotypes to Energy Homeostasis. The Journal of Clinical Investigation, 127, 1202-1214.
https://doi.org/10.1172/JCI88894
[8] Christofides, A., Konstantinidou, E., Jani, C., et al. (2021) The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism: Clinical and Experimental, 114, Article ID: 154338.
https://doi.org/10.1016/j.metabol.2020.154338
[9] Willson, T.M., Brown, P.J., Sternbach, D.D., et al. (2000) The PPARs: From Orphan Receptors to Drug Discovery. Journal of Medicinal Chemistry, 43, 527-550.
https://doi.org/10.1021/jm990554g
[10] Bougarne, N., Weyers, B., Desmet, S.J., et al. (2018) Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 39, 760-802.
https://doi.org/10.1210/er.2018-00064
[11] Montagner, A., Polizzi, A., Fouché, E., et al. (2016) Liver PPARα Is Crucial for Whole-Body Fatty Acid Homeostasis and Is Protective against NAFLD. Gut, 65, 1202-1214.
https://doi.org/10.1136/gutjnl-2015-310798
[12] Fisher, F.M. and Maratos-Flier, E. (2016) Understanding the Physiology of FGF21. Annual Review of Physiology, 78, 223-241.
https://doi.org/10.1146/annurev-physiol-021115-105339
[13] Janani, C. and Ranjitha Kumari, B.D. (2015) PPAR Gamma Gene—A Review. Diabetes & Metabolic Syndrome, 9, 46-50.
https://doi.org/10.1016/j.dsx.2014.09.015
[14] Schuler, M., Ali, F., Chambon, C., et al. (2006) PGC1alpha Expression Is Controlled in Skeletal Muscles by PPARbeta, Whose Ablation Results in Fiber-Type Switching, Obesity, and Type 2 Diabetes. Cell Metabolism, 4, 407-414.
https://doi.org/10.1016/j.cmet.2006.10.003
[15] Pawlak, M., Lefebvre, P. and Staels, B. (2015) Molecular Mechanism of PPARα Action and Its Impact on Lipid Metabolism, Inflammation and Fibrosis in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 62, 720-733.
https://doi.org/10.1016/j.jhep.2014.10.039
[16] Das Pradhan, A., Glynn, R.J., Fruchart, J.C., et al. (2022) Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. The New England Journal of Medicine, 387, 1923-1934.
https://doi.org/10.1056/NEJMoa2210645
[17] Filali-Mouncef, Y., Hunter, C., Roccio, F., et al. (2022) The Ménage À Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72.
https://doi.org/10.1080/15548627.2021.1895658
[18] Luo, R., Su, L.Y., Li, G., et al. (2020) Activation of PPARA-Mediated Autophagy Reduces Alzheimer Disease-Like Pathology and Cognitive Decline in a Murine Model. Autophagy, 16, 52-69.
https://doi.org/10.1080/15548627.2019.1596488
[19] Xu, Y., Yu, T., Ma, G., et al. (2021) Berberine Modulates Deacetylation of PPARγ to Promote Adipose Tissue Remodeling and Thermogenesis via AMPK/SIRT1 Pathway. International Journal of Biological Sciences, 17, 3173-3187.
https://doi.org/10.7150/ijbs.62556
[20] Katafuchi, T., Holland, W.L., Kollipara, R.K., et al. (2018) PPARγ-K107 SUMOylation Regulates Insulin Sensitivity but Not Adiposity in Mice. Proceedings of the National Academy of Sciences of the United States of America, 115, 12102-12111.
https://doi.org/10.1073/pnas.1814522115
[21] Andrade, M.L., Gilio, G.R., Perandini, L.A., et al. (2021) PPARγ-Induced Upregulation of Subcutaneous Fat Adiponectin Secretion, Glyceroneogenesis and BCAA Oxidation Requires MTORC1 Activity. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 1866, Article ID: 158967.
https://doi.org/10.1016/j.bbalip.2021.158967
[22] Lim, H.J., Park, J.H., Lee, S., et al. (2009) PPARdelta Ligand L-165041 Ameliorates Western Diet-Induced Hepatic Lipid Accumulation and Inflammation in LDLR-/-Mice. European Journal of Pharmacology, 622, 45-51.
https://doi.org/10.1016/j.ejphar.2009.09.002
[23] Lee, C.H., Chawla, A., Urbiztondo, N., et al. (2003) Transcriptional Repression of Atherogenic Inflammation: Modulation by PPARdelta. Science (New York, NY), 302, 453-457.
https://doi.org/10.1126/science.1087344
[24] Risérus, U., Sprecher, D., Johnson, T., et al. (2008) Activation of Peroxisome Proliferator-Activated Receptor (PPAR)Delta Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men. Diabetes, 57, 332-339.
https://doi.org/10.2337/db07-1318
[25] Tong, L., Wang, L., Yao, S., et al. (2019) PPARδ Attenuates Hepatic Steatosis through Autophagy-Mediated Fatty Acid Oxidation. Cell Death & Disease, 10, Article No. 197.
https://doi.org/10.1038/s41419-019-1458-8
[26] Paternostro, R. and Trauner, M. (2022) Current Treatment of Non-Alcoholic Fatty Liver Disease. Journal of Internal Medicine, 292, 190-204.
https://doi.org/10.1111/joim.13531
[27] Kleemann, R., Gervois, P.P., Verschuren, L., et al. (2003) Fibrates Down-Regulate IL-1-Stimulated C-Reactive Protein Gene Expression in Hepatocytes by Reducing Nuclear P50-NFkappa B-C/EBP-Beta Complex Formation. Blood, 101, 545-551.
https://doi.org/10.1182/blood-2002-06-1762
[28] Didonato, J.A., Mercurio, F. and Karin, M. (2012) NF-κB and the Link between Inflammation and Cancer. Immunological Reviews, 246, 379-400.
https://doi.org/10.1111/j.1600-065X.2012.01099.x
[29] Korbecki, J., BobiŃSki, R. and Dutka, M. (2019) Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflammation Research: Official Journal of the European Histamine Research Society [et al], 68, 443-458.
https://doi.org/10.1007/s00011-019-01231-1
[30] Yang, M., Wang, Y., Chen, J., et al. (2020) Functional Analysis of Epinephelus Coioides Peroxisome Proliferative-Activated Receptor α (PPARα): Involvement in Response to Viral Infection. Fish & Shellfish Immunology, 102, 257-266.
https://doi.org/10.1016/j.fsi.2020.04.025
[31] Gervois, P., Kleemann, R., Pilon, A., et al. (2004) Global Suppression of IL-6-Induced Acute Phase Response Gene Expression after Chronic in Vivo Treatment with the Peroxisome Proliferator-Activated Receptor-Alpha Activator Fenofibrate. The Journal of Biological Chemistry, 279, 16154-16160.
https://doi.org/10.1074/jbc.M400346200
[32] Toyama, T., Nakamura, H., Harano, Y., et al. (2004) PPARalpha Ligands Activate Antioxidant Enzymes and Suppress Hepatic Fibrosis in Rats. Biochemical and Biophysical Research Communications, 324, 697-704.
https://doi.org/10.1016/j.bbrc.2004.09.110
[33] Pawlak, M., Baugé, E., Bourguet, W., et al. (2014) The Transrepressive Activity of Peroxisome Proliferator-Activated Receptor Alpha Is Necessary and Sufficient to Prevent Liver Fibrosis in Mice. Hepatology (Baltimore, Md), 60, 1593-1606.
https://doi.org/10.1002/hep.27297
[34] Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., et al. (2007) Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance. Nature, 447, 1116-1120.
https://doi.org/10.1038/nature05894
[35] Bouhlel, M.A., Derudas, B., Rigamonti, E., et al. (2007) PPARgamma Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-Inflammatory Properties. Cell Metabolism, 6, 137-143.
https://doi.org/10.1016/j.cmet.2007.06.010
[36] Nelson, V.L., Nguyen, H.C.B., Garcìa-Cañaveras, J.C., et al. (2018) PPARγ Is a Nexus Controlling Alternative Activation of Macrophages via Glutamine Metabolism. Genes & Development, 32, 1035-1044.
https://doi.org/10.1101/gad.312355.118
[37] Yunna, C., Mengru, H., Lei, W., et al. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article ID: 173090.
https://doi.org/10.1016/j.ejphar.2020.173090
[38] Delerive, P., Fruchart, J.C. and Staels, B. (2001) Peroxisome Proliferator-Activated Receptors in Inflammation Control. The Journal of Endocrinology, 169, 453-459.
https://doi.org/10.1677/joe.0.1690453
[39] Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al. (2010) Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radical Biology & Medicine, 49, 1603-1616.
https://doi.org/10.1016/j.freeradbiomed.2010.09.006
[40] Lee, M.Y., Choi, R., Kim, H.M., et al. (2012) Peroxisome Proliferator-Activated Receptor δ Agonist Attenuates Hepatic Steatosis by Anti-Inflammatory Mechanism. Experimental & Molecular Medicine, 44, 578-585.
https://doi.org/10.3858/emm.2012.44.10.066
[41] Shan, W., Palkar, P.S., Murray, I.A., et al. (2008) Ligand Activation of Peroxisome Proliferator-Activated Receptor Beta/Delta (PPARbeta/Delta) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression. Toxicological Sciences: An Official Journal of the Society of Toxicology, 105, 418-428.
https://doi.org/10.1093/toxsci/kfn142
[42] Parlati, L., Régnier, M., Guillou, H., et al. (2021) New Targets for NAFLD. JHEP Reports: Innovation in Hepatology, 3, Article ID: 100346.
https://doi.org/10.1016/j.jhepr.2021.100346
[43] Nan, Y.M., Kong, L.B., Ren, W.G., et al. (2013) Activation of Peroxisome Proliferator Activated Receptor Alpha Ameliorates Ethanol Mediated Liver Fibrosis in Mice. Lipids in Health and Disease, 12, Article No. 11.
https://doi.org/10.1186/1476-511X-12-11
[44] Trivedi, P., Wang, S. and Friedman, S.L. (2021) The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells. Cell Metabolism, 33, 242-257.
https://doi.org/10.1016/j.cmet.2020.10.026
[45] Li, X., Chen, Y., Wu, S., et al. (2015) MicroRNA-34a and MicroRNA-34c Promote the Activation of Human Hepatic Stellate Cells by Targeting Peroxisome Proliferator-Activated Receptor γ. Molecular Medicine Reports, 11, 1017-1024.
https://doi.org/10.3892/mmr.2014.2846
[46] Lakshman, M.R., Reyes-Gordillo, K., Varatharajalu, R., et al. (2014) Novel Modulators of Hepatosteatosis, Inflammation and Fibrogenesis. Hepatology International, 8, 413-420.
https://doi.org/10.1007/s12072-014-9526-8
[47] Königshofer, P., Brusilovskaya, K., Petrenko, O., et al. (2021) Nuclear Receptors in Liver Fibrosis. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867, Article ID: 166235.
https://doi.org/10.1016/j.bbadis.2021.166235
[48] Iwaisako, K., Haimerl, M., Paik, Y.H., et al. (2012) Protection from Liver Fibrosis by a Peroxisome Proliferator-Activated Receptor δ Agonist. Proceedings of the National Academy of Sciences of the United States of America, 109, E1369-E1376.
https://doi.org/10.1073/pnas.1202464109
[49] Hellemans, K., Michalik, L., Dittie, A., et al. (2003) Peroxisome Proliferator-Activated Receptor-Beta Signaling Contributes to Enhanced Proliferation of Hepatic Stellate Cells. Gastroenterology, 124, 184-201.
https://doi.org/10.1053/gast.2003.50015
[50] Reinke, H. and Asher, G. (2016) Circadian Clock Control of Liver Metabolic Functions. Gastroenterology, 150, 574-580.
https://doi.org/10.1053/j.gastro.2015.11.043
[51] Patke, A., Young, M.W. and Axelrod, S. (2020) Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nature Reviews Molecular Cell Biology, 21, 67-84.
https://doi.org/10.1038/s41580-019-0179-2
[52] Oh, H.Y.P., Visvalingam, V. and Wahli, W. (2019) The PPAR-Microbiota-Metabolic Organ Trilogy to Fine-Tune Physiology. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33, 9706-9730.
https://doi.org/10.1096/fj.201802681RR
[53] Duszka, K. and Wahli, W. (2020) Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 12, Article No. 3476.
https://doi.org/10.3390/nu12113476
[54] Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., et al. (2006) Reciprocal Regulation of Brain and Muscle Arnt-Like Protein 1 and Peroxisome Proliferator-Activated Receptor α Defines a Novel Positive Feedback Loop in the Rodent Liver Circadian Clock. Molecular Endocrinology, 20, 1715-1727.
https://doi.org/10.1210/me.2006-0052
[55] Gervois, P., Chopin-Delannoy, S., Fadel, A., et al. (1999) Fibrates Increase Human REV-ERBα Expression in Liver via a Novel Peroxisome Proliferator-Activated Receptor Response Element. Molecular Endocrinology, 13, 400-409.
https://doi.org/10.1210/mend.13.3.0248
[56] Schmutz, I., Ripperger, J.A., Baeriswyl-Aebischer, S., et al. (2010) The Mammalian Clock Component PERIOD2 Coordinates Circadian Output by Interaction with Nuclear Receptors. Genes & Development, 24, 345-357.
https://doi.org/10.1101/gad.564110
[57] Chua, E.C.-P., Shui, G., Lee, I.T.-G., et al. (2013) Extensive Diversity in Circadian Regulation of Plasma Lipids and Evidence for Different Circadian Metabolic Phenotypes in Humans, 110, 14468-14473.
https://doi.org/10.1073/pnas.1222647110
[58] Shimba, S., Ishii, N., Ohta, Y., et al. (2005) Brain and Muscle Arnt-Like Protein-1 (BMAL1): A Component of the Molecular Clock, Regulates Adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 12071-12076.
https://doi.org/10.1073/pnas.0502383102
[59] Mazzoccoli, G., Vinciguerra, M., Oben, J., et al. (2014) Non-Alcoholic Fatty Liver Disease: The Role of Nuclear Receptors and Circadian Rhythmicity. Liver International: Official Journal of the International Association for the Study of the Liver, 34, 1133-1152.
https://doi.org/10.1111/liv.12534
[60] Zvonic, S., Ptitsyn, A.A., Conrad, S.A., et al. (2006) Characterization of Peripheral Circadian Clocks in Adipose Tissues. Diabetes, 55, 962-970.
https://doi.org/10.2337/diabetes.55.04.06.db05-0873
[61] Wang, Y.X., Zhang, C.L., Yu, R.T., et al. (2004) Regulation of Muscle Fiber Type and Running Endurance by PPARdelta. PLOS Biology, 2, E294.
https://doi.org/10.1371/journal.pbio.0020294
[62] Gatfield, D., Le Martelot, G., Vejnar, C.E., et al. (2009) Integration of MicroRNA MiR-122 in Hepatic Circadian Gene Expression. Genes & Development, 23, 1313-1326.
https://doi.org/10.1101/gad.1781009
[63] Jordan, S.D., Kriebs, A., Vaughan, M., et al. (2017) CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity. Cell Metabolism, 26, 243-255.E6.
https://doi.org/10.1016/j.cmet.2017.06.002
[64] Challet, E., Denis, I., Rochet, V., et al. (2013) The Role of PPARβ/δ in the Regulation of Glutamatergic Signaling in the Hamster Suprachiasmatic Nucleus. Cellular and Molecular Life Sciences: CMLS, 70, 2003-2014.
https://doi.org/10.1007/s00018-012-1241-9
[65] Wang, N., Yang, G., Jia, Z., et al. (2008) Vascular PPARgamma Controls Circadian Variation in Blood Pressure and Heart Rate through Bmal1. Cell Metabolism, 8, 482-491.
https://doi.org/10.1016/j.cmet.2008.10.009
[66] Fontaine, C., Dubois, G., Duguay, Y., et al. (2003) The Orphan Nuclear Receptor Rev-Erbalpha Is a Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Target Gene and Promotes PPARgamma-Induced Adipocyte Differentiation. The Journal of Biological Chemistry, 278, 37672-37680.
https://doi.org/10.1074/jbc.M304664200
[67] Liu, C., Li, S., Liu, T., et al. (2007) Transcriptional Coactivator PGC-1alpha Integrates the Mammalian Clock and Energy Metabolism. Nature, 447, 477-481.
https://doi.org/10.1038/nature05767
[68] Wang, S., Lin, Y., Gao, L., et al. (2022) PPAR-γ Integrates Obesity and Adipocyte Clock through Epigenetic Regulation of Bmal1. Theranostics, 12, 1589-1606.
https://doi.org/10.7150/thno.69054
[69] Kawai, M. and Rosen, C.J. (2010) PPARγ: A Circadian Transcription Factor in Adipogenesis and Osteogenesis. Nature Reviews Endocrinology, 6, 629-636.
https://doi.org/10.1038/nrendo.2010.155
[70] Schwabe, R.F., Tabas, I. and Pajvani, U.B. (2020) Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology, 158, 1913-1928.
https://doi.org/10.1053/j.gastro.2019.11.311
[71] Sun, X. and Harris, E.N. (2020) New Aspects of Hepatic Endothelial Cells in Physiology and Nonalcoholic Fatty Liver Disease. American Journal of Physiology Cell Physiology, 318, C1200-C1213.
https://doi.org/10.1152/ajpcell.00062.2020
[72] Guixé-Muntet, S., Biquard, L., Szabo, G., et al. (2022) Review Article: Vascular Effects of PPARs in the Context of NASH. Alimentary Pharmacology & Therapeutics, 56, 209-223.
https://doi.org/10.1111/apt.17046
[73] Beyer, A.M., De Lange, W.J., Halabi, C.M., et al. (2008) Endothelium-Specific Interference with Peroxisome Proliferator Activated Receptor Gamma Causes Cerebral Vascular Dysfunction in Response to a High-Fat Diet. Circulation Research, 103, 654-661.
https://doi.org/10.1161/CIRCRESAHA.108.176339
[74] Tao, L., Liu, H.R., Gao, E., et al. (2003) Antioxidative, Antinitrative, and Vasculoprotective Effects of a Peroxisome Proliferator-Activated Receptor-Gamma Agonist in Hypercholesterolemia. Circulation, 108, 2805-2811.
https://doi.org/10.1161/01.CIR.0000097003.49585.5E
[75] Boyer-Diaz, Z., Aristu-Zabalza, P., Andrés-Rozas, M., et al. (2021) Pan-PPAR Agonist Lanifibranor Improves Portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease. Journal of Hepatology, 74, 1188-1199.
https://doi.org/10.1016/j.jhep.2020.11.045