血流储备分数、血同型半胱氨酸在冠状动脉粥样硬化性心脏病中的临床应用
Clinical Application of Blood Flow Reserve Fraction and Blood Homocysteine in Coronary Atherosclerotic Heart Disease
DOI: 10.12677/acm.2024.1441346, PDF, HTML, XML, 下载: 38  浏览: 61 
作者: 麦尔哈巴·阿卜力克木:新疆医科大学研究生学院,新疆 乌鲁木齐;武 刚*:新疆维吾尔自治区中医医院心内科,新疆 乌鲁木齐
关键词: 冠心病同型半胱氨酸血流储备分数Coronary Heart Disease Homocysteine Blood Flow Reserve Fraction
摘要: 冠状动脉粥样硬化性心脏病(coronary heart disease, CAD)简称冠心病,是由于冠状动脉血管发生粥样硬化病变,导致管腔狭窄、痉挛或阻塞,从而导致心肌缺血、缺氧甚至坏死的心脏疾病,是动脉粥样硬化所致器官病变中最为常见的类型。冠状动脉疾病的传统危险因素包括吸烟、高血压、高脂血症、糖尿病和家族史,高同型半胱氨酸血症(hyperhomocysteinemia)已被认为是动脉粥样硬化和血管疾病的新的可改变危险因素。有研究表明HHcy血症可能促使机体冠状动脉微循环功能明显障碍。冠状动脉造影(coronary angiography, CAG)长期以来作为诊断冠心病的“金标准”,有助于人们通过影像技术方法对冠状动脉解剖学情况有直观的认识。血流储备分数(fractional flow reserve, FFR)技术作为一项有创性测定血管血流功能学指标,判断该血管所供给区域是否合并心肌缺血,合理指导冠心病的介入治疗有着重要的意义。有研究表明,HHCy血症能促使机体冠状动脉微循环功能明显障碍,从而导致FFR值的下降。现主要对冠心病患者中血清同型半胱氨酸及有创血流储备分数的研究进展及临床应用加以综述。
Abstract: Coronary atherosclerotic heart disease (CAD), referred to as coronary heart disease, is a heart disease in which atherosclerotic lesions occur in coronary arteries, leading to lumen narrowing, spasm, or obstruction, which results in myocardial ischemia, hypoxia, and even necrosis, and it is the most common type of atherosclerosis-induced organ disease. Traditional risk factors for coronary artery disease include smoking, hypertension, hyperlipidemia, diabetes mellitus, and family history. Hyperhomocysteinemia (HHcy) has been recognized as a new modifiable risk factor for atherosclerosis and vascular disease. It has been shown that HHcymia can contribute to significant dysfunction of the coronary microcirculation. Coronary angiography (CAG) has long been used as the “gold standard” for the diagnosis of coronary artery disease, which helps people visualize the anatomy of coronary arteries through imaging techniques. As an invasive measure of vascular flow function, fractional flow reserve (FFR) technique is of great significance in determining whether myocardial ischemia is combined in the area supplied by the vessel, and in rationally guiding the interventional therapy of coronary heart disease. HHCyemia can promote the function of coronary microcirculation to be significantly impaired. The research progress and clinical application of serum homocysteine and invasive flow reserve fraction in patients with coronary artery disease are summarized.
文章引用:麦尔哈巴·阿卜力克木, 武刚. 血流储备分数、血同型半胱氨酸在冠状动脉粥样硬化性心脏病中的临床应用[J]. 临床医学进展, 2024, 14(4): 2685-2693. https://doi.org/10.12677/acm.2024.1441346

1. 冠心病

冠状动脉粥样硬化性心脏病(coronary artery disease, CAD)在全球范围内依然是导致发病和死亡的主导因素 [1] - [7] 。稳定性冠心病(stable coronary artery disease, SCAD)一般包括3种情况,即慢性稳定性劳力型心绞痛、缺血性心肌病和急性冠状动脉综合征(acute coronary syndrome, ACS)之后稳定的病程阶段 [8] 。对诊断和治疗方法的优化有助于提升整体的健康水平,同时也能减轻冠状动脉心脏病患者的经济压力。最佳药物治疗(Optimal medical Therapy, OMT)被普遍视为治疗CAD特有症状和预防严重心血管事件的核心方法。除此之外,血运重建治疗:经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)及冠状动脉旁路移植术(coronary artery bypass grafting, CABG) [9] 都能有效地提升患者的生活质量和预期寿命。一些研究,例如COURAGE、ISCHMIA和DECISION-CTO的研究结果表明 [10] [11] [12] [13] ,与药物治疗相比,PCI或冠状动脉旁路移植手术不能减少心肌梗死、心血管死亡或卒中的风险,也不能降低总死亡率,只能改善心绞痛的症状。这主要是由于对这种治疗模式缺乏足够了解所致。因此,对于稳定性冠心病患者,根据目前的治疗指南,治疗性生活习惯的改变、最佳药物治疗及康复治疗应被视为首选的治疗方式。然而,由于冠状动脉粥样硬化性心脏病患者数量急剧增加,在冠状动脉病变血管的血流重建术中对患者进行适当的选择变得至关重要。

2. 同型半胱氨酸(Homocysteine, Hcy)

同型半胱氨酸(Hcy)是蛋氨酸转化为半胱氨酸过程中形成的中间氨基酸。当空腹血浆Hcy水平高于15 μmol/L时 [14] ,被认为是高同型半胱氨酸血症(HHcy)。血管内皮是血管稳态的重要屏障,其损伤是动脉粥样硬化(AS)的引发。HHcy是AS的重要危险因素,可促进AS的发展和心血管事件的发生,而Hcy对内皮的损伤被认为发挥着非常重要的作用。

同型半胱氨酸是必需的含硫氨基酸蛋氨酸转化为半胱氨酸过程中形成的中间氨基酸 [15] 。蛋氨酸的来源是膳食蛋白质,肝脏被认为在蛋氨酸和Hcy代谢中发挥着重要作用,因为它充分补充了调节血浆Hcy水平的相关酶 [16] 。血浆Hcy存在三种不同形式,包括游离Hcy、蛋白结合Hcy和氧化形式的Hcy [17] 。目前临床上测量的Hcy浓度代表血浆总Hcy浓度。空腹状态下测得的血浆Hcy的正常范围是5~15 μmol/L,因此HHcy被定义为血浆Hcy高于15 μmol/L [18] 。HHcy分为轻度、中度和重度HHcy三级,血浆HCy水平分别为15至30、31至100和>100 µmol/L。

2.1. 高同型半胱氨酸血症的发病机制

血浆Hcy水平受多种因素影响,如遗传、营养、年龄、性别、药物、疾病状态等 [19] 。探究血浆Hcy水平升高的原因对于HHcy及其引起的各种损伤的治疗具有重要意义。1) 遗传学:血浆中Hcy浓度严重升高的情况很少见,通常是由参与其代谢的酶(例如MS、亚甲基四氢叶酸还原酶和CBS)的纯合突变引起的。纯合HHcy的临床表现通常包括精神症状以及毛发、皮肤、关节、骨骼和心血管系统的异常。然而,由相关酶杂合突变引起的HHcy通常无症状,仅血浆Hcy中度升高或正常 [20] 。2) 营养和生活方式:B族维生素和叶酸在Hcy的代谢中发挥着重要作用。因此,缺乏必需辅助因子维生素B12/B6或辅助底物叶酸时,血浆Hcy浓度会显着升高 [21] 。由于饮食和烹饪习惯,亚洲人群容易摄入叶酸不足,这可能是叶酸缺乏发生率的部分原因,而且亚洲人群的HHcy远高于西方人群 [22] 。3) 年龄:一般认为血浆Hcy随着年龄的增长而增加 [23] 。这种现象的具体机制尚不清楚。4) 性别:绝经前女性的血浆Hcy浓度通常比同龄男性低20%。这可能与男性肌酐浓度较高和肌肉质量较多有关 [24] 。5) 药物一些降脂药物如贝特类药物 [25] 和烟酸可以增加血浆Hcy。从机制上讲,非诺贝特能通过降低肾功能来显着增加血浆Hcy水平 [26] 。因此,应权衡使用这些药物治疗胆固醇浓度升高的益处与Hcy升高可能存在的长期风险。6) 疾病状态研究表明,血浆Hcy水平在某些疾病状态下会升高,例如各种癌症 [27] 、牛皮癣 [28] 、甲状腺功能减退症 [29] 、糖尿病 [30] 和肾功能不全。

2.2. 高同型半胱氨酸血症与心血管疾病的关系

过量的同型半胱氨酸代谢失调是导致多种疾病的重要原因之一。研究表明,同型半胱氨酸在体内过量积累会导致动脉粥样硬化的发生和发展,增加心血管疾病的风险。血管内皮是循环血液和血管壁的稳态屏障,就像心血管健康的守门人一样 [31] 。血管内膜在血管壁的稳态调节中发挥着重要作用,包括血管张力、凝血、炎症和通透性 [32] 。ECs作为血管壁的最内层,直接暴露于循环血液,因此很容易受到各种危险因素的损伤,导致其功能障碍和内皮屏障损伤 [33] 。

同型半胱氨酸可通过多种细胞内机制引起内皮细胞损伤。如诱导炎症和细胞死亡、干扰NO产生、ROS积累和氧化应激、细胞低甲基化。这些机制之间存在复杂的相互作用,导致AS病变局部和循环发生一系列反应。此外,脂蛋白代谢异常作为一种细胞外机制也会引起ECs损伤,促进AS进展。蛋白质同型半胱氨酸化可通过细胞内和细胞外机制引起内皮损伤。

内皮功能和屏障受损可导致一系列级联反应,如炎症反应 [34] 、单核细胞募集 [35] 、斑块形成 [36] 、结构重塑 [37] 、血栓形成 [38] 。HHcy培养的EC和动物模型的结果表明,Hcy可以损伤EC并导致内皮功能障碍 [39] [40] 。多项研究证实血浆Hcy浓度与AS呈正相关。临床研究表明,冠心病患者血浆Hcy水平显着高于血管造影正常对照者 [41] ,而血浆Hcy水平仅为正常上限的12%,与正常人血浆Hcy水平升高3.4倍相关。心肌梗塞的风险 [42] 。以上描述的是新提出的AS同型半胱氨酸理论。这表明Hcy损伤的内皮在其促进血管疾病方面发挥着核心作用。因此,探讨Hcy损伤血管内皮的机制对于AS相关疾病的诊断和治疗具有重要意义,及早发现和有效控制同型半胱氨酸代谢失调对预防这些疾病的发生具有重要意义。

Jin等人(2021)评估了血浆Hcy升高与心力衰竭受试者之间的相关性。这项荟萃分析显示,与对照个体相比,心力衰竭患者的血浆Hcy水平显着升高。另一项回顾性研究评估了HHcy对亚洲人群阻塞性冠状动脉疾病(CAD)的预测作用。多变量逻辑回归分析显示,在老年人(年龄 > 55岁)和年轻人(年龄 ≤ 55岁)中,HHcy与阻塞性CAD存在独立相关性。与非阻塞性CAD相比,HHcy对阻塞性CAD具有更高的敏感性(93.1%)、准确性(90.0%)和特异性(86.1%)。Sun等人(2021)分析了HHcy是否与中国年轻人的急性冠状动脉综合征(ACS)以及冠状动脉狭窄的严重程度相关。与非CAD个体相比,年轻ACS受试者的HHcy患病率更高。此外,年轻ACS患者的HHcy与冠状动脉狭窄的严重程度相关,其特征是多支血管疾病的患病率增加、左心室射血分数值降低和ST段抬高型心肌梗死(STEMI)。

有研究表明,升高的Hcy水平可以造成冠状动脉微循环阻力增加和炎症反应加剧,高同型半胱氨酸血症造成冠状动脉微循环功能障碍的机制之一可能是触发了包括了hs-CRP等因子参与的炎症反应,从而导致FFR值的下降。

3. 血流储备分数(Fractional Flow Reserve, FFR)

血流储备分数(fractional flow reserve, FFR)是病变的心外膜血管供应心肌的最大血流量与理论上该心肌应该获得的最大血流量之比。冠状动脉造影(Invasive coronary angiography, ICA)通常用于诊断严重的CAD。病变的视觉评估与其生理意义之间的关联性较差。FFR作为一项反应冠状动脉生理学功能的有创技术,在指导冠状动脉血运重建方面发挥重大作用。因此,大量的冠状动脉生理学测试可以整合到诊断策略中,通过运动或药物刺激来评估冠状动脉血流量。

血流储备分数(FFR)是一种有创的冠状动脉生理测量方法,它使用冠脉导丝和位于顶端附近的压力传感器进行测量,已成为大多数导管室的常规检查方法。FFR被定义为测量的冠状动脉狭窄远端压力(Pd)与狭窄近端压力的比率,通常是主动脉压(Pa.)或者是健康冠状动脉近端段的压力(FFR = Pd除以Pa.)。它最初被定义为狭窄前后最大流量的比率。然而,进行压力测量的步骤相对简单,并且它与血流量之间存在近似的线性关系。只要血管内存在阻力时,就会影响到对血压等生理信号的检测精度。只有将冠状动脉的阻力达到最小值时,压力与血流量的线性关系才能被认为是精确的。如果血管中存在着明显的血流速度降低现象时,就会使血液产生一定程度上的阻力增加,从而导致心脏泵血功能下降。为了最大程度地减少这种阻力,充血是必不可少的。最常用于引起充血的药物是腺苷,通过持续静脉输注(140 μg/kg/min)或冠状动脉内推注给药。在临床决策中,FFR被用作二分变量,其值 ≤ 0.80作为指示血运重建和>0.80作为保守方法的指征。在当前的欧洲心脏病学会(ESC)指南中,FFR具有1A级建议,用于在没有缺血证据的稳定患者中识别血流动力学相关的冠状动脉病变。

3.1. FFR的生理原理

Pijls及其同事于1993 [42] 年和1996 [43] 年首次描述了FFR,并相继在受试者中进行了测试。从概念上讲,FFR是两种血流之间的比率:一种通过理想位置超出狭窄段的冠状动脉(Q),另一种通过理想情况下相同的没有任何狭窄段的冠状动脉(Qn)。Q和Qn之间的比值被认为是心肌缺血的指标。根据应用于流体动力学的欧姆定律,冠状动脉和心肌流量可以描述为ΔP和R之间的比率,其中ΔP是动脉的压力梯度,R是心外膜和微血管阻力的总和。计算Qn时,ΔP表示主动脉平均压(Pa)和中心静脉压(Pv)之间的差值。同样,计算Q时,ΔP是远端冠状动脉平均压力(Pd)和Pv之间的差值。在后一种情况下,Pd相当于位于狭窄段之外的理想血管中的Pa。

因此,FFR公式可表示如下:FFR:Q/Qn = {(Pd − Pv)/R}/{(Pa − Pv)/R},在该公式中,Pv可以省略,因为与Pd和Pa相比,其值较小。同样,考虑到正在评估来自同一血管的两个血流之间的比率(一根没有狭窄的理想血管和一根位于狭窄之外的理想血管),R的值是相同的,因此可以被消除。按照该逻辑,导出的FFR公式对应于:FFR:Q/Qn = Pd/Pa,欧姆公式的主要假设是Q、ΔP和R之间的关系是线性的。然而,在体内,冠状动脉流量和压力在每个心动周期期间根据几个动态因素而变化 [44] [45] 。为了使Q、ΔP和R之间的关系线性化并尽量减少微循环阻力的影响,必须通过输注腺苷或罂粟碱来实现最大冠状动脉充血 [46] [47] 。其中大多数已使用FFR作为黄金标准参考进行了验证。最初,提出FFR < 0.75的阈值来定义心肌缺血;然而,进一步的研究表明,较高的值更具辨别力,目前使用的阈值是FFR < 0.80。尽管FFR传统上被认为是心外膜缺血的指标,但它可能受到微血管功能和阻力的强烈影响,并且其值有升高的趋势 [48] 。然而,对于患有微血管功能障碍或心肌梗死伴有非梗阻性冠状动脉疾病(MINOCA),并伴有冠状动脉中等程度狭窄的患者,FFR可以帮助排除1型MI心外膜缺血 [49] [50] 。

3.2. FFR与临床应用

血流储备分数(FFR)是对冠状动脉狭窄进行生理评估的最广泛使用的工具。与单独的血管造影术相比,FFR已被证明在选择与心肌缺血相关的病变以及相应的受损结果方面更准确 [50] 。冠状动脉造影(coronary angiography, CAG)长期以来作为诊断冠心病的“金标准”,有助于人们通过影像技术方法对冠状动脉解剖学情况有直观的认识。冠状动脉造影与FFR或其他生理指标不同,冠状动脉造影的简单视觉估计受到多种因素的限制,包括观察者间/观察者内的变异、眼狭窄反射、心外膜痉挛、血管缩短或重叠等,这些因素可能阻碍冠状动脉病变的正确分类。同时,对于没有显示缺血性血流储备分数值的病变,推迟冠状动脉介入治疗已被证明是安全的,并且与不良事件无关。目前主要的随机临床试验(RCT)和几项非随机研究表明,在改善临床结果方面,FFR引导的血运重建可能优于单独的血管造影术。

冠状动脉病变的正确分类(是否与心肌缺血相关)对于指导冠状动脉血运重建并避免无用和潜在危险的手术至关重要。血流储备分数(FFR)是对冠状动脉狭窄进行侵入性生理评估最常用的方法,并有效识别那些需要经皮冠状动脉介入治疗(PCI)或冠状动脉旁路移植术(CABG)的病变 [51] 。另一方面,FFR是对心肌缺血的客观且可重复的估计,并且不受大多数这些情况的限制。值得注意的是,已经证明,操作者根据孤立的视觉估计选择的治疗策略与根据FFR值采用的治疗策略之间存在很大差别,这表明冠状动脉病变存在过度治疗的趋势 [52] 。自首次引入以来,FFR的利用率近年来逐渐增加。根据欧洲和美国的建议,FFR应用于没有心肌缺血证据的患者和/或有中间冠状动脉病变的患者。在“血流储备分数与多血管评估血管造影”(FAME) [53] 研究的数据取得积极结果后,多项随机临床试验(RCT) [54] [55] [56] 和非随机试验 [57] [58] [59] [60] 研究调查了FFR在改善临床结果方面的有效性。总体而言,非随机研究的数据支持FFR引导的血运重建策略在临床终点方面优于孤立血管造影。

FFR引导的血运重建主要原则之一是,对显示非缺血性FFR值的病变推迟冠状动脉干预是安全的,并且与预后受损无关 [61] [62] 。这一概念甚至在长期随访中也得到了证实,DEFER研究的15年随访结果证明了这一点 [63] 。在这项试验中,招募了325名患有中间冠状动脉病变的患者。显示非缺血性FFR值的患者(n = 181)被随机分配接受延期PCI或进行PCI。在15年的随访中,两组之间的死亡率没有显着差异(33.0% vs. 31.1%, p = 0.79)。此外,延迟组中招募的患者的MI发生率显着降低(2.2% vs. 10.0%, p = 0.03),这可能是由于与支架失效相关的急性事件发生率降低。有证据表明,FFR阴性病变不需要冠状动脉介入治疗,并且与不良事件风险增加无关,多项研究表明,FFR阳性病变可以强烈影响临床结果。Johnson等人的大型荟萃分析研究表明,主要不良心血管事件(MACE)与FFR值呈线性相关,随着FFR值逐渐降低,事件数量逐渐增加 [64] 。值得注意的是,这项工作表明,FFR应被视为与临床事件负相关的连续变量,而不是缺血的绝对截止值。因此,与FFR值较高的缺血性病变相比,FFR值极低的缺血性病变往往表现出更差的结果。在一项涉及1029个接受药物治疗的稳定冠状动脉病变的研究中,Barbato等人表明,与未发生MACE的病变相比,产生MACE的病变的FFR值显着较低(0.68与0.80,p < 0.001)。在这项工作中,FFR是多变量Cox模型两年随访中MACE的独立预测因子,包括临床和血管造影变量 [65] 。关于未来心肌梗塞(MI)的风险,已证明FFR阳性病变的患者表现出较高水平的血清氧化低密度脂蛋白和分泌性磷脂酶A2,这可能与动脉粥样硬化斑块不稳定的风险增加有关 [66] 。Piròth等人最近进行的Compare Acute试验的子研究进一步证实了FFR阳性病变与MI之间的关联。在这项涉及ST段抬高型心肌梗死(STEMI)和多支血管疾病患者的研究中,作者证明,未接受PCI治疗的非梗死相关FFR阳性病变在两年随访期间发生MI的风险较高–向上。PCI或CABG后,可能会出现多种早期或晚期并发症,可能会影响预后。这些并发症包括心肌损伤/手术性心肌梗塞、早期/晚期支架血栓形成、支架或手术移植物失败、急性肾损伤等。此外,在接受PCI的患者中,术后给予双重抗血小板治疗(DAPT)可能与轻微和严重出血有关。冠状动脉血运重建后的这些不良事件和其他不良事件可以强烈影响长期临床结果,并且在将PCI或CABG与最佳药物治疗进行比较时,被认为是主要RCT中获得次优结果的可能原因。总体而言,FFR引导的血运重建可以潜在地保留冠状动脉介入治疗的益处并降低早期和晚期并发症的风险,主要是通过推迟无用的手术并将血运重建仅针对那些引起心肌缺血的病变。

综上所述,FFR可以通过正确识别需要血运重建的冠状动脉病变并安全地推迟冠状动脉病变处不必要的血运重建,从而潜在地提高冠状动脉血运重建的益处。未来需要进行大型随机对照试验和患者层面的荟萃分析来解决这个问题,并为进行冠状动脉介入治疗的医生明确患者在冠状动脉血运重建后可以得到更好的远期预后。

4. 小结

研究表明,血同型半胱氨酸水平增高与冠状动脉血流储备下降之间存在一定的关联,这说明血管内皮功能的损害可能是二者关系的媒介。因此,血同型半胱氨酸的升高与冠状动脉血流储备的降低可能联合作用,促进冠心病的发展。虽然已经有研究支持血同型半胱氨酸与冠状动脉血流储备分数之间的相关性,但需要更多的研究来进一步确认这种关联以及了解两者之间可能存在的生物学机制。引起冠脉缺血的危险因素很多,但该危险因素是否导致冠状动脉功能性缺血有待研究,FFR是研究功能性缺血的金标准,综合评估这两个指标的相关性对于心血管疾病的预测和干预具有重要意义。

NOTES

*通讯作者。

参考文献

[1] 冠心病合理用药指南(第2版) [J]. 中国医学前沿杂志(电子版), 2018, 10(6): 1-130.
[2] 马小慧, 刘蕾, 李波, 等. 非ST段抬高型心肌梗死患者死亡的危险因素及风险预测模型研究进展[J]. 老年医学研究, 2023, 4(6): 63-68.
[3] 王若冲, 于清茜, 王伟航, 等. 冠状动脉粥样硬化性心脏病的现代医学研究进展[J]. 中外医学研究, 2023, 21(34): 172-175.
[4] 李锦州, 黄燕丽. 血流储备分数在冠状动脉临界病变介入治疗中的指导价值[J]. 实用检验医师杂志, 2023, 15(3): 229-233.
[5] 林丛. 高同型半胱氨酸血症对冠状动脉微循环能的影响[D]: [博士学位论文]. 济南: 山东大学, 2017.
[6] Tsao, C.W., Aday, A.W., Almarzooq, Z.I., et al. (2022) Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association [Published Correction Appears in Circulation. 2022 Sep 6; 146(10): E141]. Circulation, 145, E153-E639.
https://doi.org/10.1161/CIR.0000000000001074
[7] Virani, S.S., Alonso, A., Aparicio, H.J., et al. (2021) Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation, 143, E254-E743.
[8] 中华医学会心血管病学分会介入心脏病学组, 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694.
[9] Lawton, J.S., Tamis-Holland, J.E., Bangalore, S., et al. (2022) 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [Published Correction Appears in J Am Coll Cardiol. 2022 Apr 19; 79(15): 1547]. Journal of the American College of Cardiology, 79, 197-215.
https://doi.org/10.1016/j.jacc.2021.09.005
[10] Maron, D.J., Hochman, J.S., Reynolds, H.R., et al. (2020) Initial Invasive or Conservative Strategy for Stable Coronary Disease. The New England Journal of Medicine, 382, 1395-1407.
https://doi.org/10.1056/NEJMoa1915922
[11] Mesnier, J., Ducrocq, G., Danchin, N., et al. (2021) International Observational Analysis of Evolution and Outcomes of Chronic Stable Angina: The Multinational CLARIFY Study. Circulation, 144, 512-523.
https://doi.org/10.1161/CIRCULATIONAHA.121.054567
[12] Boden, W.E., O’Rourke, R.A., Teo, K.K., et al. (2007) Optimal Medical Therapy with or without PCI for Stable Coronary Disease. The New England Journal of Medicine, 356, 1503-1516.
https://doi.org/10.1056/NEJMoa070829
[13] Group, B.D.S., Frye, R.L., August, P., et al. (2009) Arandomized Trial of Therapies for Type 2 Diabetes and Coronary Artery Disease. The New England Journal of Medicine, 360, 2503-2515.
https://doi.org/10.1056/NEJMoa0805796
[14] Paganelli, F., Mottola, G., Fromonot, J., et al. (2021) Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? International Journal of Molecular Sciences, 22, Article No. 1690.
https://doi.org/10.3390/ijms22041690
[15] Chen, N., Liu, J., Qiao, Z., Liu, Y., et al. (2018) Chemical Proteomic Profiling of Protein N-Homocysteinylation with a Thioester Probe. Chemical Science, 9, 2826-2830.
https://doi.org/10.1039/C8SC00221E
[16] Baloula, V., Fructuoso, M., Kassis, N., et al. (2018) Homocysteine-Lowering Gene Therapy Rescues Signaling Pathways in Brain of Mice with Intermediate Hyperhomocysteinemia. Redox Biology, 9, 200-209.
https://doi.org/10.1016/j.redox.2018.08.015
[17] Fu, Y., Wang, X. and Kong, W. (2018) Hyperhomocysteinaemia and Vascular Injury: Advances Inmechanisms and Drug Targets. British Journal of Pharmacology, 175, 1173-1189.
https://doi.org/10.1111/bph.13988
[18] Li, H., Liu, Z., Liu, L., Li, W., et al. (2019) V Ascular Protection of TPE-CA on Hyperhomocysteinemia-Induced Vascular Endothelial Dysfunction through AA Metabolism Modulated CYPs Pathway. International Journal of Biological Sciences, 15, 2037-2050.
https://doi.org/10.7150/ijbs.35245
[19] 刘振岳. 维吾尔族原发型高血压病患者血浆同型半胱氨酸水平与中医辨证分型的相关性研究[J]. 云南中医中药杂志, 2020, 41(3): 25-27.
[20] Cui, X., Navneet, S., Wang, J., et al. (2017) Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemicmice. Investigative Ophthalmology & Visual Science, 58, 1954-1963.
https://doi.org/10.1167/iovs.16-21247
[21] Zheng, Z., Liu, L., Zhou, K., et al. (2020) Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in Vitro and in Vivo of Hyperhomocysteinemic Rats. International Journal of Nanomedicine, 15, 4501-4521.
https://doi.org/10.2147/IJN.S255392
[22] Morellato, A.E., Umansky, C. and Pontel, L.B. (2021) The Toxic Side of One-Carbon Metabolism and Epigenetics. Redox Biology, 40, Article ID: 101850.
https://doi.org/10.1016/j.redox.2020.101850
[23] Zhao, G., Deng, J., Shen, Y., et al. (2019) Hyperhomocysteinemia Is Key for Increased Susceptibility to PND in Aged Mice. Annals of Clinical and Translational Neurology, 6, 1435-1444.
https://doi.org/10.1002/acn3.50838
[24] Raza-Iqbal, S., Tanaka, T., Anai, M., et al. (2015) Transcriptome Analysis of K-877 (a Novel Selective PPARalpha Modulator (SPPARMalpha))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver. Journal of Atherosclerosis and Thrombosis, 22, 754-772.
https://doi.org/10.5551/jat.28720
[25] Hamed, A.M., El-Kharashi, O.A., Boctor, S.S. and Abd-Elaziz, L.F. (2017) Potential Involvement of PPAR Alpha Activation in Diminishing the Hepatoprotective Effect of Fenofibrate in NAFLD: Accuracy of Non-Invasive Panel in Determining the Stage of Liver Fibrosis in Rats. Biomedicine & Pharmacotherapy, 85, 68-78.
https://doi.org/10.1016/j.biopha.2016.11.114
[26] Padovani, D., Hessani, A., Castillo, F.T., et al. (2016) Sulfheme Formation during Homocysteine S-Oxygenation by Catalase in Cancers and Neurodegenerative Diseases. Nature Communications, 7, Article No. 13386.
https://doi.org/10.1038/ncomms13386
[27] Lin, X., Meng, X. and Song, Z. (2019) Homocysteine and Psoriasis. Bioscience Reports, 39, BSR20190867.
https://doi.org/10.1042/BSR20190867
[28] Rong, D., Liu, J., Jia, X., et al. (2017) Hyperhomocysteinaemia Is an Independent Risk Factor for Peripheral Arterial Disease in a Chinese Han Population. Atherosclerosis, 263, 205-210.
https://doi.org/10.1016/j.atherosclerosis.2017.05.006
[29] Mohammad, G., Radhakrishnan, R. and Kowluru, R.A. (2020) Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 61, 35.
https://doi.org/10.1167/iovs.61.14.35
[30] Luk, C., Haywood, N.J., Bridge, K.I., et al. (2022) Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Frontiers in Cardiovascular Medicine, 9, Article ID: 882923.
https://doi.org/10.3389/fcvm.2022.882923
[31] Qiu, T., Zhou, H., Li, S., et al. (2020) Effects of Saccharides from Arctium lappa L. Root on FeCl3-Induced Arterial Thrombosis via the ERK/NF-KappaB Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 7691352.
https://doi.org/10.1155/2020/7691352
[32] Jiang, H., Zhou, Y., Nabavi, S.M., et al. (2022) Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article ID: 925923.
https://doi.org/10.3389/fcvm.2022.925923
[33] Dagvadorj, J., Shimada, K., Chen, S., et al. (2015) Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1alpha Release. Immunity, 42, 640-653.
https://doi.org/10.1016/j.immuni.2015.03.007
[34] Wei, X., Ying, M., Dehaini, D., et al. (2018) Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 12, 109-116.
https://doi.org/10.1021/acsnano.7b07720
[35] Tan, W., Wang, Y., Wang, K., et al. (2020) Improvement of Endothelial Dysfunction of Berberine in Atherosclerotic Mice and Mechanism Exploring through TMT-Based Proteomics. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8683404.
https://doi.org/10.1155/2020/8683404
[36] Zhang, Y., Li, C., Huang, Y., et al. (2020) EOFAZ Inhibits Endothelialtomesenchymal Transition through Downregulation of KLF4. International Journal of Molecular Medicine, 46, 300-310.
https://doi.org/10.3892/ijmm.2020.4572
[37] Kamanna, V.S., Ganji, S.H., Shelkovnikov, S., et al. (2012) Iron Sucrose Promotes Endothelial Injury and Dysfunction and Monocyte Adhesion/Infiltration. American Journal of Nephrology, 35, 114-119.
https://doi.org/10.1159/000334939
[38] Chen, L.T., Xu, T.T., Qiu, Y.Q., et al. (2021) Homocysteine Induced a Calcium-Mediated Disruption of Mitochondrial Function and Dynamics in Endothelial Cells. Journal of Biochemical and Molecular Toxicology, 35, E22737.
https://doi.org/10.1002/jbt.22737
[39] Rodionov, R.N., Dayoub, H., Lynch, C.M., et al. (2010) Overexpression of Dimethylarginine Dimethylaminohydrolase Protects against Cerebral Vascular Effects of Hyperhomocysteinemia. Circulation Research, 106, 551-558.
https://doi.org/10.1161/CIRCRESAHA.109.200360
[40] Kang, S.S., Wong, P.W. and Malinow, M.R. (1992) Hyperhomocyst(E)Inemia as a Risk Factor for Occlusive Vascular Disease. Annual Review of Nutrition, 12, 279-298.
https://doi.org/10.1146/annurev.nu.12.070192.001431
[41] Stampfer, M.J., Malinow, M.R., Willett, W.C., et al. (1992) A Prospective Study of Plasma Homocyst(E)Ine and Risk of Myocardial Infarction in US Physicians. JAMA, 268, 877-881.
https://doi.org/10.1001/jama.268.7.877
[42] Pijls, N.H., Van Son, J.A., Kirkeeide, R.L., et al. (1993) Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity before and after Percutaneous Transluminal Coronary Angioplasty. Circulation, 87, 1354-1367.
https://doi.org/10.1161/01.CIR.87.4.1354
[43] Pijls, N.H., De Bruyne, B., Peels, K., et al. (1996) Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. The New England Journal of Medicine, 334, 1703-1708.
https://doi.org/10.1056/NEJM199606273342604
[44] Sun, Y.H., Anderson, T.J., Parker, K.H., et al. (2000) Wave-Intensity Analysis: A New Approach to Coronary Hemodynamics. Journal of Applied Physiology, 89, 1636-1644.
https://doi.org/10.1152/jappl.2000.89.4.1636
[45] Muller, J.M., Davis, M.J. and Chilian, W.M. (1996) Integrated Regulation of Pressure and Flow in the Coronary Microcirculation. Cardiovascular Research, 32, 668-678.
https://doi.org/10.1016/S0008-6363(96)00111-3
[46] Adjedj, J., Toth, G.G., Johnson, N.P., et al. (2015) Intracoronary Adenosine: Dose-Response Relationship with Hyperemia. JACC: Cardiovascular Interventions, 8, 1422-1430.
https://doi.org/10.1016/j.jcin.2015.04.028
[47] Mizukami, T., Sonck, J., Gallinoro, E., et al. (2021) Duration of Hyperemia with Intracoronary Administration of Papaverine. Journal of the American Heart Association, 10, E018562.
https://doi.org/10.1161/JAHA.120.018562
[48] Garcia, D., Harbaoui, B., Van De Hoef, T.P., et al. (2019) Relationship between FFR, CFR and Coronary Microvascular Resistance—Practical Implications for FFR-Guided Percutaneous Coronary Intervention. PLOS ONE, 14, E0208612.
https://doi.org/10.1371/journal.pone.0208612
[49] Mangiacapra, F., Viscusi, M.M., Paolucci, L., et al. (2021) The Pivotal Role of Invasive Functional Assessment in Patients with Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA). Frontiers in Cardiovascular Medicine, 8, Article ID: 781485.
https://doi.org/10.3389/fcvm.2021.781485
[50] 蔡炜, 陈恩, 范林, 等. 冠状动脉生理学功能评估技术的发展现状[J]. 福建医科大学学报, 2022, 56(4): 291-297.
[51] Green, N.E., Chen, S.-Y.J., Hansgen, A.R., et al. (2005) Angiographic Views Used for Percutaneous Coronary Interventions: A Three-Dimensional Analysis of Physician-Determined vs. Computer-Generated Views. Catheterization and Cardiovascular Interventions, 64, 451-459.
https://doi.org/10.1002/ccd.20331
[52] Toth, G., Johnson, N.P., Wijns, W., et al. (2021) Revascularization Decisions in Patients with Chronic Coronary Syndromes: Results of the Second International Survey on Interventional Strategy (ISIS-2). International Journal of Cardiology, 336, 38-44.
https://doi.org/10.1016/j.ijcard.2021.05.005
[53] Toth, G.G., De Bruyne, B., Kala, P., et al. (2019) Graft Patency after FFR-Guided versus Angiography-Guided Coronary Artery Bypass Grafting: The GRAFFITI Trial. EuroIntervention, 15, E999-E1005.
https://doi.org/10.4244/EIJ-D-19-00463
[54] Puymirat, E., Cayla, G., Simon, T., et al. (2021) Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. The New England Journal of Medicine, 385, 297-308.
https://doi.org/10.1056/NEJMoa2104650
[55] Rioufol, G., Dérimay, F., Roubille, F., et al. (2021) Fractional Flow Reserve to Guide Treatment of Patients with Multivessel Coronary Artery Disease. Journal of the American College of Cardiology, 78, 1875-1885.
[56] Stables, R.H., Mullen, L.J., Elguindy, M., et al. (2022) Routine Pressure Wire Assessment versus Conventional Angiography in the Management of Patients with Coronary Artery Disease: The RIPCORD 2 Trial. Circulation, 146, 687-698.
[57] Völz, S., Dworeck, C., Redfors, B., et al. (2020) Survival of Patients with Angina Pectoris Undergoing Percutaneous Coronary Intervention with Intracoronary Pressure Wire Guidance. Journal of the American College of Cardiology, 75, 2785-2799.
https://doi.org/10.1016/j.jacc.2020.04.018
[58] Omran, J., Enezate, T., Abdullah, O., et al. (2020) Outcomes of Fractional Flow Reserve-Guided Percutaneous Coronary Interventions in Patients with Acute Coronary Syndrome. Catheterization and Cardiovascular Interventions, 96, E149-E154.
https://doi.org/10.1002/ccd.28611
[59] Wong, C., Ng, A., Ada, C., et al. (2021) A Real-World Comparison of Outcomes between Fractional Flow Reserve-Guided versus Angiography-Guided Percutaneous Coronary Intervention. PLOS ONE, 16, E0259662.
https://doi.org/10.1371/journal.pone.0259662
[60] Adjedj, J., Morelle, J.-F., Saint Etienne, C., et al. (2022) Clinical Impact of FFR-Guided PCI Compared to Angio-Guided PCI from the France PCI Registry. Catheterization and Cardiovascular Interventions, 100, 40-48.
https://doi.org/10.1002/ccd.30225
[61] Bech, G.J., De Bruyne, B., Pijls, N.H., et al. (2001) Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis: A Randomized Trial. Circulation, 103, 2928-2934.
https://doi.org/10.1161/01.CIR.103.24.2928
[62] Weerts, J., Pustjens, T., Amin, E., et al. (2021) Long-Term Outcome after Deferred Revascularization Due to Negative Fractional Flow Reserve in Intermediate Coronary Lesions. Catheterization and Cardiovascular Interventions, 97, 247-256.
https://doi.org/10.1002/ccd.28753
[63] Zimmermann, F.M., Ferrara, A., Johnson, N.P., et al. (2015) Deferral vs. Performance of Percutaneous Coronary Intervention of Functionally Non-Significant Coronary Stenosis: 15-Year Follow-Up of the DEFER Trial. European Heart Journal, 36, 3182-3188.
https://doi.org/10.1093/eurheartj/ehv452
[64] Johnson, N.P., Tóth, G.G., Lai, D., et al. (2014) Prognostic Value of Fractional Flow Reserve: Linking Physiologic Severity to Clinical Outcomes. Journal of the American College of Cardiology, 64, 1641-1654.
[65] Barbato, E., Toth, G.G., Johnson, N.P., et al. (2016) A Prospective Natural History Study of Coronary Atherosclerosis Using Fractional Flow Reserve. Journal of the American College of Cardiology, 68, 2247-2255.
https://doi.org/10.1016/j.jacc.2016.08.055
[66] Muller, O., Ntalianis, A., Wijns, W., et al. (2013) Association of Biomarkers of Lipid Modification with Functional and Morphological Indices of Coronary Stenosis Severity in Stable Coronary Artery Disease. Journal of Cardiovascular Translational Research, 6, 536-544.
https://doi.org/10.1007/s12265-013-9468-x