非编码RNA在急性髓系白血病中的作用和临床意义
The Role and Clinical Significance of Non-Coding RNA in Acute Myeloid Leukemia
DOI: 10.12677/acm.2024.1441378, PDF, HTML, XML, 下载: 40  浏览: 59 
作者: 黄玉维, 肖剑文*:重庆医科大学附属儿童医院血液科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 急性髓系白血病非编码RNA分子功能预后耐药Acute Myeloid Leukemia Non-Coding RNA Molecular Function Prognosis Drug Resistance
摘要: 急性髓系白血病(AML)是一种细胞遗传学和分子异质性疾病,其特征是克隆性髓系前体细胞的分化停滞和恶性增殖。尽管治疗选择越来越多,但大多数患者在缓解后仍会复发和死亡,预后仍然不理想。因此,有必要探索新的治疗方法。研究发现非编码RNA (ncRNA),特别是微RNA (miRNA)、长链非编码RNA (lncRNA)和环状RNA (circRNA)被发现与AML的发生发展、预后及耐药有关。本文重点介绍ncRNA与AML的相关性的最新研究结果,为未来AML开发高度特异性的诊断工具和更强大的治疗策略奠定基础。
Abstract: Acute myeloid leukemia (AML) is a cytogenetic and molecular heterogeneous disease characterized by the arrest of differentiation and malignant proliferation of clonal myeloid precursors. Despite the increasing number of treatment options, most patients continue to relapse and die after remission, and the prognosis remains unsatisfactory. Therefore, it is necessary to explore new therapeutic approaches. Studies have found that non-coding RNA (ncRNA), especially microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), have been found to be related to the development, prognosis and drug resistance of AML. This article highlights recent findings on the association of ncRNA with AML, laying the foundation for the development of highly specific diagnostic tools and more robust treatment strategies for future AML.
文章引用:黄玉维, 肖剑文. 非编码RNA在急性髓系白血病中的作用和临床意义[J]. 临床医学进展, 2024, 14(4): 2964-2970. https://doi.org/10.12677/acm.2024.1441378

1. 引言

急性髓系白血病(acute myeloid leukemia, AML)是一种侵袭性血液系统恶性肿瘤,其特征是未成熟的髓系细胞不受控制地增殖 [1] 。AML最初是根据髓系原始细胞的形态学进行分类 [2] ,随后根据是否存在特征性细胞遗传学进行分类 [3] [4] 。随着测序技术的进展,越来越多基因改变相关的机制基础的阐明,AML的分类现在正在纳入特定的突变分析 [5] ,通过基础和转化研究,特别是通过大规模基因组分析来了解AML的分子景观,靶向疗法的开发,AML的治疗格局发生了重大变化,但大多数患者在缓解后仍会复发和死亡,预后仍然不理想 [6] 。有必要探索用于AML诊断、预后和治疗靶点的新生物标志物,以制定更有效的监测和治疗方案。非编码RNA (ncRNA)是可变长度的RNA转录本,基本上不被转录和翻译成蛋白质。近几年随着高通量技术的发展,非编码RNA (ncRNA)的转录水平变化为AML的诊断、预后和治疗开辟了新的前景 [7] 。在这篇综述中,我们旨在总结ncRNA在AML中的作用,并阐明它们在该疾病中的诊断和预后潜力。

2. ncRNA的概述

目前,正在开发几类肿瘤生物标志物,包括基于DNA、基于RNA、基于蛋白质和基于表观遗传学的生物标志物。基于RNA的生物标志物包括蛋白质编码RNA (mRNA)和非编码RNA (ncRNA) [8] 。尽管大部分基因组被转录为RNA,但只有不到2%的哺乳动物基因组编码蛋白质,绝大多数合成的RNA是非编码RNA(ncRNA),ncRNA是功能性小RNA分子,不会被翻译成蛋白质 [9] 。ncRNA最初被认为是RNA周转和代谢的降解产物,并且经常被忽视,但越来越多的证据表明,ncRNA是基因表达调控的关键角色,并有助于许多人类疾病的进展 [10] 。例如:lncRNA HOTAIR被证明通过参与染色质重塑来促进乳腺癌转移 [11] ,miR-221表达的进行性下调标志着前列腺癌转移 [12] 。

非编码RNA可以根据其大小分为不同的类别。在癌症中重要的小ncRNA包括miRNA、tsRNA和piRNA。大小谱的另一端是lncRNA,其特征是长度大于200个核苷酸的未翻译RNA,包括假基因和circRNA等亚类 [13] 。

3. miRNA和AML

微RNA (microRNA, miRNA)是由大约22个核苷酸组成的小RNA分子,通过抑制靶信使RNA (mRNA)在转录后基因调控中起着至关重要的作用 [14] 。miRNA是迄今为止在癌症中研究最广泛的,被认为在几乎所有生理过程中都发挥作用 [15] 。在AML中,主要通过以下机制参与AML的发病机制:拷贝数改变、染色体易位导致的致癌基因组邻近区域变化、表观遗传变化、转录因子或癌蛋白改变对miRNA启动子区域的异常靶向,以及miRNA加工失调 [9] 。

许多研究在AML的细胞遗传学亚型中鉴定出独特的miRNA图谱。Dixon-McIver等人 [16] 表明miRNA表达与细胞遗传学风险组相关:细胞遗传学检查结果良好的患者(即t (8; 21)、inv (16)和t (15; 17))中miR-let7bmiR-9的表达较低,而在被归类为不良或中等细胞遗传学风险组的患者样本中检测到这些miRNA的高表达。Garzon等人 [17] 的报告称,在122例新诊断的AML患者(主要是中等和低风险细胞遗传学)的细胞遗传学异质队列中,miR-20amiR-25miR-191miR-199amiR-199b的过表达对总生存期产生了不利影响。总之上诉研究表明,miRNA可能在AML亚型分类中有用

除了参与AML亚型分类之外,miRNA表达谱还可以提供重要的预后信息。Bhayadia等人 [18] 的研究表明,在体内模型中敲除miR-193b会导致更具侵袭性的白血病,导致受体小鼠的存活率显着降低,同时有研究证实miR-193b可作为造血系统的内源性肿瘤抑制因子和AML的独立预后标志物 [19] 。最近也有报道称,miRNA表达可以预测骨髓增生异常综合征(MDS)向AML的进展 [20] 。另外一项对1362名儿科患者miRNA测序分析表明,基于miRNA的风险分类器可以在诊断时识别有不良结果的患者 [21] 。

除此以外,miRNA以多种方式参与AML化疗耐药性。Li等人 [22] 报道,miR-181a在K562/A02细胞中的表达水平低于K562细胞,并且可以通过直接靶向BCL-2MCL-1 mRNA的3'-UTR来降低K562/A02细胞的阿霉素耐药性。并且有研究报道AML细胞中miR-182-5p抑制可通过靶向BCL2L12BCL2表达减少细胞增殖,促进AML细胞凋亡,并逆转顺铂(DDP)耐药 [23] 。

4. LncRNA和AML

长链非编码RNA(long noncoding RNA,lncRNA)是长度超过200个核苷酸且缺乏有意义的开放阅读框的非编码RNA [9] 。LncRNA主要通过参与表观遗传和转录调控在AML的进展中发挥作用,除此以外LncRNA还能够管理染色体的染色质构象和3D形状,以调节AML相关基因表达 [24] 。

有分析表明AML的不同亚型lncRNA表达模式不同,可以完善AML亚型分类。最近的研究表明,lncRNA特征在不同年龄段患者的AML风险分层中具有潜在作用,lncRNA特征可以预测细胞遗传学正常的老年和年轻AML患者的治疗反应 [25] 。Tsai等人 [26] 甚至建议将lncRNA谱纳入2017年欧洲白血病网络(European LeukemiaNet, ELN)风险分类。他们提出了一个易于使用但简洁的lncRNA评分,lncRNA评分高与不同的临床特征和基因突变谱相关,是一个独立的不良预后因素,并且建议将lncRNA谱纳入2017年欧洲白血病网络(European LeukemiaNet, ELN)风险分类,这可以细分中等风险患者来进一步完善2017年ELN风险分类。除此以外,有研究表明,特异性LncRNA特征可以区分不同类型急性儿童急性白血病 [27] 。

LncRNA表达水平可预测AML结局,最近的研究已经确定了少量lncRNA作为AML的预后生物标志物。例如,lncRNA PANDAR的过表达与AML的不良预后有关。与健康对照组相比,PANDAR在AML患者中高表达,受试者工作特征(ROC)曲线分析表明,PANDAR表达可用作区分AML患者和健康对照的诊断生物标志物 [28] 。此外,高PANDAR表达与诊断时较高的原始细胞计数相关,logistic回归分析显示PANDAR表达是影响化疗反应的独立危险因素,高表达者更可能对治疗无反应。Cox比例风险分析表明,高水平的LINC00899是不良结局的独立预后标志物 [29] 。与使用单个lncRNA作为生物标志物相比,最近在小儿AML中分析显示:他们验证了一种基于37个基因lncRNA的分类系统,该分类系统增强了小儿AML中传统细胞遗传学和突变定义的分层的预测能力,并有可能作为单一检测方法取代这些复杂的分层方案,具有相当的预测准确性 [30] 。

lncRNA已被确定为AML患者耐药性发展的相关因素,并且大多数lncRNA通过影响miRNA和重要的细胞过程发挥作用。Yu等人 [31] 的报道显示,MEG3 lncRNA通过控制海绵化mir-155正向调节ALG9在AML的表达来促进耐药性。除了通过影响miRNA增加耐药性外,还可以通过参与癌细胞的代谢来增强耐药性。有氧糖酵解是化疗耐药的重要机制之一,在AML中,己糖激酶2 (HK‐2)可以通过海绵化mirna‐125a被lncRNA UCA1激活,从而诱导糖酵解。UCA1的下调通过促进miRNA-125a表达和随后抑制HK-2来增加AML的化疗敏感性 [32] 。除了上述的两种途径外,lncRNA还可以通过影响DNA修复机制以及影响细胞信号通路来增加耐药性 [33] 。

5. CicroRNA和AML

环状RNA (circRNA)是一种单链ncRNA,由于3'和5'末端之间继发于磷酸二酯键的闭环结构,以及没有3'聚腺苷尾,与线性RNA相比,具有更高的稳定性和更长的半衰期 [9] 。关于circRNA在AML生物学和发病机制,越来越多的证据表明,circRNA通过调节白血病发生过程的不同步骤,如分化、增殖、细胞周期转换、粘附和细胞凋亡进而调节AML的发生发展 [34] 。

在circRNA与AML临床表型的关系的研究中,一项针对365名细胞遗传学正常的年轻成人AML患者的研究表明 [35] :circRNA的表达谱可以将CN-AML样本分为三组,每组都具有独特的复发突变富集和临床特征。在另外一项研究中,Lux等人 [36] 的结果表明,与健康的HSPCs相比,AML亚组中的circRNA表达模式是不同的。许多circRNA亚型仅在一个AML亚组中失调,NPM1mut、CBF白血病和PMSF中差异表达的circRNA分别为40%、51%和24%。总之,以上研究说明circRNA可以用于AML的亚组分类。

除此以外,多项研究探讨了circRNA在AML预后中的潜在用途,circRNA正在成为AML诊断和治疗的潜在生物标志物。例如,Li等人 [37] 的报告说,通过评估其在115名AML患者样本中的表达,hsa_circ0004277可能是一种潜在的诊断标志物,并且hsa_circ0004277表达水平的增加与成功的化疗相关。Wang等人 [38] 对60例AML样本的circRNA进行研究,并在218名样本进行独立验证,他们的研究表明hsa_circ_0075451在训练和验证队列中是一个可靠且独立的预测因子。ping等人 [39] 最近通过circRNA微阵列分析分析了3名AML患者,结果表明,与对照组相比,在AML骨髓患者中发现circ_009910-miR-20a-5p上调,这种上调预示着AML患者的不良结局。综上所述,circRNA可能被用作AML的潜在诊断和预后标志物非编码RNA,如microRNA和lncRNA,已经被认为是调节耐药性的重要参与者,它们的靶向研究为开发新的治疗方案提供了新的途径,但circRNAs在AML化疗耐药中的功能作用及其潜在机制的研究很少。在Shang等人 [40] 的研究中,对多柔比星(ADM)耐药THP1细胞的circRNA表达谱分析显示circPAN3可能通过circPAN3-miR-153-5p/miR-183-5p-XIAP轴参与AML细胞化疗耐药。

6. 其他RNA在AML中的研究

因为越来越多的证据表明,非编码RNA与AML白血病发生密切相关,除了上诉的非编码RNA外,有科学家将目光投向了其他的非编码RNA,包括小核仁RNA (snoRNA)、小核RNA (snRNA)、小干扰RNA (siRNA)和PIWI相关RNA (piRNA) [13] 。一项白血病的snoRNA表达谱分析表明,与健康血液样本相比,急性白血病患者snoRNA表达的整体下调,在不同亚组的白血病中发现了特定的snoRNA特征,这表明snoRNA表达谱可能用于鉴定新的白血病亚群,并且还暗示了snoRNA可能参与白血病的发病机制 [41] 。在piRNA的研究中,Ghaseminezhad等人 [42] 的研究发现piR-32877 and piR-33195在AML患者中表达上调,可能会成为AML的新型诊断生物标志物。尚未发现任何有关snRNA在AML预后中的价值的报道,有一项研究开发了由10个snRNA组成的表达特征,可以准确地应用于评估AML患者的总体生存率 [43] 。关于siRNA在AML中的研究甚少,siRNA在AML中的具体功能需要进一步探讨。

7. 展望

本文讨论了ncRNA尤其是miRNA、circRNA和lncRNA在急性髓系白血病中的作用和临床意义。目前,关于ncRNA在AML中研究仍处于发展阶段。但是许多研究已经证明了特异性ncRNA表达可以帮助临床医生对AML亚型进行分类,评估预后,并预测AML药物治疗的反应。随着基因组测序技术的进步和检测技术的发明,ncRNA在AML中的病理生理机制将被继续深入阐明,这将对未来AML的诊断和分层治疗具有重大意义。

NOTES

*通讯作者。

参考文献

[1] Shimony, S., Stahl, M. and Stone, R.M. (2023) Acute Myeloid Leukemia: 2023 Update on Diagnosis, Risk-Stratifica-tion, and Management. American Journal of Hematology, 98, 502-526.
https://doi.org/10.1002/ajh.26822
[2] Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A., Gralnick, H.R. and Sultan, C. (1985) Proposed Revised Criteria for the Classification of Acute Myeloid Leukemia. A Report of the French-American-British Cooperative Group. Annals of Internal Medicine, 103, 620-625.
https://doi.org/10.7326/0003-4819-103-4-620
[3] Arber, D.A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M.J., Le Beau, M.M., Bloomfield, C.D., Cazzola, M. and Vardiman, J.W. (2016) The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood, 127, 2391-2405.
https://doi.org/10.1182/blood-2016-03-643544
[4] Hou, H.A. and Tien, H.F. (2020) Genomic Landscape in Acute Myeloid Leukemia and Its Implications in Risk Classification and Targeted Therapies. Journal of Biomedical Science, 27, Article No. 81.
https://doi.org/10.1186/s12929-020-00674-7
[5] Khwaja, A., Bjorkholm, M., Gale, R.E., Levine, R.L., Jordan, C.T., Ehninger, G., Bloomfield, C.D., Estey, E., Burnett, A., Cornelissen, J.J., Scheinberg, D.A., Bouscary, D. and Linch, D.C. (2016) Acute Myeloid Leukaemia. Nature Reviews Disease Primers, 2, Article No. 16010.
https://doi.org/10.1038/nrdp.2016.10
[6] Liu H. (2021) Emerging Agents and Regimens for AML. Journal of Hematology & Oncology, 14, Article No. 49.
https://doi.org/10.1186/s13045-021-01062-w
[7] Zebisch, A., Hatzl, S., Pichler, M., Wölfler, A. and Sill, H. (2016) Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs. International Journal of Molecular Sciences, 17, Article 2080.
https://doi.org/10.3390/ijms17122080
[8] Li, M.H., Fu, S.B. and Xiao, H.S. (2015) Genome-Wide Analysis of MicroRNA and MRNA Expression Signatures in Cancer. Acta Pharmacologica Sinica, 36, 1200-1211.
https://doi.org/10.1038/aps.2015.67
[9] Liu, Y., Cheng, Z., Pang, Y., Cui, L., Qian, T., Quan, L., Zhao, H., Shi, J., Ke, X. and Fu, L. (2019) Role of MicroRNAs, CircRNAs and Long Noncoding RNAs in Acute Myeloid Leukemia. Journal of Hematology & Oncology, 12, Article No. 51.
https://doi.org/10.1186/s13045-019-0734-5
[10] (2022) The Expanding World of Noncoding RNA Biology. Nature Cell Biology, 24, 1447.
https://doi.org/10.1038/s41556-022-01016-5
[11] Wang, Y., Gong, G., Xu, J., Zhang, Y., Wu, S. and Wang, S. (2020) Long Noncoding RNA HOTAIR Promotes Breast Cancer Development by Targeting ZEB1 via Sponging MiR-601. Cancer Cell International, 20, Article No. 320.
https://doi.org/10.1186/s12935-020-01410-9
[12] Spahn, M., Kneitz, S., Scholz, C.J., Stenger, N., Rüdiger, T., Ströbel, P., Riedmiller, H. and Kneitz, B. (2010) Expression of MicroRNA-221 Is Progressively Reduced in Aggressive Prostate Cancer and Metastasis and Predicts Clinical Recurrence. International Journal of Cancer, 127, 394-403.
https://doi.org/10.1002/ijc.24715
[13] Toden, S., Zumwalt, T.J. and Goel, A. (2021) Non-Coding RNAs and Potential Therapeutic Targeting in Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1875, Article ID: 188491.
https://doi.org/10.1016/j.bbcan.2020.188491
[14] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[15] Garzon, R., Calin, G.A. and Croce, C.M. (2009) MicroRNAs in Cancer. Annual Review of Medicine, 60, 167-179.
https://doi.org/10.1146/annurev.med.59.053006.104707
[16] Dixon-McIver, A., East, P., Mein, C.A., Cazier, J.B., Molloy, G., Chaplin, T., Andrew, Lister, T., Young, B.D. and Debernardi, S. (2008) Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia. PLOS ONE, 3, e2141.
https://doi.org/10.1371/journal.pone.0002141
[17] Garzon, R., Volinia, S., Liu, C.G., Fernandez-Cymering, C., Palumbo, T., Pichiorri, F., Fabbri, M., Coombes, K., Alder, H., Nakamura, T., Flomenberg, N., Marcucci, G., Calin, G.A., Kornblau, S.M., Kantarjian, H., Bloomfield, C.D., Andreeff, M. and Croce, C.M. (2008) MicroRNA Signatures Associated with Cytogenetics and Prognosis in Acute Myeloid Leukemia. Blood, 111, 3183-3189.
https://doi.org/10.1182/blood-2007-07-098749
[18] Bhayadia, R., Krowiorz, K., Haetscher, N., Jammal, R., Emmrich, S., Obulkasim, A., Fiedler, J., Schwarzer, A., Rouhi, A., Heuser, M., Wingert, S., Bothur, S., Döhner, K., Mätzig, T., Ng, M., Reinhardt, D., Döhner, H., Zwaan, C.M., Van Den Heuvel Eibrink, M., Heckl, D., Fornerod, M., Thum, T., Humphries, R.K., Rieger, M.A., Kuchenbauer, F. and Klusmann, J.H. (2018) Endogenous Tumor Suppressor MicroRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. Journal of Clinical Oncology, 36, 1007-1016.
https://doi.org/10.1200/JCO.2017.75.2204
[19] Gao, X.N., Lin, J., Gao, L., Li, Y.H., Wang, L.L. and Yu, L. (2011) MicroRNA-193b Regulates C-Kit Proto-Oncogene and Represses Cell Proliferation in Acute Myeloid Leukemia. Leukemia Research, 35, 1226-1232.
https://doi.org/10.1016/j.leukres.2011.06.010
[20] Guo, Y., Strickland, S.A., Mohan, S., Li, S., Bosompem, A., Vickers, K.C., Zhao, S., Sheng, Q. and Kim, A.S. (2017) MicroRNAs and TRNA-Derived Fragments Predict the Transformation of Myelodysplastic Syndromes to Acute Myeloid Leukemia. Leukemia & Lymphoma, 58, 2144-2155.
https://doi.org/10.1080/10428194.2016.1272680
[21] Lim, E.L., Trinh, D.L., Ries, R.E., Wang, J., Gerbing, R.B., Ma, Y., Topham, J., Hughes, M., Pleasance, E., Mungall, A.J., Moore, R., Zhao, Y., Aplenc, R., Sung, L., Kolb, E.A., Gamis, A., Smith, M., Gerhard, D.S., Alonzo, T.A., Meshinchi, S. and Marra, M.A. (2017) MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia. Journal of Clinical Oncology, 35, 3964-3977.
https://doi.org/10.1200/JCO.2017.74.7451
[22] Li, H., Hui, L. and Xu, W. (2012) MiR-181a Sensitizes a Multidrug-Resistant Leukemia Cell Line K562/A02 to Daunorubicin by Targeting BCL-2. Acta Biochimica et Biophysica Sinica, 44, 269-277.
https://doi.org/10.1093/abbs/gmr128
[23] Zhang, S., Zhang, Q., Shi, G. and Yin, J. (2018) MiR-182-5p Regulates BCL2L12 and BCL2 Expression in Acute Myeloid Leukemia as a Potential Therapeutic Target. Biomedicine & Pharmacotherapy, 97, 1189-1194.
https://doi.org/10.1016/j.biopha.2017.11.002
[24] Gourvest, M., Brousset, P. and Bousquet, M. (2019) Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance. Cancers, 11, Article 1638.
https://doi.org/10.3390/cancers11111638
[25] Mishra, S., Liu, J., Chai, L. and Tenen, D.G. (2022) Diverse Functions of Long Noncoding RNAs in Acute Myeloid Leukemia: Emerging Roles in Pathophysiology, Prognosis, and Treatment Resistance. Current Opinion in Hematology, 29, 34-43.
https://doi.org/10.1097/MOH.0000000000000692
[26] Tsai, C.H., Yao, C.Y., Tien, F.M., Tang, J.L., Kuo, Y.Y., Chiu, Y.C., Lin, C.C., Tseng, M.H., Peng, Y.L., Liu, M.C., Liu, C.W., Yao, M., Lin, L.I., Chou, W.C., Chen, C.Y., Hou, H.A. and Tien, H.F. (2019) Incorporation of Long Non-Coding RNA Expression Profile in the 2017 ELN Risk Classification Can Improve Prognostic Prediction of Acute Myeloid Leukemia Patients. eBioMedicine, 40, 240-250.
https://doi.org/10.1016/j.ebiom.2019.01.022
[27] Buono, L., Iside, C., De Matteo, A., Stellato, P., Beneduce, G., De Vera D’Aragona, R.P., Parasole, R., Salvatore, M., Smaldone, G. and Mirabelli, P. (2022) Specific LncRNA Signatures Discriminate Childhood Acute Leukaemias: A Pilot Study. Cancer Cell International, 22, Article No. 373.
https://doi.org/10.1186/s12935-022-02789-3
[28] Yang, L., Zhou, J.D., Zhang, T.J., Ma, J.C., Xiao, G.F., Chen, Q., Deng, Z.Q., Lin, J., Qian, J. and Yao, D.M. (2018) Overexpression of LncRNA PANDAR Predicts Adverse Prognosis in Acute Myeloid Leukemia. Cancer Management and Research, 10, 4999-5007.
https://doi.org/10.2147/CMAR.S180150
[29] Wang, Y., Li, Y., Song, H.Q. and Sun, G.W. (2018) Long Non-Coding RNA LINC00899 as a Novel Serum Biomarker for Diagnosis and Prognosis Prediction of Acute Myeloid Leukemia. European Review for Medical and Pharmacological Sciences, 22, 7364-7370.
[30] Farrar, J.E., Smith, J.L., Othus, M., Huang, B.J., Wang, Y.C., Ries, R., Hylkema, T., Pogosova-Agadjanyan, E.L., Challa, S., Leonti, A., Shaw, T.I., Triche Jr., T.J., Gamis, A.S., Aplenc, R., Kolb, E.A., Ma, X., Stirewalt, D.L., Alonzo, T.A. and Meshinchi, S. (2023) Long Noncoding RNA Expression Independently Predicts Outcome in Pediatric Acute Myeloid Leukemia. Journal of Clinical Oncology, 41, 2949-2962.
https://doi.org/10.1200/JCO.22.01114
[31] Yu, Y., Kou, D., Liu, B., Huang, Y., Li, S., Qi, Y., Guo, Y., Huang, T., Qi, X. and Jia, L. (2020) LncRNA MEG3 Contributes to Drug Resistance in Acute Myeloid Leukemia by Positively Regulating ALG9 through Sponging MiR-155. International Journal of Laboratory Hematology, 42, 464-472.
https://doi.org/10.1111/ijlh.13225
[32] Kirtonia, A., Ashrafizadeh, M., Zarrabi, A., Hushmandi, K., Zabolian, A., Bejandi, A.K., Rani, R., Pandey, A.K., Baligar, P., Kumar, V., Das, B.C. and Garg, M. (2022) Long Noncoding RNAs: A Novel Insight in the Leukemogenesis and Drug Resistance in Acute Myeloid Leukemia. Journal of Cellular Physiology, 237, 450-465.
https://doi.org/10.1002/jcp.30590
[33] Izadirad, M., Jafari, L., James, A.R., Unfried, J.P., Wu, Z.X. and Chen, Z.S. (2021) Long Noncoding RNAs Have Pivotal Roles in Chemoresistance of Acute Myeloid Leukemia. Drug Discovery Today, 26, 1735-1743.
https://doi.org/10.1016/j.drudis.2021.03.017
[34] Zhou, M., Gao, X., Zheng, X. and Luo, J. (2022) Functions and Clinical Significance of Circular RNAs in Acute Myeloid Leukemia. Frontiers in Pharmacology, 13, Article 1010579.
https://doi.org/10.3389/fphar.2022.1010579
[35] Papaioannou, D., Volinia, S., Nicolet, D., Świerniak, M., Petri, A., Mrózek, K., Bill, M., Pepe, F., Walker, C.J., Walker, A.E., Carroll, A.J., Kohlschmidt, J., Eisfeld, A.K., Powell, B.L., Uy, G.L., Kolitz, J.E., Wang, E.S., Kauppinen, S., Dorrance, A., Stone, R.M., Byrd, J.C., Bloomfield, C.D. and Garzon, R. (2020) Clinical and Functional Significance of Circular RNAs in Cytogenetically Normal AML. Blood Advances, 4, 239-251.
https://doi.org/10.1182/bloodadvances.2019000568
[36] Lux, S., Blätte, T.J., Gillissen, B., Richter, A., Cocciardi, S., Skambraks, S., Schwarz, K., Schrezenmeier, H., Döhner, H., Döhner, K., Dolnik, A. and Bullinger, L. (2021) Deregulated Expression of Circular RNAs in Acute Myeloid Leukemia. Blood Advances, 5, 1490-1503.
https://doi.org/10.1182/bloodadvances.2020003230
[37] Li, W., Zhong, C., Jiao, J., Li, P., Cui, B., Ji, C. and Ma, D. (2017) Characterization of Hsa_Circ_0004277 as a New Biomarker for Acute Myeloid Leukemia via Circular RNA Profile and Bioinformatics Analysis. International Journal of Molecular Sciences, 18, Article 597.
https://doi.org/10.3390/ijms18030597
[38] Wang, J., Pan, J., Huang, S., Li, F., Huang, J., Li, X., Ling, Q., Ye, W., Wang, Y., Yu, W. and Jin, J. (2021) Development and Validation of a Novel Circular RNA as an Independent Prognostic Factor in Acute Myeloid Leukemia. BMC Medicine, 19, Article No. 28.
https://doi.org/10.1186/s12916-020-01898-y
[39] Lei, P., Chen, J.J., Liao, C.S., Liu, G.H. and Zhou, M. (2019) Silencing of Circ_0009910 Inhibits Acute Myeloid Leukemia Cell Growth through Increasing MiR-20a-5p. Blood Cells, Molecules, and Diseases, 75, 41-47.
https://doi.org/10.1016/j.bcmd.2018.12.006
[40] Shang, J., Chen, W.M., Wang, Z.H., Wei, T.N., Chen, Z.Z. and Wu, W.B. (2019) CircPAN3 Mediates Drug Resistance in Acute Myeloid Leukemia through the MiR-153-5p/MiR-183-5p-XIAP Axis. Experimental Hematology, 70, 42-54.E3.
https://doi.org/10.1016/j.exphem.2018.10.011
[41] Teittinen, K.J., Laiho, A., Uusimäki, A., Pursiheimo, J.P., Gyenesei, A. and Lohi, O. (2013) Expression of Small Nucleolar RNAs in Leukemic Cells. Cellular Oncology, 36, 55-63.
https://doi.org/10.1007/s13402-012-0113-5
[42] Ghaseminezhad, Z., Sharifi, M., Bahreini, A., et al. (2022) Investigation of the Expression of P-Element-Induced Wimpy Testis-Interacting RNAs in Human Acute Myeloid Leukemia. Meta Gene, 31, Article ID: 100998.
https://doi.org/10.1016/j.mgene.2021.100998
[43] Zhang, Z., Huang, R. and Lai, Y. (2023) Expression Signature of Ten Small Nuclear RNAs Serves as Novel Biomarker for Prognosis Prediction of Acute Myeloid Leukemia. Scientific Reports, 13, Article No. 18489.
https://doi.org/10.1038/s41598-023-45626-x