纳米药物重塑TAMs用于增强癌症免疫治疗的研究进展
Research Progress of Nano-Drugs Remodeling TAMs for Enhancing Cancer Immunotherapy
DOI: 10.12677/acm.2024.1451389, PDF, HTML, XML, 下载: 32  浏览: 65 
作者: 刘湘雅:南华大学药学院,湖南 衡阳
关键词: 纳米颗粒药物递送TAMs癌症免疫治疗Nanoparticle Drug Delivery TAMs Cancer Immunotherapy
摘要: 癌症免疫疗法已成为一种新型癌症治疗方法,而复杂的肿瘤微环境(Tumor microenvironment, TME)极大限制其临床应用。肿瘤微环境的重要组成部分是肿瘤相关巨噬细胞(Tumor-associated Macrophages, TAMs),它们通常与不良预后相关,并已成为增强癌症免疫疗效的有希望的靶标。最近,由于纳米颗粒独特的物理化学特性,将免疫治疗与纳米递送系统联合使用可实现更高的疗效。在这篇综述中,我们主要描述了纳米药物重塑TAMs用于增强癌症免疫治疗的策略,包括抑制TAMs被招募到肿瘤部位、清除TAMs、将M2型TAMs重编程为M1型TAMs、调节TAMs对肿瘤细胞的吞噬能力,还描述了目前工程化巨噬细胞的研究现状。
Abstract: Cancer immunotherapy has become a new type of cancer treatment, and the complex tumor microenvironment (TME) greatly limits its clinical application. Tumor-associated macrophages (TAMs), as an important component of the tumor microenvironment, are usually associated with poor prognosis and have become promising targets for enhancing the immune efficacy of cancer. Recently, due to the unique physical and chemical properties of nanoparticles, the combination of immunotherapy and nano-delivery systems can achieve higher efficacy. In this review, we mainly described the strategies of reshaping TAMs with nano-drugs to enhance cancer immunotherapy, including inhibiting the recruitment of TAMs to tumor sites, clearing TAMs, reprogramming M2-type TAMs into M1-type TAMs, regulating the phagocytic ability of TAMs to tumor cells, and also described the current research status of engineered macrophages.
文章引用:刘湘雅. 纳米药物重塑TAMs用于增强癌症免疫治疗的研究进展[J]. 临床医学进展, 2024, 14(5): 11-20. https://doi.org/10.12677/acm.2024.1451389

1. 前言

目前,在世界范围内,癌症仍居于不治之症前列。传统的治疗手段包括手术切除、放疗和化疗,对早期癌症患者有治疗效果 [1] 。比如,对于部分未发生转移的实体瘤患者,手术切除癌灶可以适当延长患者的生存期,但会对人体产生创伤,降低自身免疫力,而放疗和化疗对于急性髓性白血病、侵袭性淋巴瘤等快速发展的肿瘤细胞杀伤效果比较明显,但对于生长速度缓慢的肿瘤疗效不佳 [2] 。然而,鉴于癌症易转移和复发,导致中晚期癌症患者在实际治疗中面临诸多困难,使得肿瘤细胞难以彻底根除,临床治疗效果不佳。近年来,随着免疫疗法的兴起,癌症治疗有了更好的选择,受到世界各地临床医生和癌症患者的广泛关注。然而,由于肿瘤发生发展的复杂的内部环境——肿瘤微环境(Tumor Microenvironment, TME)中浸润的基质细胞和肿瘤细胞可以阻碍免疫细胞的识别和监视功能,改变各种细胞的状态,影响瘤内血管的生长,进而促进肿瘤发展和转移,仍然阻碍着免疫疗法的有效应用 [3] [4] [5] 。其中,TAMs (Tumor-associated Macrophages)作为TME中浸润水平最高的免疫细胞,是免疫抑制细胞和细胞因子网络的核心 [6] 。目前,有研究证明TAMs浸润增加与肿瘤患者的预后不良有关,如乳腺癌、肺癌、淋巴癌等 [7] [8] 。它可以通过多种机制来促进肿瘤转化、促进肿瘤进展并创造免疫抑制微环境,从而在促进肿瘤发展中发挥核心调节作用 [9] [10] 。

人们普遍认为TAMs有两种来源:首先,大多数肿瘤浸润的TAMs是起源于骨髓(BM)衍生的单核细胞,单核细胞在肿瘤生长过程中响应癌灶肿瘤细胞产生的炎症因子募集到肿瘤部位分化形成TAMs [11] [12] ;其次,少部分肿瘤浸润的TAMs可由组织驻留巨噬细胞(TRM)发生表型/激活状态改变,逐渐分化而来 [13] 。例如,在神经胶质瘤和胰腺癌中,巨噬细胞是胚胎来源的组织驻留群体和循环炎性单核细胞的混合物 [14] [15] 。TAMs具有异质性和可塑性,可分为经典激活型的或促炎的M1型和选择性激活型或抗炎的M2型两种巨噬细胞。大量研究结果证明 M1型巨噬细胞可以通过分泌促炎细胞因子来防止恶性肿瘤发展,它还保留了抗原呈递细胞(APC)的特性,MHC-II的高表达,具有较强的吞噬和杀伤肿瘤细胞的活性 [16] 。而M2型巨噬细胞能够产生肿瘤生长因子(IL-6)、血管生成分子(VEGF)来促进肿瘤细胞增殖,并通过分泌大量免疫抑制性的细胞因子(Arg-1、IL-10、TGF-β和IDO)调控其他免疫细胞的功能,促使肿瘤细胞产生免疫逃逸 [10] 。因此,肿瘤相关巨噬细胞(TAMs)可作为重塑肿瘤微环境促进癌症免疫治疗的重要靶点之一。

2. 利用纳米递送系统调控TAMs用于癌症治疗

近年来,关于免疫治疗的研究越来越多,但仍然存在药物递送效率低、反应率不高、易产生不可控的免疫相关不良反应等问题,限制了其在临床上的应用 [17] 。而伴随着纳米技术的发展,越来越多的研究将免疫治疗与纳米递送系统联合使用,通过克服肿瘤免疫逃逸 [18] 、增强免疫检查点阻断治疗 [19] 等手段来实现更好的疗效。首先,由于肿瘤组织特有的高渗透长滞留效应(EPR效应),纳米药物递送系统可以增强药物在肿瘤部位的富集,延长药物血液循环半衰期,降低对其他器官的影响而减少毒副作用 [20] ;还可以利用肿瘤微环境乏氧、微酸和特定酶的过表达等特性,设计按需释放的药物递送系统,以实现药物的精准递送和控制释放,从而提高药物的生物利用度。因此,将纳米递送系统用于巨噬细胞相关的研究引起了广泛的关注和研究。根据TAMs发挥作用的特点,以纳米药物重塑TAMs用于增强癌症免疫治疗的策略主要包括:① 抑制TAMs被招募到肿瘤部位;② 清除TAMs;③ 将M2型TAMs重编程为M1型TAMs;④ 调节TAMs对肿瘤细胞的吞噬能力。

2.1. 抑制TAMs被招募到肿瘤部位

TAMs在肿瘤部位的富集使得其在促进肿瘤发展中发挥核心作用。因此,研究者直接通过抑制TAMs的募集缓解免疫抑制微环境,可作为基于TAMs的抑制肿瘤进展的一种策略。众所周知,CCL2-CCR2轴是募集单核细胞分化为巨噬细胞补充 TAMs所需的主要分子轴 [21] ,CCL2是单核细胞有效的趋化因子,已有研究证明小鼠的CCL2与其他趋化因子一起有助于肿瘤中TAMs的积累 [22] 。在多种动物模型中发现抑制CCL2的分泌可以使单核细胞滞留在骨髓中,减轻肿瘤负荷和转移,从而最终促进肿瘤的治疗 [23] [24] [25] 。例如,装载CCR2 siRNA的纳米药物可以阻断CCL2-CCR2,抑制巨噬细胞的募集,抑制肿瘤的侵袭、转移和血管生成 [26] 。考虑到三阴性乳腺癌的难治,其特点在于高血管生成和血管灌注不良,研究者为了减弱病理性血管的生成,使用纳米载体递送CCL2抑制剂,证明了阻断CCL2-CCR2轴以调节TAMs的浸润和极化,从而促使血管正常化并改善靶向肿瘤药物的输送 [27] 。

已有研究证明肿瘤微环境中的趋化因子CXC配体12 (CXCL12)可以将表达其受体CXCR4的免疫细胞或成纤维细胞吸引到肿瘤部位,以帮助肿瘤发展 [28] 。比如,最近的一项研究发现,源自肿瘤相关成纤维细胞的CXCL12能够吸引促肿瘤巨噬细胞,阻断其受体CXCR4,显着降低促肿瘤巨噬细胞的趋化性 [29] 。此前,Zannettino等 [30] 已证明多发性骨髓瘤细胞产生CXCL12,从而介导骨吸收来促进溶骨性骨病。Beider等 [31] 进一步证明了多发性骨髓瘤细胞分泌的CXCL12可以募集CXCR4+单核细胞补充促肿瘤的巨噬细胞来促进肿瘤进展。此外,在最近的临床前研究中,报道CX3CL1/CX3CR1轴通过促进促肿瘤巨噬细胞的募集来促进皮肤癌发生 [32] 。Jung等 [33] 制备了负载CX3CL1 siRNA的7C1纳米颗粒,体内外实验均证明单核–巨噬细胞向肿瘤部位的聚集被有效阻断。因此,CXCR4/CXCL12轴及CX3CL1/CX3CR1轴是抑制巨噬细胞募集的潜在靶点,为以TAMs为目标的癌症免疫治疗提供了新的可能性。

2.2. 清除TAMs

除了抑制TAMs募集外,清除TAMs也已成为有效耗尽肿瘤细胞的强大武器。CSF-1受体(CSF-1R)的小分子抑制剂和抗体可以诱导TAMs大量凋亡,抑制肿瘤生长、血管生成和转移,还可以通过增加抗肿瘤免疫反应来增强化疗和放疗的效果。BLZ-945是诺华公司开发的一种CSF-1R的小分子抑制剂,Zhu等 [34] 开发了一种双响应的间隙金纳米颗粒囊泡,装载免疫抑制剂BLZ-945和抗癌药物,能够增强光声成像引导的同步化学免疫疗效,从而抑制原发性肿瘤和转移性肿瘤的生长。Zhang等 [35] 构建的ATP超敏感的纳米凝胶递药系统,其中,也负载了小分子抑制剂BLZ-945,为了破除TAMs形成的致密肿瘤基质,深度激发肿瘤免疫原性。以上研究证明,将CSF-1R的小分子抑制剂与其他抗癌药物联用可实现更好的抗肿瘤免疫疗效。

此外,一些化合物,如曲贝替定和双膦酸盐,也被证明可以通过诱导巨噬细胞凋亡来有效地消耗巨噬细胞。曲贝替定(Trabectedin, ET-743)是一种国家批准用于治疗晚期软组织肉瘤和卵巢癌的二线抗肿瘤药物 [36] 。Germano等 [37] 报道了曲贝替定可以选择性地消耗体内单核吞噬细胞,包括TAMs。脂质体的两亲性磷脂双层结构与哺乳动物的细胞膜相似,借助脂质体包裹药物不仅利于细胞摄取,还可以降低药物毒副作用,在防止药物降解的同时延长血液循环时间。如Tae Hyeon等 [38] 开发的一种基于点击化学的包封氯膦酸盐的甘露糖基脂质体纳米平台(CML),体内外实验验证了该纳米平台有效地消耗了正常肝脏和肿瘤微环境中的M2型巨噬细胞。

2.3. 将M2型TAMs重编程为M1型TAMs

在肿瘤免疫微环境中,TAMs浸润最丰富 [6] 。由于M1型巨噬细胞具有强大的抗原呈递能力,具有抗肿瘤作用,因此将M2型TAMs重编程为抗肿瘤M1型是近年来巨噬细胞介导的促进抗肿瘤免疫疗效的流行策略。目前,磁性氧化铁纳米粒子在癌症治疗诊断学中广泛的生物医学应用,引起了研究人员的兴趣 [39] 。Zanganeh等人 [40] 证明氧化铁纳米颗粒ferumoxytol (美国食品和药物管理局 (FDA) 批准的一种铁补充剂)可以诱导巨噬细胞极化为促炎M1表型,在乳腺癌中通过芬顿反应产生强烈的抗肿瘤作用。然而,这些作用并不充分,因为肿瘤细胞掩盖了它们的免疫原性,并且纳米颗粒易被肝脏部位的正常巨噬细胞吞噬,可能永远不会到达其目标细胞群体。为了解决该问题,Yu等 [41] 设计了一种髓源性抑制细胞(MDSC)膜包被的磁性Fe3O4纳米粒子(MNPs@MDSCs),与红细胞膜包被的纳米颗粒(MNPs@RBC)或裸露的MNPs相比,MNPs@MDSCs在主动靶向肿瘤方面更有效,主要因为MDSC膜可促使免疫逃逸,然后在TME中累积,能够将M2型巨噬细胞重编程为M1型巨噬细胞,并诱导肿瘤免疫原性死亡。

Toll样受体(TLR)激动剂已被认为是将M2型TAMs重极化为M1型的药物,并且正在作为抗癌药物进行临床试验 [42] 。Huang等人 [43] 开发了一种肿瘤微环境(TME) pH响应型纳米平台来同时转运索拉非尼和修饰的雷西莫德(R848-C16,一种TLR7/TLR8激动剂),静脉给药后,共递送NPs可以在肿瘤组织中富集,通过pH响应型分离PEG链以增强TAMs和HCC细胞的摄取,可以通过索拉非尼介导的对HCC细胞的杀伤力和R848介导的TAMs重极化为杀肿瘤M1型巨噬细胞来联合抑制HCC肿瘤生长。

此外,基因疗法也将M2型TAMs重编程为M1型TAMs,如Cao等 [44] 构建了系统共同递送siMGLL和siCB-2的还原响应型纳米递送平台,静脉给药后,延长血液循环时间,在肿瘤组织中蓄积较高。在被PAC细胞和TAMs摄取后,细胞质中的高浓度谷胱甘肽可以诱导细胞内快速释放siRNA,有效地抑制MGLL和CB-2的表达,从而抑制PAC细胞中FFAs的产生,并使TAMs从促进肿瘤的M2表型复极化为抑制肿瘤的M1表型,可以显著抑制异种移植瘤和原位肿瘤模型中PAC的生长 [44] 。

2.4. 调节TAMs对肿瘤细胞的吞噬能力

巨噬细胞作为先天免疫系统中专职的吞噬细胞之一,在非特异性识别、防御病原体和恶性肿瘤侵袭中居于一线 [45] [46] 。巨噬细胞通过识别“找到我”和“吃掉我”信号,来清除机体损伤或有害的细胞,即胞吞作用 [47] 。而肿瘤细胞善于伪装,可以通过表达正常细胞相近的蛋白来逃避免疫系统的监视。因此,调节TAMs对肿瘤细胞的吞噬能力在肿瘤免疫治疗中具有巨大的应用潜力。

跨膜结合蛋白CD47与其受体信号调节蛋白α (SIRPα)的结合启动免疫受体酪氨酸抑制基序(ITIM)酪氨酸的磷酸化,随后募集并激活酪氨酸磷酸酯酶SHP-1/2蛋白,最终导致肌球蛋白IIA去磷酸化,从而抑制细胞骨架重排并阻止吞噬作用 [48] [49] 。已有大量研究证明CD47在多种肿瘤细胞中均有表达 [50] [51] [52] [53] ,我们可以通过抑制其功能来诱导巨噬细胞“吃掉”肿瘤细胞。目前主要是利用siRNA下调肿瘤细胞的CD47表达,直接抑制“不要吃我”信号;或是使用单一CD47或SIRPα抑制剂、抗体、融合蛋白等用于阻断CD47-SIRPα轴 [48] 。Xu等 [54] 提出了一种siRNA纳米佐剂DSN,由通过滚环转录(RCT)反应产生的长RNA (包括靶向CD47和SIRPα的两种siRNA)自组装而成,并进一步覆盖有阳离子脂质体(Lipofectamine 3000)。由于DSN具有高负载的长而密集的dsRNA,显示出较强的激活RIG-I/MDA5信号通路的能力,从而促进DC成熟和TAMs的极化为抗肿瘤M1样表型。细胞质中的Dicer识别dsRNA发夹并将其转化为大量siRNA,导致肿瘤细胞中的CD47和APC中的SIRPα基因沉默。体内外实验均证明DSN可以通过对RIG-I/MDA5信号通路的激活和对CD47-SIRPα检查点的有效抑制能够增强APCs的吞噬活性,从而可以促进效应T细胞的交叉启动和抗肿瘤免疫应答的激活。

还有一些物理疗法,如超声、磁热,也被证明具有破坏CD47/SIRPα轴的潜力。Wang等 [55] 设计并合成了高性能纳米氧化铁热疗剂FVIOs,在交变磁场(AMF)存在下诱导磁热疗,同时发挥以下作用:① 高效诱导细胞免疫原性死亡(ICD),CRT暴露于肿瘤细胞表面;② 抑制肿瘤细胞表面CD47;③ 下调巨噬细胞表面SIRPα表达。同时上调“吃我”信号,阻断“不要吃我”信号,“双管齐下”增强巨噬细胞的吞噬能力,抑制肿瘤生长,延长小鼠生存期。

3. 工程化巨噬细胞

由于巨噬细胞固有的肿瘤归巢能力、血液循环中的隐形能力以及对外来物质有效的吞噬作用,巨噬细胞也被用作癌症治疗诊断的治疗剂和药物递送载体 [56] 。基于工程巨噬细胞的疗法已发展到三个方面:1) 具有增强治疗诊断效果的基因工程化巨噬细胞、2) 巨噬细胞作为递送载体、3) 巨噬细胞衍生物作为治疗诊断载体。

3.1. 基因工程化巨噬细胞

随着基因编辑和合成生物学的快速发展,可利用基因工程法赋予多种细胞治疗特性 [57] 。Kerzel等 [58] 构建了一种可以实现基因转导的LV载体,用于体内肝脏巨噬细胞的工程化,驱动IFN-α表达,激活免疫反应,增强MHC-II限制性抗原呈递,减少CD8+T细胞的耗竭,进而延缓结直肠癌和胰腺导管腺癌肝转移瘤的生长。在嵌合抗原受体(CAR)T细胞疗法的经典成功范例中,从患者体内分离的T细胞经过基因重编程,呈现有效的癌细胞杀伤能力,已被批准用于治疗B细胞急性淋巴细胞白血病 [59] [60] 。同样,具有强抗肿瘤作用的基因工程巨噬细胞在癌症治疗中具有巨大潜力。如Lei等 [61] 将具有极化和激活巨噬细胞功能的TLR4的胞内TIR信号转导结构域与第一代CAR中的CD3ζ信号结构域通过串联的形式构建到靶向特定抗原的CAR的胞内位置,进而设计了功能增强型的第二代诱导多能干细胞iPSC来源的工程化CAR-macrophage (CAR-iMAC)。一系列实验证实,第二代CAR-iMAC不仅显著性增强了抗肿瘤功效,维持M1型巨噬细胞极化,还展现出了良好的抗原呈递能力和更强的抵御肿瘤免疫抑制性微环境“裹挟”的能力,充分调动了免疫微环境中的T细胞和NK细胞,实现了促进实体肿瘤由“冷肿瘤”向“热肿瘤”转变的构想 [61] 。

3.2. 巨噬细胞作为递送载体

基于巨噬细胞的药物递送载体可以延长血液循环时间并有效减轻“货物”的毒性和免疫原性,还穿透到肿瘤组织的深度缺氧区域。Nguyen等 [62] 构建了一种基于免疫细胞(巨噬细胞,RAW 264.7)的新型药物递送系统,将金纳米棒(AuNRs)与阿霉素一起负载在巨噬细胞中,用于光热消融和化疗的组合。由于巨噬细胞固有的肿瘤归巢和穿透行为,携带AuNRs/阿霉素的巨噬细胞能够在体外3D球状肿瘤模型中深入穿透,活体荧光成像监测显示其在肿瘤部位主动富集,动物治疗结果也显示肿瘤负荷减少。此外,在脑部疾病的治疗中,将基于环糊精的纳米颗粒全身注射到颅内肿瘤小鼠体内后,纳米颗粒主要被巨噬细胞摄取,然后迁移到神经胶质瘤部位 [63] 。因此,巨噬细胞显示出作为脑肿瘤治疗纳米颗粒载体的潜力。如Liang等 [64] 将聚乳酸–乙醇酸(PLGA)纳米颗粒与原代M1型巨噬细胞孵育来制备以M1型巨噬细胞为载体的纳米颗粒(DOX@M1-NPs)。与未激活的巨噬细胞相比,原代M1型巨噬细胞具更强的吞噬能力和内在杀伤特性,从而表现出更好的载药能力和抗肿瘤作用。

3.3. 巨噬细胞衍生物作为治疗诊断载体

巨噬细胞独特的先天能力很大程度上归因于膜表面表达的特定蛋白质,源自巨噬细胞的细胞膜也可以继承巨噬细胞的部分天然能力。因此,近年来,有关巨噬细胞膜涂层的研究引起广泛关注。MNGs即用巨噬细胞膜(MM)包被的纳米吉西他滨系统(NGs),以赋予其仿生肿瘤内递送能力:一方面,将pH敏感的聚合物PEG-PDPA载入NGs,赋予纳米药物响应低pH释放的能力;另一方面,吉西他滨(Gem)是一种有效的化学免疫调节分子,可以消除多功能免疫抑制细胞,增强免疫识别,促进自然杀伤细胞(NK)有效免疫应答 [65] 。还有Chen等 [66] 构建的多功能纳米粒M1/PLGA@IR780/CAT,其中,M1型巨噬细胞膜能有效地靶向肿瘤血细胞、延长血液循环,同时还能诱导M2型巨噬细胞重极化成M1型巨噬细胞,激活抗肿瘤免疫;IR780是一种声敏剂,可被超声有效激活;过氧化氢酶(Cat)作为一种水溶性酶,可快速催化肿瘤环境中的过氧化氢分解产生氧气,缓解肿瘤部位缺氧,能极大地提高声动力治疗(SDT)的效率。

外泌体是细胞在正常或病理条件下分泌的一种细胞外囊泡。其中,免疫细胞来源的外泌体表现出与亲代细胞相似的遗传和蛋白质成分,可以直接刺激和调节特定类型的受体细胞,不仅可以调节抗肿瘤免疫应答,还可作为递送载体 [67] 。比如,Wang等 [68] 验证了M1型巨噬细胞分泌的外泌体能够通过激活NF-κB通路和创造促炎环境,进而来增强紫杉醇的抗肿瘤功效。M2型巨噬细胞来源的外泌体表达miR-23a-3p促进HCC转移并增加血管通透性 [69] 。Xiong等 [70] 合成了由氧化还原反应性Pt(IV)前药、人血清白蛋白和卵磷脂组成的纳米颗粒,使用小鼠巨噬细胞外泌体的仿生涂层,给予纳米粒子长血液循环、智能器官趋向性和强生物相容性,在原位乳腺癌模型中实现了有效的铂类化疗。

4. 总结与展望

在过去的几十年里,巨噬细胞相关的治疗诊断学在具有广泛炎症成分的各种疾病模型中取得了显著成效。纳米递送系统可以增强药物在肿瘤部位的富集,延长药物血液循环,降低毒副作用。因此,通过纳米药物抑制TAMs被招募到肿瘤部位、清除TAMs、将M2型TAMs重编程为M1型TAMs以及调节TAMs对肿瘤细胞的吞噬能力等手段可以有效抑制肿瘤进展并改善癌症患者的预后。经过改造的工程化巨噬细胞也可用作癌症治疗诊断的治疗剂和药物递送载体,并取得了显著疗效。

然而,基础研究向临床转化过程中仍然存在大量亟待解决的问题。首先,TME中TAMs的独特活性受到包含大量炎症介质的复杂环境的调节,因此对TAMs的研究应置于肿瘤环境中,而非局限于使用RAW264.7、THP-1细胞及骨髓源性巨噬细胞(BMDM)模拟的体外环境;其次,面对肿瘤复杂的免疫微环境,基于巨噬细胞的单一疗法可能不能完全清除癌灶。所以在未来,我们应该结合更多不同方法的优点来开发新的治疗策略,以实现更好的抗肿瘤疗效。此外,TAMs在调节T细胞功能以及通过表达抑制性T细胞配体对免疫检查点阻断疗法(ICB)产生适应性抵抗方面也发挥着重要作用。因此,从临床样本出发,利用单细胞测序、质谱–流式细胞术和空间转录组测序技术等手段来探索TAMs与肿瘤浸润的其他细胞之间相互作用的机制,挖掘出更多的治疗靶点用于癌症治疗具有很大的应用潜力。

参考文献

[1] Min, H.-Y. and Lee, H.-Y. (2022) Molecular Targeted Therapy for Anticancer Treatment. Experimental & Molecular Medicine, 54, 1670-1694.
https://doi.org/10.1038/s12276-022-00864-3
[2] Ke, X. and Shen, L. (2017) Molecular Targeted Therapy of Cancer: The Progress and Future Prospect. Frontiers in Laboratory Medicine, 1, 69-75.
https://doi.org/10.1016/j.flm.2017.06.001
[3] Gajewski, T.F., Schreiber, H. and Fu, Y.X. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022.
https://doi.org/10.1038/ni.2703
[4] Cheng, Y.Q., Wang, S.B., Liu, J.H., et al. (2020) Modifying the Tumour Microenvironment and Reverting Tumour Cells: New Strategies for Treating Malignant Tumours. Cell Proliferation, 53, e12865.
https://doi.org/10.1111/cpr.12865
[5] Jin, Y., Huang, Y., Ren, H., et al. (2024) Nano-Enhanced Immunotherapy: Targeting the Immunosuppressive Tumor Microenvironment. Biomaterials, 305, Article 122463.
https://doi.org/10.1016/j.biomaterials.2023.122463
[6] Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[7] Komohara, Y., Fujiwara, Y., Ohnishi, K., et al. (2016) Tumor-Associated Macrophages: Potential Therapeutic Targets for Anti-Cancer Therapy. Advanced Drug Delivery Reviews, 99, 180-185.
https://doi.org/10.1016/j.addr.2015.11.009
[8] Bingle, L., Brown, N.J. and Lewis, C.E. (2002) The Role of Tumour-Associated Macrophages in Tumour Progression: Implications for New Anticancer Therapies. The Journal of Pathology, 196, 254-265.
https://doi.org/10.1002/path.1027
[9] Guerriero, J.L. (2018) Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends in Molecular Medicine, 24, 472-489.
https://doi.org/10.1016/j.molmed.2018.03.006
[10] Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61.
https://doi.org/10.1016/j.immuni.2014.06.010
[11] Mantovani, A., Marchesi, F., Malesci, A., et al. (2017) Tumour-Associated Macrophages as Treatment Targets in Oncology. Nature Reviews Clinical Oncology, 14, 399-416.
https://doi.org/10.1038/nrclinonc.2016.217
[12] Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904.
https://doi.org/10.1038/nrd.2018.169
[13] Mantovani, A., Allavena, P., Marchesi, F., et al. (2022) Macrophages as Tools and Targets in Cancer Therapy. Nature Reviews Drug Discovery, 21, 799-820.
https://doi.org/10.1038/s41573-022-00520-5
[14] Zhu, Y., Herndon, J.M., Sojka, D.K., et al. (2017) Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 47, 323-338.E6.
https://doi.org/10.1016/j.immuni.2017.07.014
[15] Müller, A., Brandenburg, S., Turkowski, K., et al. (2015) Resident Microglia, and not Peripheral Macrophages, Are the Main Source of Brain Tumor Mononuclear Cells. International Journal of Cancer, 137, 278-288.
https://doi.org/10.1002/ijc.29379
[16] Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tumor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566-578.
https://doi.org/10.1038/s41423-020-00613-4
[17] Zuo, S., Song, J., Zhang, J., et al. (2021) Nano-Immunotherapy for Each Stage of Cancer Cellular Immunity: Which, Why, and What? Theranostics, 11, 7471-7487.
https://doi.org/10.7150/thno.59953
[18] Guevara, M.L., Persano, F. and Persano, S. (2021) Nano-Immunotherapy: Overcoming Tumour Immune Evasion. Seminars in Cancer Biology, 69, 238-248.
https://doi.org/10.1016/j.semcancer.2019.11.010
[19] Kiaie, S.H., Salehi-Shadkami, H., Sanaei, M.J., et al. (2023) Nano-Immunotherapy: Overcoming Delivery Challenge of Immune Checkpoint Therapy. Journal of Nanobiotechnology, 21, Article No. 339.
https://doi.org/10.1186/s12951-023-02083-y
[20] Lahooti, B., Akwii, R.G., Zahra, F.T., et al. (2023) Targeting Endothelial Permeability in the EPR Effect. Journal of Controlled Release, 361, 212-235.
https://doi.org/10.1016/j.jconrel.2023.07.039
[21] Denardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382.
https://doi.org/10.1038/s41577-019-0127-6
[22] Coussens, L.M., Zitvogel, L. and Palucka, A.K. (2013) Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet? Science, 339, 286-291.
https://doi.org/10.1126/science.1232227
[23] Moisan, F., Francisco, E.B., Brozovic, A., et al. (2014) Enhancement of Paclitaxel and Carboplatin Therapies by CCL2 Blockade in Ovarian Cancers. Molecular Oncology, 8, 1231-1239.
https://doi.org/10.1016/j.molonc.2014.03.016
[24] Li, X., Yao, W., Yuan, Y., et al. (2017) Targeting of Tumour-Infiltrating Macrophages via CCL2/CCR2 Signalling as a Therapeutic Strategy against Hepatocellular Carcinoma. Gut, 66, 157-167.
https://doi.org/10.1136/gutjnl-2015-310514
[25] Yoshimura, T., Li, C., Wang, Y., et al. (2023) The Chemokine Monocyte Chemoattractant Protein-1/CCL2 Is a Promoter of Breast Cancer Metastasis. Cellular & Molecular Immunology, 20, 714-738.
https://doi.org/10.1038/s41423-023-01013-0
[26] Shen, S., Zhang, Y., Chen, K.G., et al. (2018) Cationic Polymeric Nanoparticle Delivering CCR2 siRNA to Inflammatory Monocytes for Tumor Microenvironment Modification and Cancer Therapy. Molecular Pharmaceutics, 15, 3642-3653.
https://doi.org/10.1021/acs.molpharmaceut.7b00997
[27] Möckel, D., Bartneck, M., Niemietz, P., et al. (2024) CCL2 Chemokine Inhibition Primes the Tumor Vasculature for Improved Nanomedicine Delivery and Efficacy. Journal of Controlled Release, 365, 358-368.
https://doi.org/10.1016/j.jconrel.2023.11.044
[28] Guo, F., Wang, Y., Liu, J., et al. (2016) CXCL12/CXCR4: A Symbiotic Bridge Linking Cancer Cells and Their Stromal Neighbors in Oncogenic Communication Networks. Oncogene, 35, 816-826.
https://doi.org/10.1038/onc.2015.139
[29] Li, X., Bu, W., Meng, L., et al. (2019) CXCL12/CXCR4 Pathway Orchestrates CSC-Like Properties by CAF Recruited Tumor Associated Macrophage in OSCC. Experimental Cell Research, 378, 131-138.
https://doi.org/10.1016/j.yexcr.2019.03.013
[30] Zannettino, A.C., Farrugia, A.N., Kortesidis, A., et al. (2005) Elevated Serum Levels of Stromal-Derived Factor-1α Are Associated with Increased Osteoclast Activity and Osteolytic Bone Disease in Multiple Myeloma Patients. Cancer Research, 65, 1700-1709.
https://doi.org/10.1158/0008-5472.CAN-04-1687
[31] Beider, K., Bitner, H., Leiba, M., et al. (2014) Multiple Myeloma Cells Recruit Tumor-Supportive Macrophages through the CXCR4/CXCL12 Axis and Promote Their Polarization toward the M2 Phenotype. Oncotarget, 5, 11283-11296.
https://doi.org/10.18632/oncotarget.2207
[32] Ishida, Y., Kuninaka, Y., Yamamoto, Y., et al. (2020) Pivotal Involvement of the CX3CL1-CX3CR1 Axis for the Recruitment of M2 Tumor-Associated Macrophages in Skin Carcinogenesis. The Journal of Investigative Dermatology, 140, 1951-1961.E6.
https://doi.org/10.1016/j.jid.2020.02.023
[33] Jung, K., Heishi, T., Khan, O.F., et al. (2017) Ly6Clo Monocytes Drive Immunosuppression and Confer Resistance to Anti-VEGFR2 Cancer Therapy. The Journal of Clinical Investigation, 127, 3039-3051.
https://doi.org/10.1172/JCI93182
[34] Zhu, R., Su, L., Dai, J., et al. (2020) Biologically Responsive Plasmonic Assemblies for Second Near-Infrared Window Photoacoustic Imaging-Guided Concurrent Chemo-Immunotherapy. ACS Nano, 14, 3991-4006.
https://doi.org/10.1021/acsnano.9b07984
[35] Zhang, F., Dong, J., Huang, K., et al. (2023) “Dominolike” Barriers Elimination with an Intratumoral Adenosine-Triphosphate-Supersensitive Nanogel to Enhance Cancer Chemoimmunotherapy. ACS Nano, 17, 18805-18817.
https://doi.org/10.1021/acsnano.3c03386
[36] D’incalci, M. and Galmarini, C.M. (2010) A Review of Trabectedin (ET-743): A Unique Mechanism of Action. Molecular Cancer Therapeutics, 9, 2157-2163.
https://doi.org/10.1158/1535-7163.MCT-10-0263
[37] Germano, G., Frapolli, R., Belgiovine, C., et al. (2013) Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell, 23, 249-262.
https://doi.org/10.1016/j.ccr.2013.01.008
[38] Choi, T.H., Yoo, R.J., Park, J.Y., et al. (2024) Development of Finely Tuned Liposome Nanoplatform for Macrophage Depletion. Journal of Nanobiotechnology, 22, Article No. 83.
https://doi.org/10.1186/s12951-024-02325-7
[39] Farzin, A., Etesami, S.A., Quint, J., et al. (2020) Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials, 9, e1901058.
https://doi.org/10.1002/adhm.201901058
[40] Zanganeh, S., Hutter, G., et al. (2016) Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nature Nanotechnology, 11, 986-994.
https://doi.org/10.1038/nnano.2016.168
[41] Yu, G.-T., Rao, L., Wu, H., et al. (2018) Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 28, Article 1801389.
https://doi.org/10.1002/adfm.201801389
[42] Shime, H., Matsumoto, M., Oshiumi, H., et al. (2012) Toll-Like Receptor 3 Signaling Converts Tumor-Supporting Myeloid Cells to Tumoricidal Effectors. Proceedings of the National Academy of Sciences of the United States of America, 109, 2066-2071.
https://doi.org/10.1073/pnas.1113099109
[43] Huang, L., Xu, R., Li, W., et al. (2023) Repolarization of Macrophages to Improve Sorafenib Sensitivity for Combination Cancer Therapy. Acta Biomaterialia, 162, 98-109.
https://doi.org/10.1016/j.actbio.2023.03.014
[44] Cao, S., Saw, P.E., Shen, Q., et al. (2022) Reduction-Responsive RNAi Nanoplatform to Reprogram Tumor Lipid Metabolism and Repolarize Macrophage for Combination Pancreatic Cancer Therapy. Biomaterials, 280, Article 121264.
https://doi.org/10.1016/j.biomaterials.2021.121264
[45] Iwasaki, A. and Medzhitov, R. (2010) Regulation of Adaptive Immunity by the Innate Immune System. Science, 327, 291-295.
https://doi.org/10.1126/science.1183021
[46] Demaria, O., Cornen, S., Daëron, M., et al. (2019) Harnessing Innate Immunity in Cancer Therapy. Nature, 574, 45-56.
https://doi.org/10.1038/s41586-019-1593-5
[47] Tajbakhsh, A., Gheibi Hayat, S.M., Movahedpour, A., et al. (2021) The Complex Roles of Efferocytosis in Cancer Development, Metastasis, and Treatment. Biomedicine & Pharmacotherapy, 140, Article 111776.
https://doi.org/10.1016/j.biopha.2021.111776
[48] Logtenberg, M.E.W., Scheeren, F.A. and Schumacher, T.N. (2020) The CD47-SIRPα Immune Checkpoint. Immunity, 52, 742-752.
https://doi.org/10.1016/j.immuni.2020.04.011
[49] Hayat, S.M.G., Bianconi, V., Pirro, M., et al. (2020) CD47: Role in the Immune System and Application to Cancer Therapy. Cellular Oncology, 43, 19-30.
https://doi.org/10.1007/s13402-019-00469-5
[50] Liu, Y., Wang, Y., Yang, Y., et al. (2023) Emerging Phagocytosis Checkpoints in Cancer Immunotherapy. Signal Transduction and Targeted Therapy, 8, Article No. 104.
https://doi.org/10.1038/s41392-023-01365-z
[51] Shi, M., Gu, Y., Jin, K., et al. (2021) CD47 Expression in Gastric Cancer Clinical Correlates and Association with Macrophage Infiltration. Cancer Immunology, Immunotherapy, 70, 1831-1840.
https://doi.org/10.1007/s00262-020-02806-2
[52] Yu, L., Ding, Y., Wan, T., et al. (2021) Significance of CD47 and Its Association with Tumor Immune Microenvironment Heterogeneity in Ovarian Cancer. Frontiers in Immunology, 12, Article 768115.
https://doi.org/10.3389/fimmu.2021.768115
[53] Hsieh, R.C., Krishnan, S., Wu, R.C., et al. (2022) ATR-Mediated CD47 and PD-L1 Up-Regulation Restricts Radiotherapy-Induced Immune Priming and Abscopal Responses in Colorectal Cancer. Science Immunology, 7, eabl9330.
[54] Xu, X., Li, S., Yu, W., et al. (2024) Activation of RIG-I/MDA5 Signaling and Inhibition of CD47-SIRPα Checkpoint with a Dual siRNA-Assembled Nanoadjuvant for Robust Cancer Immunotherapy. Angewandte Chemie International Edition, 63, e202318544.
https://doi.org/10.1002/anie.202318544
[55] Wang, S., Jiao, W., Yan, B., et al. (2024) Intracellular Magnetic Hyperthermia Enables Concurrent Down-Regulation of CD47 and SIRPα To Potentiate Antitumor Immunity. Nano Letters, 24, 2894-2903.
https://doi.org/10.1021/acs.nanolett.4c00003
[56] Yoo, J.W., Irvine, D.J., Discher, D.E., et al. (2011) Bio-Inspired, Bioengineered and Biomimetic Drug Delivery Carriers. Nature Reviews Drug Discovery, 10, 521-535.
https://doi.org/10.1038/nrd3499
[57] Kitada, T., Diandreth, B., Teague, B., et al. (2018) Programming Gene and Engineered-Cell Therapies with Synthetic Biology. Science, 359, eaad1067.
https://doi.org/10.1126/science.aad1067
[58] Kerzel, T., Giacca, G., Beretta, S., et al. (2023) In Vivo Macrophage Engineering Reshapes the Tumor Microenvironment Leading to Eradication of Liver Metastases. Cancer Cell, 41, 1892-1910.E10.
https://doi.org/10.1016/j.ccell.2023.09.014
[59] Hayden, P.J., Roddie, C., Bader, P., et al. (2022) Management of Adults and Children Receiving CAR T-Cell Therapy: 2021 Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Annals of Oncology, 33, 259-275.
https://doi.org/10.1016/j.annonc.2021.12.003
[60] Larson, R.C. and Maus, M.V. (2021) Recent Advances and Discoveries in the Mechanisms and Functions of CAR T Cells. Nature Reviews Cancer, 21, 145-161.
https://doi.org/10.1038/s41568-020-00323-z
[61] Lei, A., Yu, H., Lu, S., et al. (2024) A Second-Generation M1-Polarized CAR Macrophage with Antitumor Efficacy. Nature Immunology, 25, 102-116.
https://doi.org/10.1038/s41590-023-01687-8
[62] Nguyen, V.D., Min, H.K., Kim, D.H., et al. (2020) Macrophage-Mediated Delivery of Multifunctional Nanotherapeutics for Synergistic Chemo-Photothermal Therapy of Solid Tumors. ACS Applied Materials & Interfaces, 12, 10130-10141.
https://doi.org/10.1021/acsami.9b23632
[63] Alizadeh, D., Zhang, L., Hwang, J., et al. (2010) Tumor-Associated Macrophages Are Predominant Carriers of Cyclodextrin-Based Nanoparticles into Gliomas. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 382-390.
https://doi.org/10.1016/j.nano.2009.10.001
[64] Pang, L., Zhu, Y., Qin, J., et al. (2018) Primary M1 Macrophages as Multifunctional Carrier Combined with PLGA Nanoparticle Delivering Anticancer Drug for Efficient Glioma Therapy. Drug Delivery, 25, 1922-1931.
https://doi.org/10.1080/10717544.2018.1502839
[65] Li, J., Wu, Y., Wang, J., et al. (2023) Macrophage Membrane-Coated Nano-Gemcitabine Promotes Lymphocyte Infiltration and Synergizes AntiPD-L1 to Restore the Tumoricidal Function. ACS Nano, 17, 322-336.
https://doi.org/10.1021/acsnano.2c07861
[66] Chen, S., Ma, T., Wang, J., et al. (2024) Macrophage-Derived Biomimetic Nanoparticles Enhanced SDT Combined with Immunotherapy Inhibited Tumor Growth and Metastasis. Biomaterials, 305, Article 122456.
https://doi.org/10.1016/j.biomaterials.2023.122456
[67] Kalluri, R. and Lebleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[68] Wang, P., Wang, H., Huang, Q., et al. (2019) Exosomes from M1-Polarized Macrophages Enhance Paclitaxel Antitumor Activity by Activating Macrophages-Mediated Inflammation. Theranostics, 9, 1714-1727.
https://doi.org/10.7150/thno.30716
[69] Lu, Y., Han, G., Zhang, Y., et al. (2023) M2 Macrophage-Secreted Exosomes Promote Metastasis and Increase Vascular Permeability in Hepatocellular Carcinoma. Cell Communication and Signaling, 21, Article No. 299.
https://doi.org/10.1186/s12964-022-00872-w
[70] Xiong, F., Ling, X., Chen, X., et al. (2019) Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. Nano Letters, 19, 3256-3266.
https://doi.org/10.1021/acs.nanolett.9b00824