关于女孩中枢性性早熟的影像学研究现状及进展
Current Status and Progress of Imaging Research on Central Precocious Puberty in Girls
DOI: 10.12677/acm.2024.1451463, PDF, HTML, XML, 下载: 25  浏览: 39  科研立项经费支持
作者: 黄雪琴, 田 露*, 蔡金华*:重庆医科大学附属儿童医院放射科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童代谢与炎症性疾病重庆市重点实验室,重庆
关键词: 性早熟中枢性性早熟促性腺激素释放激素刺激试验影像学检查Precocious Puberty Central Precocious Puberty Gonadotropin-Releasing Hormone (GnRH) Stimulation Test Imaging Examination
摘要: 中枢性早熟(CPP)是最常见的性早熟类型,指下丘脑–垂体–性腺轴(hypothalamic-pituitary-gonadal axis, HPGA)提前激活导致第二性征提前出现。临床上以促性腺激素释放激素(GnRH)刺激试验为金标准,然而该刺激实验是侵入性的、昂贵的、繁琐的。因此非侵入性的影像学检查对于CPP的诊断具有重要意义。本文综述了CPP相关影像学检查的研究现状及应用前景,包括乳腺及盆腔的超声检查、手部X线摄影的骨龄检查、头颅及垂体的磁共振检查等,旨在为CPP的影像学研究提供新思路,并为临床诊疗提供影像学依据。
Abstract: Central precocious puberty (CPP) is the most common type of precocious puberty, which refers to the early activation of the hypothalamic-pituitary-gonadal axis (HPGA), leading to the early appearance of secondary sexual characteristics. Clinically, the gonadotropin-releasing hormone (GnRH) stimulation test is usually used as the gold standard, but the test is invasive, expensive and tedious. Thus, the non-invasive imaging examination is of great significance for the diagnosis of CPP. This paper reviews the current status and prospects of CPP-related imaging examinations, including ultrasound examination of the breast and pelvis, bone age assessment through hand X-ray photography, and magnetic resonance imaging of the head and pituitary gland. The aim is to provide new insights into imaging research on CPP and to offer imaging-based evidence for clinical diagnosis and treatment.
文章引用:黄雪琴, 田露, 蔡金华. 关于女孩中枢性性早熟的影像学研究现状及进展[J]. 临床医学进展, 2024, 14(5): 559-566. https://doi.org/10.12677/acm.2024.1451463

1. 引言

性早熟(Precocious puberty, PP)是指儿童在生理上提前进入青春期的一种状况,通常表现为女孩在8岁之前开始出现乳房发育和阴毛生长,男孩在9岁之前开始出现阴茎和睾丸发育 [1] 。中枢性早熟(Central precocious puberty, CPP)是最常见的性早熟类型,由于下丘脑–垂体–性腺轴(hypothalamic-pituitary-gonadal axis, HPGA)提前激活,垂体前叶分泌的促性腺激素过早释放,导致性腺分泌性激素,从而引发性征的提前出现 [1] [2] [3] [4] 。近年来,随着全球生活水平的提高和社会环境的变化,性早熟的发病率呈现出一定的增加趋势。一项丹麦的队列研究显示,从1998年到2017年,女孩性早熟的患病率增加了6倍,男孩的患病率增加了15倍 [5] 。女孩性早熟的发生率超过男孩的5~10倍,其中90%以上被归类为特发性中枢性性早熟(Idiopathic central precocious puberty, ICPP),即没有明显的病因和器质性疾病的CPP [4] 。CPP可能会影响成年人的身高,甚至可能导致社会和心理障碍。值得注意的是,患有CPP的女孩面临着患乳腺癌或宫颈癌的风险升高 [6] [7] 。因此,及时的诊断和治疗对患有CPP的女孩至关重要。

诊断CPP的金标准是促性腺激素释放激素(gonadotropin-releasing hormone, GnRH)刺激试验 [8] [9] [10] 。然而,这是一项昂贵、耗时、繁琐、有创的检查,由于需要建立血管通路和收集多个血液样本,常常引起患者的焦虑,甚至在很多资源有限的非三级医院或社区医院无法开展。因此,对该疾病的诊断和治疗可能会被延迟,临床需要更方便的、非侵入性的方法来帮助诊断CPP。除了实验室检查以外,影像学检查也是不可或缺的评估CPP的手段。针对怀疑CPP的女孩,主要的影像学检查包括乳腺 [11] 及盆腔 [12] [13] 的超声检查、手部X线摄影的骨龄检查 [14] 、头颅 [15] 及垂体 [16] [17] 的磁共振检查。

2. 乳腺及盆腔超声检查

2.1. 盆腔超声

近年来的研究表明,盆腔超声检查在中枢性早熟(CPP)的诊断及评估GnRHa治疗效果方面具有重大意义。据Yu等人 [12] 的研究显示,特发性中枢性性早熟(ICPP)组的各项盆腔超声参数普遍显著大于对照组,其中子宫体体积被确定为区分ICPP患者与正常女孩的最佳超声参数,并且盆腔超声参数与血清性激素水平显著相关。此外,Yu等人 [12] 将ICPP组GnRHa治疗前后的盆腔超声参数进行比较,结果显示GnRHa治疗后ICPP组盆腔超声参数均较治疗前明显降低,其中卵巢恢复到正常大小,而子宫仍然比正常大。这可能是由于子宫的发育受到卵巢激素的影响,因此子宫的变化滞后于卵巢的变化。Yang等 [13] 的研究得出了类似的结论,盆腔超声有助于评估GnRHa治疗的疗效,卵巢体积及卵巢、子宫、宫颈长轴的变化可作为敏感的观察指标。另外,有研究证实盆腔超声的子宫动脉搏动指数(PI)是诊断女孩青春期开始的一种有用的无创工具 [18] [19] [20] 。据Paesano等 [18] 的研究表明,盆腔超声的子宫动脉搏动指数(PI)大于4.6,并且子宫纵向直径小于35 mm时,可以排除女性性早熟,这比GnRH刺激后检查LH峰的成本更低,且具有相当的准确性。然而目前的研究并没有一个确切的、被广泛采纳的盆腔超声指标来评估CPP,未来还需要更多的研究来开发、证实以及规范盆腔超声的诊断价值。

2.2. 乳腺超声

在临床上,Tanner量表 [21] 被广泛用于评估青春期女孩的正常乳腺发育,该量表将乳腺发育分为五个阶段。然而该方法可能将脂肪沉积与腺体实质混淆,将其误认为乳腺发育 [22] [23] 。因此,在某些情况下,Tanner分期的准确性值得怀疑。与传统的Tanner分期法相比,乳腺超声对发育阶段的评估更准确,甚至能够做到定量观测。García等人 [24] 报道了正常发育乳房各Tanner阶段的超声特征,但只是描述性报告,没有进行统计分析。Youn等人 [25] 的研究采用了García等人 [24] 的乳腺超声分级,发现它们与乳腺腺体直径、年龄、骨龄和激素水平呈正相关,结果表明超声乳房等级、乳腺腺体的长径可以帮助对性发育进行评估。Calcaterra等人 [11] 利用超声检查量化发育中的乳腺,发现超声乳腺体积 ≥ 0.85 cm3是快速进展性中枢性性早熟的独立预测因素。但是测量乳腺体积比测量腺体直径更复杂,还要考虑到腺体形态学的表现。

3. 手部X线摄影的骨龄检查

骨龄指人体骨骼发育的年龄,是衡量儿童身体生长发育程度的重要指标,可以协助诊断内分泌相关疾病,如性早熟 [26] [27] 。由于性激素可加速骨骼成熟,性早熟患儿的骨龄通常较正常同龄儿大 [3] 。当骨龄超过实际年龄1年时,提示性早熟 [28] 。Xu等人 [14] 对一组经过GnRH刺激试验的女孩性早熟病例进行观察分析,结果发现骨龄超前指数与促黄体生成素峰值呈明显的正相关,将骨龄超前指数作为CPP的诊断指标,其曲线下面积为0.605 (0.605 ± 0.03),以19.5个月作为临界值预测CPP的敏感性为0.7,假阳性率为0.53。这些结果表明骨龄提前是促黄体激素释放激素刺激试验结果的有效预测因子,将骨龄提前作为指标有助于中枢性性早熟的诊断。因此,骨龄筛查可以帮助临床医生判断是否需要进一步使用GnRH刺激试验。

国际上常用的手腕部X线片骨龄评估方法包括Greulich-Pyle (GP)图谱法 [29] [30] 、Tanner-Whitehouse (TW)方法 [31] 、中华05法 [32] 和中国人手腕骨发育标准——CHN计分法 [33] 等。国外多用GP法和TW法,国内多使用中华05法和中国人手腕骨发育标准——CHN计分法。尽管所有这些方法都可以确定骨龄,但它们都是主观评估,严重依赖影像专家的经验。因此,有学者利用人工智能开发了骨龄自动评估系统 [34] [35] ,以提高骨龄评价的准确率和客观性,并缩短诊断时长,提高工作效率。

4. 头颅及垂体的磁共振检查

4.1. 排除中枢神经系统病变

由于CPP的发病机制多种多样,除了ICPP和遗传导致的CPP外,CPP还可继发于先天性或获得性中枢神经系统(CNS)病变,比如结构性脑异常、肿瘤、创伤、感染、缺氧,癫痫发作等,因此所有CPP患儿都应进行脑磁共振成像(MRI)评估,作为其病因调查的一种手段 [7] [15] [36] 。据报道,对诊断为CPP的儿童进行脑MR检查,发现男孩(40%~90%)的CNS病变患病率高于女孩(8%~33%)。值得注意的是,6~8岁年龄段的CPP女孩,CNS病变的患病率要低得多(2%~7%) [37] 。在精准医学背景下,有学者提出避免或推迟对患有CPP的女孩进行MRI检查 [38] [39] 。然而6~8岁CPP女孩患中枢神经系统病变的风险却也不容忽视。Mogensen等人 [15] 在单中心队列(n = 229名丹麦女孩)中,在6.3%的6~8岁CPP女孩中发现了未预料到的病理性中枢神经系统病变,包括1例需要手术治疗的中枢神经系统肿瘤。Helvacıoğlu等人 [40] 在一项多中心队列研究中(n = 770名土耳其女孩)发现,根据MR检查,13.5%的患儿有脑部异常,其中有2名女孩(0.25%)被诊断为肿瘤病变(1个低级别胶质瘤和1个脑膜瘤),并且均超过6岁。因此,所有6岁以下患有CPP的男孩和女孩都应该接受大脑MRI检查达到了共识,但是否所有6~8岁之间患有CPP的女孩都需要MRI仍然存在争议。

4.2. 垂体

4.2.1. 形态学

Elster等 [41] 首先提出垂体的高度和形状与青春期发育有关。他们观察到,垂体体积随着年龄的增长而增加,垂体的高度,在青春期趋向于球形。有报道指出中枢性性早熟患儿由于HPG轴功提前激活,可能导致垂体形态学改变,表现为径线长度增加、体积增大 [16] [17] 。Wu等 [16] 的一项研究结果显示垂体体积与黄体生成素(LH)峰值、LH/促卵泡激素(FSH)峰值、年龄、骨龄、体重指数(BMI)均呈正相关,CPP组的垂体长度、高度、体积高于非CPP组。林丽君等 [17] 的研究得出类似结果,垂体高度和垂体体积与下丘脑–垂体–性腺轴的功能密切相关。尽管垂体形态学参数对中枢性性早熟的诊断具有一定临床价值,但仍然缺乏可靠的区分CPP和非CPP的临界值。

4.2.2. 影像组学特征

放射组学可以从医学图像中提取定量和可重复的信息,包括人眼难以识别的信息,从而发现传统分析无法检测到的微小差异。有报道指出,在ICPP的诊断中影像组学评分比传统的垂体测量有更好的预测效能 [42] 。并且有学者将影像组学特征与临床特征结合构建综合模型,提高了对ICPP的诊断效能 [43] [44] 。

4.3. 结构与功能磁共振

随着MRI技术的发展,结构和功能MRI兴起,一些研究开始关注早期激活下丘脑–垂体–性腺轴对大脑结构和功能影响。Yu等人 [45] 通过静息态功能磁共振研究发现,CPP组在慢4、慢5频带中左侧颞下回的区域同质性值(ReHo)较非CPP值高。而左侧颞上回、左侧顶极回、右侧中央回则出现了较低的ReHo值。CPP组在双侧额叶上部和中央上额回的ReHo值也相对较低。这些发现提示HPG轴的激活和青春期激素的变化可能导致大脑活动和认知功能的变化。Yang等 [46] 基于结构MRI研究发现,CPP女孩主要在右侧前额中央皮质表现出皮层变薄,这种形态上的差异与刺激后雌二醇水平呈正相关。CPP女孩在早期阶段的HPG轴早期激活似乎对大脑解剖结构,特别是前额皮质,产生了重塑效应,这可能影响性激素发生明显变化后的心理发展。Chen等 [47] 采用基于体素的形态学分析和种子到体素的全脑静息态功能连接分析,计算了特发性CPP和非中枢性性早熟女孩的灰质体积和分析了静息态功能连接情况。相关分析用于评估青春期激素对两组之间存在结构和功能差异的脑区的影响。研究发现,CPP女孩在左侧岛叶和左侧扣带回的灰质体积减少,并且左右岛叶与右侧中央额回以及左侧扣带回和右侧杏仁核之间的连接性减少。此外,左侧岛叶的灰质体积与峰值促卵泡生成素水平呈负相关,而较高的基础和峰值雌二醇水平与双侧岛叶的静息态功能连接增加相关。这些发现表明,HPG轴的早期激活和青春期激素波动会改变儿童早期认知和情绪过程中涉及的大脑结构和功能。这些结果为自发性CPP的早期病理生理提供了重要的见解。以上研究提示了中枢性性早熟患儿大脑结构和功能连接方面存在异常,虽然取得了一些进展,仍处于研究起步阶段。进一步的研究仍然需要进行,以更全面地理解中枢性性早熟与大脑结构和功能之间的关系。这有助于增进对中枢性性早熟的神经机制和病理生理过程的理解,并为早期诊断、治疗和干预措施的制定提供科学依据。

5. 影像学数据结合临床资料的机器学习

虽然基础性激素水平、乳腺及盆腔超声、骨龄、头颅及垂体磁共振等均对识别CPP患者具有诊断价值 [7] [11] - [17] 。然而,这些单一因素的诊断效能欠佳。近年来,随着人工智能(AI)在医学领域的发展,基于临床和成像数据的机器学习(ML)模型利用临床和成像数据作为输入来创建分类器,使CPP能够被快速识别。这种方法为客观、快速、智能的CPP诊断提供了一个新的视角。Zou等 [44] 的研究利用MRI放射组学、成像和临床参数构建ML模型,结果显示综合模型对ICPP的诊断效能优于单一的临床模型或影像组学特征。虽然研究者们均声称模型具有良好的诊断效能,然而由于采用不同的ML方法 [44] [48] [49] ,这些研究结果还是具有很大差异,难以直接比较。

6. 结论

临床上以促性腺激素释放激素(GnRH)刺激试验作为CPP诊断的金标准,然而该刺激实验是侵入性的、昂贵的、繁琐的。因此许多学者开展了其他各种指标对于CCP的诊断价值的研究。随着技术的进步及其与AI、深度学习、影像组学等方法的深度融合,影像学在诊断女孩CPP方面发挥着越来越重要的作用。但是目前的研究表明这些检查的诊断效能、普遍适用性还有待提高,大多数研究样本量小,且多为单中心研究、横断面观察。因此,未来应通过多中心、大样本及纵向研究的方式来观察各项影像学检查应用于CPP的研究价值。

基金项目

重庆市科卫联合项目,编号2021MSXM059;

重庆市教育委员会科学技术研究项目,编号KJQN202300428。

NOTES

*通讯作者。

参考文献

[1] Banerjee, S. and Bajpai, A. (2023) Precocious Puberty. Indian Journal of Pediatrics, 90, 582-589.
https://doi.org/10.1007/s12098-023-04554-4
[2] Gangat, M. and Radovick, S. (2020) Precocious Puberty. Minerva Pediatrica, 72, 491-500.
https://doi.org/10.23736/S0026-4946.20.05970-8
[3] Bradley, S.H., Lawrence, N., Steele, C. and Mohamed, Z. (2020) Precocious Puberty. BMJ (Clinical Research Ed), 368, L6597.
https://doi.org/10.1136/bmj.l6597
[4] Brito, V.N., Canton, A.P.M., Seraphim, C.E., et al. (2023) The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocrine Reviews, 44, 193-221.
https://doi.org/10.1210/endrev/bnac020
[5] Bräuner, E.V., Busch, A.S., Eckert-Lind, C., et al. (2020) Trends in the Incidence of Central Precocious Puberty and Normal Variant Puberty among Children in Denmark, 1998 to 2017. JAMA Network Open, 3, E2015665.
https://doi.org/10.1001/jamanetworkopen.2020.15665
[6] Knific, T., Lazarevič, M., Žibert, J., et al. (2022) Final Adult Height in Children with Central Precocious Puberty—A Retrospective Study. Frontiers in Endocrinology, 13, Article ID: 1008474.
https://doi.org/10.3389/fendo.2022.1008474
[7] Soriano-Guillén, L. and Argente, J. (2019) Central Precocious Puberty, Functional and Tumor-Related. Best Practice & Research Clinical Endocrinology & Metabolism, 33, Article ID: 101262.
https://doi.org/10.1016/j.beem.2019.01.003
[8] Ab Rahim, S.N., Omar, J. and Tuan Ismail, T.S. (2020) Gonadotropin-Releasing Hormone Stimulation Test and Diagnostic Cutoff in Precocious Puberty: A Mini Review. Annals of Pediatric Endocrinology & Metabolism, 25, 152-155.
https://doi.org/10.6065/apem.2040004.002
[9] Ozalkak, S., Cetinkaya, S., Budak, F.C., et al. (2020) Evaluation of Gonadotropin Responses and Response Times According to Two Different Cut-Off Values in Luteinizing Hormone Releasing Hormone Stimulation Test in Girls. Indian Journal of Endocrinology and Metabolism, 24, 410-415.
https://doi.org/10.4103/ijem.IJEM_314_20
[10] Durá-Travé, T., Gallinas-Victoriano, F., Malumbres-Chacon, M., et al. (2021) Clinical Data and Basal Gonadotropins in the Diagnosis of Central Precocious Puberty in Girls. Endocrine Connections, 10, 164-170.
https://doi.org/10.1530/EC-20-0651
[11] Calcaterra, V., Sampaolo, P., Klersy, C., et al. (2009) Utility of Breast Ultrasonography in the Diagnostic Work-Up of Precocious Puberty and Proposal of a Prognostic Index for Identifying Girls with Rapidly Progressive Central Precocious Puberty. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 33, 85-91.
https://doi.org/10.1002/uog.6271
[12] Yu, H.K., Liu, X., Chen, J.K., et al. (2019) Pelvic Ultrasound in Diagnosing and Evaluating the Efficacy of Gonadotropin-Releasing Hormone Agonist Therapy in Girls with Idiopathic Central Precocious Puberty. Frontiers in Pharmacology, 10, Article No. 104.
https://doi.org/10.3389/fphar.2019.00104
[13] Yang, K., Qi, R.F., Li, R.M., et al. (2021) Pelvic Ultrasound Parameters of Long-Acting Depot Formulation of Leuprorelin in the Treatment of Idiopathic Central Precocious Puberty in Girls. Drug Design, Development and Therapy, 15, 1479-1484.
https://doi.org/10.2147/DDDT.S298155
[14] Xu, Y.Q., Li, G.M. and Li, Y. (2018) Advanced Bone Age as an Indicator Facilitates the Diagnosis of Precocious Puberty. Jornal De Pediatria, 94, 69-75.
https://doi.org/10.1016/j.jped.2017.03.010
[15] Mogensen, S.S., Aksglaede, L., Mouritsen, A., et al. (2012) Pathological and Incidental Findings on Brain MRI in a Single-Center Study of 229 Consecutive Girls with Early or Precocious Puberty. PLOS ONE, 7, E29829.
https://doi.org/10.1371/journal.pone.0029829
[16] Wu, S., Yang, Y., Wang, Y., et al. (2020) Diagnostic Value of Pituitary Volume in Girls with Precocious Puberty. BMC Pediatrics, 20, Article No. 425.
https://doi.org/10.1186/s12887-020-02283-7
[17] 林丽君, 陈鹏, 吕芳滨. 垂体MRI形态测量对中枢性性早熟女性患儿的临床诊断价值[J]. 中国妇幼保健, 2021, 36(24): 5825-5828.
[18] Paesano, P.L., Colantoni, C., Mora, S., et al. (2019) Validation of an Accurate and Noninvasive Tool to Exclude Female Precocious Puberty: Pelvic Ultrasound with Uterine Artery Pulsatility Index. AJR American Journal of Roentgenology, 213, 451-457.
https://doi.org/10.2214/AJR.18.19875
[19] Cheuiche, A.V., Moro, C., Lucena, I.R.S., et al. (2023) Accuracy of Doppler Assessment of the Uterine Arteries for the Diagnosis of Pubertal Onset in Girls: A Scoping Review. Scientific Reports, 13, Article No. 5791.
https://doi.org/10.1038/s41598-023-32880-2
[20] Cheuiche, A.V., Da Silveira, L.G., Escott, G.M., et al. (2021) Accuracy of Doppler Assessment of the Uterine Arteries in Healthy Girls for the Diagnosis of Pubertal Onset. Endocrine.
https://doi.org/10.21203/rs.3.rs-669604/v1
[21] Marshall, W.A. and Tanner, J.M. (1969) Variations in Pattern of Pubertal Changes in Girls. Archives of Disease in Childhood, 44, 291-303.
https://doi.org/10.1136/adc.44.235.291
[22] Carlson, L., Poccia, V.F., Sun, B.Z., et al. (2019) Early Breast Development in Overweight Girls: Does Estrogen Made by Adipose Tissue Play a Role? International Journal of Obesity (2005), 43, 1978-1987.
https://doi.org/10.1038/s41366-019-0446-5
[23] Yuce, O. and Sevinc, D. (2018) Ultrasonographic Assessment of Pubertal Breast Development in Obese Children: Compliance with the Clinic. Journal of Pediatric Endocrinology & Metabolism: JPEM, 31, 137-141.
https://doi.org/10.1515/jpem-2017-0243
[24] Cristián, G., Alejandra Araya, E., Víctor, D., et al. (2000) Breast US in Children and Adolescents. Radiographics, 20, 1605-1612.
[25] Youn, I., Park, S.H., Park, S.H. and Kim, S.J. (2015) Ultrasound Assessment of Breast Development: Distinction between Premature Thelarche and Precocious Puberty. AJR American Journal of Roentgenology, 204, 620-624.
https://doi.org/10.2214/AJR.14.12565
[26] Creo, A.L. and Schwenk, W.F. (2017) Bone Age: A Handy Tool for Pediatric Providers. Pediatrics, 140, e20171486.
https://doi.org/10.1542/peds.2017-1486
[27] Harris, E.F., Weinstein, S., Weinstein, L. and Poole, A.E. (1980) Predicting Adult Stature: A Comparison of Methodologies. Annals of Human Biology, 7, 225-234.
https://doi.org/10.1080/03014468000004271
[28] Cheuiche, A.V., Da Silveira, L.G., Pedroso De Paula, L.C., et al. (2021) Diagnosis and Management of Precocious Sexual Maturation: An Updated Review. European Journal of Pediatrics, 180, 3073-3087.
https://doi.org/10.1007/s00431-021-04022-1
[29] Acheson, R.M., Fowler, G., Fry, E.I., et al. (1963) Studies in the Reliability of Assessing Skeletal Maturity from X-Rays. I. Greulich-Pyle Atlas. Human Biology, 35, 317-349.
[30] Dahlberg, P.S., Mosdøl, A., Ding, Y., et al. (2019) A Systematic Review of the Agreement between Chronological Age and Skeletal Age Based on the Greulich and Pyle Atlas. European Radiology, 29, 2936-2948.
https://doi.org/10.1007/s00330-018-5718-2
[31] Cameron, N. (1984) BASIC Programs for the Assessment of Skeletal Maturity and the Prediction of Adult Height Using the Tanner-Whitehouse Method. Annals of Human Biology, 11, 261-264.
https://doi.org/10.1080/03014468400007151
[32] 张绍岩, 花纪青, 刘丽娟, 等. 中国人手腕骨发育标准——中华05.III.中国儿童骨发育的长期趋势[J]. 中国运动医学杂志, 2007(2): 149-153.
[33] 张绍岩, 杨士增, 邵伟东, 等. 中国人手腕骨发育标准——CHN法[J]. 体育科学, 1993, 13(6): 33-39.
[34] Yang, C., Dai, W., Qin, B., et al. (2023) A Real-Time Automated Bone Age Assessment System Based on the RUS-CHN Method. Frontiers in Endocrinology, 14, Article ID: 1073219.
https://doi.org/10.3389/fendo.2023.1073219
[35] Zhang, D., Liu, B., Huang, Y., et al. (2023) An Automated TW3-RUS Bone Age Assessment Method with Ordinal Regression-Based Determination of Skeletal Maturity. Journal of Digital Imaging, 36, 1001-1015.
https://doi.org/10.1007/s10278-023-00794-0
[36] Latronico, A.C., Brito, V.N. and Carel, J.C. (2016) Causes, Diagnosis, and Treatment of Central Precocious Puberty. The Lancet Diabetes & Endocrinology, 4, 265-274.
https://doi.org/10.1016/S2213-8587(15)00380-0
[37] Zevin, E.L. and Eugster, E.A. (2023) Central Precocious Puberty: A Review of Diagnosis, Treatment, and Outcomes. The Lancet Child & Adolescent Health, 7, 886-896.
https://doi.org/10.1016/S2352-4642(23)00237-7
[38] Kim, S.H., Ahn, M.B., Cho, W.K., et al. (2021) Findings of Brain Magnetic Resonance Imaging in Girls with Central Precocious Puberty Compared with Girls with Chronic or Recurrent Headache. Journal of Clinical Medicine, 10, Article No. 2206.
https://doi.org/10.3390/jcm10102206
[39] Oh, Y.R., Kim, Y.J., Oh, K.E., et al. (2023) Brain Magnetic Resonance Imaging (MRI) Findings in Central Precocious Puberty Patients: Is Routine MRI Necessary for Newly Diagnosed Patients? Annals of Pediatric Endocrinology & Metabolism, 28, 200-205.
https://doi.org/10.6065/apem.2244192.096
[40] Helvacioglu, D., Turan, S.D., Guran, T., et al. (2021) Cranial MRI Abnormalities and Long-Term Follow-Up of the Lesions in 770 Girls with Central Precocious Puberty. The Journal of Clinical Endocrinology and Metabolism, 106, E2557-E2566.
https://doi.org/10.1210/clinem/dgab190
[41] Elster, A.D., Chen, M.Y., Williams, D.W. and Key, L.L. (1990) Pituitary Gland: MR Imaging of Physiologic Hypertrophy in Adolescence. Radiology, 174, 681-685.
https://doi.org/10.1148/radiology.174.3.2305049
[42] Jiang, H., Shu, Z., Luo, X., et al. (2021) Noninvasive Radiomics-Based Method for Evaluating Idiopathic Central Precocious Puberty in Girls. Journal of International Medical Research, 49, 300060521991023.
https://doi.org/10.1177/0300060521991023
[43] 侯哲, 王敏红, 李志鸿, 等. 垂体相关临床及MRI影像组学特征联合列线图鉴别特发性中枢性性早熟与单纯乳房早发育[J]. 中国医学影像技术, 2023, 39(8): 1133-1138.
[44] Zou, P., Zhang, L., Zhang, R., et al. (2023) Development and Validation of a Combined MRI Radiomics, Imaging and Clinical Parameter-Based Machine Learning Model for Identifying Idiopathic Central Precocious Puberty in Girls. Journal of Magnetic Resonance Imaging: JMRI, 58, 1977-1987.
https://doi.org/10.1002/jmri.28709
[45] Yu, W., Lu, Y., Chen, T., et al. (2023) Frequency-Dependent Alterations in Regional Homogeneity Associated with Puberty Hormones in Girls with Central Precocious Puberty: A Resting-State FMRI Study. Journal of Affective Disorders, 332, 176-184.
https://doi.org/10.1016/j.jad.2023.03.051
[46] Yang, D., Zhang, W., Zhu, Y., et al. (2019) Initiation of the Hypothalamic-Pituitary-Gonadal Axis in Young Girls Undergoing Central Precocious Puberty Exerts Remodeling Effects on the Prefrontal Cortex. Frontiers in Psychiatry, 10, Article No. 332.
https://doi.org/10.3389/fpsyt.2019.00332
[47] Chen, T., Lu, Y., Wang, Y., et al. (2019) Altered Brain Structure and Functional Connectivity Associated with Pubertal Hormones in Girls with Precocious Puberty. Neural Plasticity, 2019, Article ID: 1465632.
https://doi.org/10.1155/2019/1465632
[48] Pan, L., Liu, G., Mao, X., et al. (2019) Development of Prediction Models Using Machine Learning Algorithms for Girls with Suspected Central Precocious Puberty: Retrospective Study. JMIR Medical Informatics, 7, E11728.
https://doi.org/10.2196/11728
[49] Chen, Y.S., Liu, C.F., Sung, M.I. and Lin, S.J. (2023) Machine Learning Approach for Prediction of the Test Results of Gonadotropin-Releasing Hormone Stimulation: Model Building and Implementation. Diagnostics (Basel, Switzerland), 13, Article No. 1550.
https://doi.org/10.3390/diagnostics13091550