血管钙化与血管内皮生长因子的研究进展
Research Progress of Vascular Calcification and Vascular Endothelial Growth Factor
DOI: 10.12677/bp.2024.142007, PDF, HTML, XML, 下载: 39  浏览: 68  科研立项经费支持
作者: 徐 婕, 马 骁, 黄施祎, 诸彦蓓:南通大学医学院,江苏 南通;刘晓宇*:南通大学神经再生重点实验室,江苏 南通
关键词: 血管内皮生长因子血管钙化增殖迁移Vascular Endothelial Growth Factor Vascular Calcification Proliferation and Migration
摘要: 血管钙化是心血管系统最常见的血管疾病之一,已经被证实是一个主动的、可调控的、可预防的过程。血管钙化的病理过程类似于骨发育和软骨形成的过程,其核心是平滑肌细胞(vascular smooth muscle cell, VSMC)分化为成骨或软骨细胞,从而导致钙盐的异常沉积。血管内皮生长因子(vascular endothelial growth factor, VEGF)是内皮细胞高度特异性的血管生成因子,VEGF可促进血管内皮细胞增殖迁移、提高血管通透性并加速血管形成。在血管钙化形成过程中,VEGF及其受体表达显著上升。为了阐明VEGF在血管钙化过程中的调控机制,为血管钙化的临床治疗提供新思路,本文将重点就VEGF与血管钙化之间的关系进行综述。
Abstract: Vascular calcification is one of the most common vascular diseases in cardiovascular system, which has been proven to be an active, controllable and preventable process. The pathological process of vascular calcification is similar to the process of bone development and cartilage formation, the core of which is the differentiation of vascular smooth muscle cell (VSMC) into osteoblasts or chondrocytes, which leads to abnormal deposition of calcium salts. Vascular endothelial growth factor (VEGF) is a highly specific angiogenic factor of endothelial cells. VEGF can promote the proliferation and migration of vascular endothelial cells, improve vascular permeability and accelerate the formation of blood vessels. In the process of vascular calcification, the expression of VEGF and its receptor increased significantly. In order to clarify the regulatory mechanism of VEGF in the process of vascular calcification and provide new ideas for clinical treatment of vascular calcification, this article will focus on the relationship between VEGF and vascular calcification.
文章引用:徐婕, 马骁, 黄施祎, 诸彦蓓, 刘晓宇. 血管钙化与血管内皮生长因子的研究进展[J]. 生物过程, 2024, 14(2): 48-55. https://doi.org/10.12677/bp.2024.142007

1. 引言

根据Greenland P等人的研究,在40岁以上时,血管钙化的人群比例随年龄增长而增高,而年轻人群的血管钙化的发病率则相对较低 [1] 。在临床工作中,血管钙化可分为内膜钙化、中膜钙化和瓣膜钙化,血管钙化与多种心血管疾病均有紧密关联,例如,内膜钙化与动脉粥样硬化(AS)密切相关 [2] 、瓣膜钙化与钙化主动脉瓣疾病(CAVD)密切相关 [3] 。

1989年,Ferrara教授首次在牛垂体中发现了血管内皮生长因子(VEGF)的存在,并证明其在体内诱导血管生成中发挥重要作用 [4] 。近年来,VEGF对血管钙化的调控作用也备受关注 [5] 。蔡亚琳等选取了感染性休克合并急性肾损伤(AKI)的患者,根据有无动脉钙化将其分为两组,通过检测VEGF表达发现:钙化组患者血清VEGF水平比非钙化组患者显著升高,表明VEGF表达水平与该疾病患者的动脉钙化疾病发展进程相关,反映了VEGF与动脉钙化的发生发展间存在的潜在联系 [6] 。

2. VEGF概述

2.1. VEGF家族

VEGF是一种特异性的内皮细胞有丝分裂原,其家族成员众多,包括VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(PIGF)。其中,VEGF-A在体内正常和疾病期血管生成调节过程中起关键作用,因此,目前主要相关研究都集中于VEGF-A。人VEGF-A是分子量为45 kD的二聚体糖蛋白,由7个内含子将8个外显子隔开而形成,全长28 kb,位于6p21.1号染色体上。VEGF-A的外显子6、7、8经过选择性剪切后,根据所含氨基酸数可分为六种亚型,包括VEGF121、VEGF145、VEGF165、VEGF183、VEGF189和VEGF206。VEGF121是一种不与肝素结合的自由扩散蛋白,而VEGF189和VEGF206与肝素具有高亲和力,VEGF145和VEGF183则较为少见。VEGF可特异性地促进血管内皮细胞增生和血管生成,增加血管的通透性。VEGF的表达与功能变化与很多疾病的发生有关,并在血管钙化过程中也发挥重要的调节作用,相关机制主要涉及对血管通透性和血管新生的影响 [7] 。

2.2. VEGF受体

VEGF受体是与VEGF进行特异性结合的高亲和力受体,称为血管内皮生长因子受体(VEGFR),主要分为VEGFR1、VEGFR2、VEGFR3,属受体酪氨酸激酶(PTK)类蛋白。VEGFR参与血管和淋巴管的生成以及血管通透性的调节过程。其中,VEGFR1和VEGFR2主要分布在血管内皮表面,参与调节血管生成;VEGFR3主要分布在淋巴内皮表面,调节淋巴管的生成 [8] 。

功能研究标明,VEGFR1可高亲和力结合VEGF-A,对于造血细胞的迁移及血管生成至关重要,但主要通过调节VEGF-A与VEGFR2结合的可用性而发挥作用 [9] 。VEGFR2是内皮细胞发育和血管存活的必要条件,VEGFR2通过调节内皮细胞增殖和迁移的不同信号转导途径来发挥作用,如VEGF与VEGFR2结合,随后激活可调节细胞增殖、存活和血管生成的细胞物质 [10] 。VEGFR3是淋巴生长因子VEGF-C和VEGF-D的受体,起到调节心血管和淋巴管内皮细胞的作用。VEGFR3与VEGF-C的特异性结合可增加淋巴管通透性,从而促进肿瘤侵袭及转移 [11] ,而在肿瘤发生时,VEGFR3的表达也有明显上调 [12] 。

在机制方面,VEGF和VEGFR于VEGFR的N-末端结合后,VEGFR发生二聚化并改变其蛋白质构象,暴露细胞内ATP结合位点 [13] ,使酪氨酸残基能够通过自磷酸化或转磷酸化被激活,以激活Src激酶,而Src的活化将激活P13K-Akt信号途径 [14] 。P13K-Akt/PKB途径在血管钙化中发挥重要的调控作用,主要涉及调节细胞增殖、分化和胞外基质的合成与降解等分子与细胞机制。激活P13K-Akt/PKB途径有助于降低血管平滑肌细胞钙化的倾向,而抑制其激活可能导致钙化增加。具体机制涉及多个信号分子和途径,包括转录调节因子、细胞凋亡抑制和细胞周期调控等 [15] 。

2.3. VEGF的生理学功能

2.3.1. 促进内皮细胞增殖和迁移

VEGF是一种血管内皮细胞的特异性有丝分裂原,可诱导血管内皮细胞的生长,从而促进血管增生 [16] 。其中,VEGF-A被认为是病理性血管增生和血管通透性增加的主要刺激因子 [17] 。在低氧环境下,VEGF与内皮细胞膜上VEGF受体(主要是VEGFR1和VEGFR2)结合,引起受体的自身磷酸化,从而激活有丝分裂原活化蛋白激酶(MAPK),实现VEGF的有丝分裂原特性,通过增加内皮细胞增生而加快血管新生 [18] 。VEGF及其受体在生理性和病理性血管生成中起着至关重要的作用。研究发现,VEGF可通过提高血浆酶原活化因子(PA)和血浆酶原活化因子抑制因子-l (PAI-1)的mRNA表达,来提高血浆酶原活化因子的活性,促进细胞外蛋白水解,重塑细胞外间质,触发结缔组织增生性基质的形成,最终促进新生毛细血管的形成 [19] 。

2.3.2. 增加血管通透性

VEGF可增加血管的通透性。VEGF可诱导c-Src家族激酶的表达,继而引发Vav2、Rac GTP酶和p21激活激酶(PAK)活化,导致VE-钙粘蛋白磷酸化并打开内皮细胞连接,使血浆蛋白和细胞因子能够渗透到组织间隙中,进而增加血管通透性 [20] 并促进血管钙化。其下游P13K-Akt信号途径的激活,可诱导内皮细胞中一氧化氮合酶(eNOS)磷酸化并抑制其表达水平,使一氧化氮(NO)减少,最终导致内皮屏障的通透性增加,促进Ca2+沉积,引起血管钙化 [21] 。

2.3.3. 调节炎症反应

VEGF参与调节炎症反应,它能够吸引和激活免疫细胞,促进炎症细胞的迁移和炎症因子的释放,这对于抵御感染和组织修复非常重要 [22] 。Mariantonia Braile等研究发现,VEGF可通过诱导一氧化氮(NO)的合成引发低密度脂蛋白(LDL)的氧化,沉积在动脉壁,并募集血液循环中的白细胞引起动脉粥样硬化血栓的形成 [23] 。

2.3.4. 促进神经发育和修复

除了在血管系统中的作用,VEGF还在神经系统中发挥重要作用。神经系统具有显著的再生能力,而VEGF能够促进神经元的生长和迁移,以及神经突触的形成 [24] ,这对于神经发育和损伤后的神经再生具有重要意义。研究发现,抑制VEGF可损害施万细胞利用血管作为“轨迹”共同迁移,以引导再生轴突通过新组织的“桥梁”的方向性,进而影响重新连接断裂神经的进程,导致有缺陷的神经修复 [25] 。

3. 血管钙化及其形成过程

3.1. 血管钙化概述

血管钙化是一种异位矿化,是指血液中的钙磷过度增多,导致钙磷稳态失调致其在血管壁中异常沉积的现象。由钙磷沉积所致的血管钙化使富有弹性的血管变脆易裂,可引起严重的全身并发症如心脏病 [26] 。研究发现,随着年龄的增长,血管壁逐渐失去弹性,从而更容易发生血管钙化。男性通常比女性更容易发展血管钙化,尤其是在一定年龄后。导致血管钙化的原因有很多,其中不良生活方式如吸烟、高糖、高脂、高盐饮食、缺乏运动、肥胖等,均会增加血管钙化的风险。高血压会导致血管壁受损,使钙负担增加。高胆固醇水平,特别是低密度脂蛋白(LDL)胆固醇,会导致胆固醇在动脉壁中沉积,促使钙化发生 [27] 。高血糖水平可以损害血管内皮细胞,因此糖尿病患者更容易发生血管钙化 [28] 。此外,高尿酸水平可能与血管钙化有关,尤其是在痛风患者中 [29] 。慢性炎症,如风湿性关节炎或自身免疫疾病,也可能会增加血管钙化的风险 [30] 。家族病史中有心血管疾病的人也可能更容易发展血管钙化。

血管钙化是一个复杂且高度调节的过程,受到多方因素的调节,包括线粒体功能衰退导致的氧化应激、氧化应激所致的血管壁炎症反应、细胞凋亡和死亡释放促进钙磷沉积的物质,以及钙化抑制剂和诱导剂的失衡等 [31] 。血管钙化与心血管疾病的发生发展密不可分,目前血管钙化的机制尚未完全阐明,我们需要充分细致地了解其机制和调节因素,才能更好地认识这一病理现象。

3.2. 血管钙化的形成过程

血管钙化的形成过程是一个逐渐发展的过程,可能需要数年或数十年,它是动脉粥样硬化的一个关键组成部分,与心血管疾病的风险密切相关。

血管钙化是一种复杂的生物化学过程,其形成涉及多个步骤,包括:血管壁损伤后,LDL胆固醇等脂质物质开始在受损区域内积聚,并在血管壁内逐渐形成斑块,称为粥样斑块 [32] ;随后免疫系统被激活,炎症细胞及炎症因子被募集到斑块区域,引发炎症反应 [28] ;继而平滑肌细胞开始增生,试图修复损伤的动脉壁,同时也被斑块内的脂质沉积物所束缚,导致斑块进一步扩大;炎症和细胞增生会引起斑块内钙盐的沉积,导致斑块变得坚硬,最终形成血管钙化。在血管钙化形成过程中,炎症反应、氧化应激等因素发挥重要的作用,而VEGF则能通过调控炎症信号通路及氧化损伤等过程,实现对血管钙化的调节。

4. VEGF与血管钙化

VEGF参与血管钙化形成,同时又能抑制早期血管钙化,通过调节炎症反应、氧化应激、钙磷代谢、细胞凋亡等机制影响血管钙化的病理过程。由于涉及的通路众多,分子机制复杂,使VEGF对血管钙化起到复杂的,且同时包含促进和抑制的双向调节作用。

4.1. VEGF通过调节炎症反应影响血管钙化

在血管钙化形成过程中,白细胞和炎症介质等被吸引到血管损伤区域,引起炎症反应以修复血管。但炎症反应还可以引起钙盐的异常沉积,最终形成血管钙化。

炎症反应通常与其他血管钙化机制共同作用,构成复杂的级联反应。研究发现,炎症反应会导致需氧量增加,并破坏血氧供需之间的平衡,从而导致血管壁局部缺氧 [33] 。炎症反应还可与内皮细胞及VSMC共同调控血管钙化的进程。有研究发现,VEGF、HIF-1a和Ets-1在斑块深层共存,并且可以在新生血管内皮细胞、炎症细胞和平滑肌细胞中级联上调,共同调节血管生成 [34] ,进而影响血管钙化。

4.2. VEGF通过调节氧化应激影响血管钙化

血管内皮细胞和平滑肌细胞产生过多的氧化物质如活性氧(ROS)时,可引发氧化损伤,并诱导细胞死亡、脂质过氧化等病理变化,导致钙离子在血管壁中沉积,形成血管钙化。

VEGF可影响氧化应激从而达到控制血管钙化的目的。首先,VEGF通过激活内皮细胞中的NADPH氧化酶刺激ROS的产生 [35] ;VEGF还可以影响氧化应激诱导的转录因子的表达,进而调节抗氧化系统的功能 [36] 。相关研究表示,Runx2是氧化应激诱导的VSMC钙化的组成部分。在动脉粥样硬化斑块中,氧化应激产生H2O2,激活Msx2-Wnt信号通路,促进钙化血管细胞的成骨分化 [37] 。此外,H2O2对血管LDL胆固醇的氧化产生氧化固醇,通过hedgehog通路触发Runx2活性致使VSMC钙化加剧 [38] 。

4.3. VEGF通过调节细胞的增殖、分化及凋亡影响血管钙化

4.3.1. VEGF通过调节内皮细胞影响血管钙化

VEGF可以通过抑制血管内皮细胞的凋亡,促进内皮细胞增殖和侵袭,使其数量增加且存活率提高,从而影响血管钙化的进展;而VEGF与其受体表达减少则诱导内皮细胞凋亡 [39] 。

VEGF与其受体结合后,可激活细胞存活信号通路或抑制细胞凋亡信号传导通路以减少血管内皮细胞凋亡。比如VEGF可以特异性结合内皮细胞的Flk-1/KDR (VEGFR2受体),激活PI3K/AKT通路,进而抑制BAD和caspase-9的表达以减少细胞凋亡 [40] 。这些发现进一步表明VEGF与其受体介导的信号通路参与了细胞凋亡的发展,然而内皮细胞的凋亡并不直接影响血管钙化,而是通过细胞间信号转导及炎症反应等间接调控血管钙化,其中复杂的分子机制还有待进一步研究。

4.3.2. VEGF通过调节平滑肌细胞影响血管钙化

血管钙化的核心就是平滑肌细胞转化为成骨或软骨细胞,引起钙盐异常积聚,平滑肌细胞的增殖、凋亡及分化在血管钙化形成过程中占据显著意义。平滑肌细胞已被证实可促进血管损伤的修复并参与内皮新生 [41] ,同时也可能扩大血管斑块,促进血管钙化。VEGF能够通过受体酪氨酸激酶(RTKs)激活细胞内ERK/MAPK等信号通路,从而诱导血管平滑肌细胞迁移及向成骨细胞分化,促进血管钙化 [42] 。

4.4. VEGF在血管钙化临床治疗中的应用价值

齐彤发现,使用具有VEGF的两性离子水凝胶来改善心脏瓣膜的抗钙化和再内皮化特性 [43] 。Ralf G. Seipelt研究表明,外源性血管内皮生长因子能够增加外源血管生成,并将培养基中的巨噬细胞浸润和骨桥蛋白表达转移到较早的时间点,从而促进及时修复,减少急性血管损伤后的血管重塑和钙化 [44] 。这些都是VEGF可调节血管钙化的有力证据,并为VEGF用于临床治疗提供了理论和数据参考。

5. 总结与展望

VEGF作为介导血管钙化的重要分子,已被证实对血管钙化有双向调控作用,这可能与VEGF调节钙磷浓度、改善骨代谢、抑制炎症、氧化应激与细胞凋亡等共同作用有关。然而,VEGF调节血管钙化的机制相当复杂,且各种机制学说中的关键分子或通路之间存在相互影响。目前有关VEGF调控血管钙化的确切分子机制、信号通路的研究尚不十分完善。因此,深入研究并阐明VEGF调控血管钙化进程的信号通路和分子机制将进一步完善血管钙化的理论基础,并为临床上血管钙化的防治提供新的思路。

基金项目

大学生创新创业训练项目(202310304126Y)。

NOTES

*通讯作者。

参考文献

[1] Greenland, P., Blaha, M.J., Budoff, M.J., et al. (2018) Coronary Calcium Score and Cardiovascular Risk. Journal of the American College of Cardiology, 72, 434-447.
https://doi.org/10.1016/j.jacc.2018.05.027
[2] Simon, A. and Levenson, J. (1993) Early Detection of Subclinical Atherosclerosis in Asymptomatic Subjects at High Risk for Cardiovascular Disease. Clinical and Experimental Hypertension (New York, NY: 1993), 15, 1069-1076.
https://doi.org/10.3109/10641969309037094
[3] Shu, L., Yuan, Z., Li, F., et al. (2023) Oxidative Stress and Valvular Endothelial Cells in Aortic Valve Calcification. Biomedicine & Pharmacotherapy, 163, Article ID: 114775.
https://doi.org/10.1016/j.biopha.2023.114775
[4] Leung, D.W., Cachianes, G., Kuang, W.J., et al. (1989) Vascular Endothelial Growth Factor Is a Secreted Angiogenic Mitogen. Science (New York, NY), 246, 1306-1309.
https://doi.org/10.1126/science.2479986
[5] Mikhaylova, L., Malmquist, J. and Nurminskaya, M. (2007) Regulation of in Vitro Vascular Calcification by BMP4, VEGF and Wnt3a. Calcified Tissue International, 81, 372-381.
https://doi.org/10.1007/s00223-007-9073-6
[6] 蔡亚琳, 候晶晶, 高永宁, 等. Klotho、VEGF、BMP-7与行持续性血液透析的感染性休克合并AKI动脉钙化的相关性[J]. 中华医院感染学杂志, 2023, 33(8): 1177-1181.
[7] Wautier, J.L. and Wautier, M.P. (2022) Vascular Permeability in Diseases. International Journal of Molecular Sciences, 23, Article No. 3645.
https://doi.org/10.3390/ijms23073645
[8] Melincovici, C.S., Boşca, A.B., Şuşman, S., et al. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455-467.
https://doi.org/10.1074/jbc.M506454200
[9] Meyer, R.D., Mohammadi, M. and Rahimi, N. (2006) A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1. The Journal of Biological Chemistry, 281, 867-875.
[10] Shah, A.A., Kamal, M.A. and Akhtar, S. (2021) Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways and Current Biological Therapeutic Interventions. Current Drug Metabolism, 22, 50-59.
https://doi.org/10.2174/1389200221666201019143252
[11] 叶鑫, 王梦涵, 袁婉婧, 等. 健脾补肾法对人结直肠癌裸鼠VEGF-C、VEGFR-3、E-Cadherin、Vimentin表达的影响[J]. 中医药信息, 2023, 40(11): 39-42, 52.
[12] 赵丽霞, 任成波, 马峰, 等. 肺癌组织MTA1、VEGF-C表达变化及与患者临床病理特征、预后关系[J]. 广东药科大学学报, 2022, 38(1): 103-108.
[13] Wang, X., Bove, A.M., Simone, G., et al. (2020) Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Frontiers in Cell and Developmental Biology, 8, Article ID: 599281.
https://doi.org/10.3389/fcell.2020.599281
[14] Migliaccio, A., Castoria, G., Di Domenico, M., et al. (2002) Src Is an Initial Target of Sex Steroid Hormone Action. Annals of the New York Academy of Sciences, 963, 185-190.
https://doi.org/10.1111/j.1749-6632.2002.tb04109.x
[15] Nakai, K., Yoneda, K., Moriue, T., et al. (2009) HB-EGF-Induced VEGF Production and ENOS Activation Depend on both PI3 Kinase and MAP Kinase in HaCaT Cells. Journal of Dermatological Science, 55, 170-178.
https://doi.org/10.1016/j.jdermsci.2009.06.002
[16] Liu, J., Li, Y., Zhang, H., et al. (2023) Associated Genetic Variants and Potential Pathogenic Mechanisms of Brain Arteriovenous Malformation. Journal of Neurointerventional Surgery, 15, 572-578.
https://doi.org/10.1136/neurintsurg-2022-018776
[17] Uehara, H., Cho, Y., Simonis, J., et al. (2013) Dual Suppression of Hemangiogenesis and Lymphangiogenesis by Splice-Shifting Morpholinos Targeting Vascular Endothelial Growth Factor Receptor 2 (KDR). FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27, 76-85.
https://doi.org/10.1096/fj.12-213835
[18] Wang, Y., Fei, Z., Ma, Y.H., et al. (2012) VEGF Upregulates Homer 1a Gene Expression via the Mitogen-Activated Protein Kinase Cascade in Cultured Cortex Neurons. Neuroscience Letters, 515, 44-49.
https://doi.org/10.1016/j.neulet.2012.03.016
[19] Cheng, L., Liu, W., Zhong, C., et al. (2021) Remodeling the Homeostasis of Pro-and Anti-Angiogenic Factors by Shenmai Injection to Normalize Tumor Vasculature for Enhanced Cancer Chemotherapy. Journal of Ethnopharmacology, 270, Article ID: 113770.
https://doi.org/10.1016/j.jep.2020.113770
[20] Zhou, W., Liu, K., Zeng, L., et al. (2022) Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation, 146, 1855-1881.
https://doi.org/10.1161/CIRCULATIONAHA.122.061900
[21] Milkiewicz, M., Hudlicka, O., Brown, M.D., et al. (2005) Nitric Oxide, VEGF, and VEGFR-2: Interactions in Activity-Induced Angiogenesis in Rat Skeletal Muscle. American Journal of Physiology Heart and Circulatory Physiology, 289, H336-H343.
https://doi.org/10.1152/ajpheart.01105.2004
[22] 叶晨. VEGF-C刺激的脂肪间充质干细胞通过调节炎症反应与淋巴管引流减轻TNBS介导的慢性实验性结肠炎[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.
[23] Libby, P., Loscalzo, J., Ridker, P.M., et al. (2018) Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. Journal of the American College of Cardiology, 72, 2071-2081.
https://doi.org/10.1016/j.jacc.2018.08.1043
[24] Wu, K.W., Mo, J.L., Kou, Z.W., et al. (2017) Neurovascular Interaction Promotes the Morphological and Functional Maturation of Cortical Neurons. Frontiers in Cellular Neuroscience, 11, Article No. 290.
https://doi.org/10.3389/fncel.2017.00290
[25] 杨海霞, 靳庆玲, 林家静, 等. 黄芪甲苷通过DNA甲基化调节VEGFA参与急性低氧脑损伤的保护作用[J]. 包头医学院学报, 2023, 39(6): 5-9 19.
[26] Villa-Bellosta, R. (2021) Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. International Journal of Molecular Sciences, 22, Article No. 13536.
https://doi.org/10.3390/ijms222413536
[27] Duarte, Lau, F. and Giugliano, R.P. (2022) Lipoprotein(A) and Its Significance in Cardiovascular Disease: A Review. JAMA Cardiology, 7, 760-769.
https://doi.org/10.1001/jamacardio.2022.0987
[28] Yahagi, K., Kolodgie, F.D., Lutter, C., et al. (2017) Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 191-204.
https://doi.org/10.1161/ATVBAHA.116.306256
[29] Ejaz, A.A., Nakagawa, T., Kanbay, M., et al. (2020) Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Seminars in Nephrology, 40, 574-585.
https://doi.org/10.1016/j.semnephrol.2020.12.004
[30] Bessueille, L. and Magne, D. (2015) Inflammation: A Culprit for Vascular Calcification in Atherosclerosis and Diabetes. Cellular and Molecular Life Sciences: CMLS, 72, 2475-2489.
https://doi.org/10.1007/s00018-015-1876-4
[31] Zhu, Y., Han, X.Q., Sun, X.J., et al. (2020) Lactate Accelerates Vascular Calcification through NR4A1-Regulated Mitochondrial Fission and BNIP3-Related Mitophagy. Apoptosis: An International Journal on Programmed Cell Death, 25, 321-340.
https://doi.org/10.1007/s10495-020-01592-7
[32] Neels, J.G., Leftheriotis, G. and Chinetti, G. (2023) Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites, 13, Article No. 457.
https://doi.org/10.3390/metabo13030457
[33] Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article No. 6224.
https://doi.org/10.3390/ijms23116224
[34] Han, L., Lin, X., Yan, Q., et al. (2022) PBLD Inhibits Angiogenesis via Impeding VEGF/VEGFR2-Mediated Microenvironmental Cross-Talk between HCC Cells and Endothelial Cells. Oncogene, 41, 1851-1865.
https://doi.org/10.1038/s41388-022-02197-x
[35] Fukai, T. and Ushio-Fukai, M. (2020) Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells, 9, Article No. 1849.
https://doi.org/10.3390/cells9081849
[36] Fan, J., Lv, H., Li, J., et al. (2019) Roles of Nrf2/HO-1 and HIF-1α/VEGF in Lung Tissue Injury and Repair Following Cerebral Ischemia/Reperfusion Injury. Journal of Cellular Physiology, 234, 7695-7707.
https://doi.org/10.1002/jcp.27767
[37] Li, Y., Baccouche, B., Olayinka, O., et al. (2021) The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Investigative Ophthalmology & Visual Science, 62, 17.
https://doi.org/10.1167/iovs.62.12.17
[38] Du, H., Yang, L., Zhang, H., et al. (2021) LncRNA TUG1 Silencing Enhances Proliferation and Migration of Ox-LDL-Treated Human Umbilical Vein Endothelial Cells and Promotes Atherosclerotic Vascular Injury Repairing via the Runx2/ANPEP Axis. International Journal of Cardiology, 338, 204-214.
https://doi.org/10.1016/j.ijcard.2021.05.014
[39] Zhang, A., Wang, G., Jia, L., et al. (2019) Exosome-Mediated MicroRNA-138 and Vascular Endothelial Growth Factor in Endometriosis through Inflammation and Apoptosis via the Nuclear Factor-κB Signaling Pathway. International Journal of Molecular Medicine, 43, 358-370.
https://doi.org/10.3892/ijmm.2018.3980
[40] Chen, Q., Lin, J., Deng, Z., et al. (2022) Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells Protect against Papain-Induced Emphysema by Preventing Apoptosis through Activating VEGF-VEGFR2-Mediated AKT and MEK/ERK Pathways in Rats. Regenerative Therapy, 21, 216-224.
https://doi.org/10.1016/j.reth.2022.07.002
[41] Tang, J., Wang, H., Huang, X., et al. (2020) Arterial Sca1( ) Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell, 26, 81-96.E4.
https://doi.org/10.1016/j.stem.2019.11.010
[42] Lv, Y.X., Zhong, S., Tang, H., et al. (2018) VEGF-A and VEGF-B Coordinate the Arteriogenesis to Repair the Infarcted Heart with Vagus Nerve Stimulation. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48, 433-449.
https://doi.org/10.1159/000491775
[43] Tong, Q., Sun, A., Wang, Z., et al. (2022) Hybrid Heart Valves with VEGF-Loaded Zwitterionic Hydrogel Coating for Improved Anti-Calcification and Re-Endothelialization. Materials Today Bio, 17, Article ID: 100459.
https://doi.org/10.1016/j.mtbio.2022.100459
[44] Seipelt, R.G., Backer, C.L., Mavroudis, C., et al. (2005) Osteopontin Expression and Adventitial Angiogenesis Induced by Local Vascular Endothelial Growth Factor 165 Reduces Experimental Aortic Calcification. The Journal of Thoracic and Cardiovascular Surgery, 129, 773-781.
https://doi.org/10.1016/j.jtcvs.2004.06.039