靶向测序技术在临床中的运用
The Application of Targeted Sequencing Technology in Clinical Practice
DOI: 10.12677/acm.2024.1451482, PDF, HTML, XML, 下载: 23  浏览: 40 
作者: 刘金峰:赣南医科大学第一临床医学院,江西 赣州;钟一鸣:赣南医科大学第一附属医院心血管内科,江西 赣州
关键词: 靶向测序下一代测序精准医疗基因变异Targeted Sequencing Next-Generation Sequencing Precision Medicine Gene Mutation
摘要: 靶向测序技术在过去二十年得到迅猛发展,其在精准医疗领域已得到广泛的临床应用。本文详细讨论了靶向测序方法的技术方面,包括PCR富集、杂交捕获和选择性环化等,并深入分析了其在临床肿瘤学、产前筛查、遗传病、传染病和药物反应分析等方面的应用。此外,本文还着重指出了该领域面临的挑战和新兴趋势,如数据分析、成本效益和新靶向技术的发展。这篇文章提供了靶向测序技术在现代医学中的影响和潜力的详细概览。
Abstract: Targeted sequencing technology has experienced rapid development over the past two decades and has been widely applied in the field of precision medicine. This article discusses in detail the technical aspects of targeted sequencing methods, including PCR enrichment, hybrid capture, and selective circularization, and deeply analyzes their applications in clinical oncology, prenatal screening, genetic diseases, infectious diseases, and drug response analysis. Additionally, this paper highlights the challenges and emerging trends in this field, such as data analysis, cost-effectiveness, and the development of new targeted technologies, providing a comprehensive overview of the impact and potential of targeted sequencing in modern medicine.
文章引用:刘金峰, 钟一鸣. 靶向测序技术在临床中的运用[J]. 临床医学进展, 2024, 14(5): 713-719. https://doi.org/10.12677/acm.2024.1451482

1. 引言

在过去二十年间,测序技术经历了显著的发展,为精准医学和个体化医疗的实现做出了不可忽视的贡献 [1] 。这一进步体现在基于测序结果构建的大规模疾病组学数据库和测序解读方法上 [2] 。随着测序技术的发展,我们能够更好地理解个体的基因信息,从而实现更精准、更有效的医疗干预。基于个体的基因组信息,医生可以更准确地诊断疾病,包括传染性疾病、遗传性疾病、肿瘤等 [3] 。此外,不同个体对同一药物的反应可能存在差异,这可能与遗传因素有关,通过测序,医生可以识别那些对特定药物有良好反应的患者,或避免对某些患者使用可能引起严重副作用的药物 [4] 。通过基因检测,医生还可以了解个体的代谢特点,从而为患者定制最适合的治疗方案,提高治疗效果,减少副作用,比如对人细胞色素P450 (CYP)酶相关基因进行测序 [5] 。如此,精准诊断、药物反应个体化调整以及针对代谢个体差异的定制治疗逐渐成为临床实践中的重要组成部分。然而,在临床实际应用中,面临的挑战是,医生需根据特定疾病为病人提供个体化的治疗方案,这要求获取病人特定基因位点的详细信息。鉴于测序基因组覆盖范围广、相关成本高、数据复杂性大,并且许多基因的临床应用尚不明确,全基因组或外显子组的筛选在技术上具有挑战性,且并不适合临床场景的需求。相比之下,靶向测序因其高度特异性、高覆盖深度和低成本等优势,成为更适合临床应用的测序方式 [6] 。靶向测序技术在诸如肿瘤基因突变检测、药物敏感性和抗药性检测、遗传性疾病的诊断和筛查、肿瘤异质性评估、微生物组测序、临床试验筛选及液体活检等方面已经得到了广泛应用 [7] 。

2. 靶向测序方法

2.1. 聚合酶链式反应(PCR)富集测序技术

PCR富集测序技术是一种结合了多重PCR和高通量测序技术的方法,专注于特定基因、外显子、或其他基因组区域的测序。多重PCR可以在单个反应中使用低至10 ng的输入DNA扩增数百到数千个不同的基因组区域以进行测序 [8] 。然而,单个反应中使用多个引物可能具有局限性,例如,由于引物之间的干扰,非特异性扩增产物增加以及扩增失败。因此,为了最大限度减少PCR反应期间扩增竞争的问题,发展了基于乳液化学制造包含单个引物对微滴的办法,将引物微滴与基因组DNA模板混合后进行热循环 [9] 。现在通过微滴PCR和下一代测序技术进行靶标富集已成为常规技术,并且是RainDance Technologies等商用技术的基础 [10] 。

2.2. 杂交捕获测序技术

杂交捕获测序技术是一种结合杂交和高通量测序的方法。利用探针与目标序列结合,形成复合物进而实现目的区域的富集,它可以实现靶序列的均匀覆盖和良好的重复性。目前有两种常见的杂交捕获方法:固相杂交和液相杂交。固相杂交是利用由与感兴趣区域或捕获探针互补的序列组成的寡核苷酸微阵列。基于这种原理,Albert等开发了高密度寡核苷酸微阵列捕获技术,实现了高通量测序技术识别序列变异的目的 [11] ,能对98%的全基因外显子进行测序。然而该方法捕获的最适长度是500 bp的DNA片段,限制了某些外显子的富集(外显子中位大小约为170 bp)。另一向研究中,Hodges等开发了NimbleGen阵列,这些阵列能富集99%的目标外显子序列,潜在的偏差来源于大外显子和高AT含量外显子的代表性不足 [12] 。与固相杂交捕获相比,液相杂交反应在液相中进行,杂交的引物与样本DNA结合形成引物–目标DNA复合物,通过特定的分离步骤,实现对目标DNA的富集。相比固相杂交捕获技术,液相的优势包括均匀覆盖、适用于复杂基因组区域和样本处理难度低。Illumina、NimbleGen和Sureselect都发展了全外显子组测序的液相杂交体系 [13] 。

2.3. 选择性环化探针捕获测序技术

选择性环化探针是单链DNA分子,其具有与靶区侧翼区域互补的两个序列,并通过接头序列分离 [14] 。只有当探针与靶序列结合,产生可以通过PCR选择性扩增的环状分子时,侧翼序列之间的间隙才会闭合。靶向不同区域的多个探针可以组合成多重反应,并且探针可以被生物素化以促进捕获 [15] 。然后可以使用连接区中的通用引物序列扩增一组中的所有探针。平台特异性测序适配器可以添加到探针中,或作为二次PCR步骤,以允许下游高通量测序。非环状DNA片段可以用核酸外切酶消除。环化探针的优点是测序引物可以作为探针的一部分加入,从而消除了对额外制备步骤的需要。Hardenbol等人 [16] 描述了在单个多重反应中使用选择性环化探针对多达12,000个SNPs进行基因分型。Turner等人 [17] 通过延长杂交和间隙填充孵育时间以及增加探针和连接酶浓度,证明了捕获效率和杂合等位基因采样能力的提高。这些改进捕获了98%的靶标,但只有75%的靶向碱基具有足够的基因分型覆盖率。这种性能比基于PCR或杂交捕获的方法差 [18] 。

3. 应用场景

3.1. 临床肿瘤学

癌症中的特征性基因组畸变识别已成为精准医学的核心部分。导致癌症的基因组变异种类繁多,如血液及实体恶性肿瘤中的单核苷酸变异(SNV)、小插入/缺失变异(InDel)、拷贝数变异(CNV)和融合基因。临床上对肿瘤遗传特征的迫切需求导致了基因检测的激增,出于成本效益和操作可行性的考虑,以FDA批准的FoundationOne [19] 和MSK-IMPACT [20] 等为代表的靶向测序技术,仍然是肿瘤学实践中的主流应用。近年来,临床领域见证了大量肿瘤定制Panel的设计和开发,例如,Shi Zonggao等 [21] 开发的ActSeq,主要针对实体瘤和白血病中141个癌症基因。Xie Chunbao等 [22] 为多发性骨髓瘤设计了一个覆盖400个基因的定制Panel。目前,针对肺癌的Oncomine CDx在日本已被批准用于肺癌的常规分子检测,同时,NCC OncoPanel和FoundationOne CDx也在日本获得了认可和使用 [23] 。靶向测序技术对肿瘤的早期诊断、个体化治疗、预后评估等方面起到了重要的作用 [24] 。不仅促进了精准医学在临床实践中的应用,也为临床肿瘤学开启了新的可能。

3.2. 产前筛查与诊断

基于靶向测序的无创产前筛查(Non-Invasive Prenatal Screening, NIPS)手段进行产前筛查和诊断,几乎没有风险,准确性、信息量和时间效率都相比传统的方法更具优势 [25] 。母体的血浆或血清中可检测到胎儿DNA,NIPS通过分析母体血浆或血清中的循环胎儿DNA来确定子宫内胎儿基因组状态。靶向测序技术在其中发挥了重要的作用。例如,Maryam Rafati等 [26] 使用包含316个基因的靶向测序Panel检测遗传性眼病变异,证明了其有效性。Zhang Jinglan等 [27] 设计的由30个基因组成的靶向测序Panel,旨在检测多种孟德尔单基因疾病,在对422例妊娠进行NIPS检测后,该Panel展示了20例真阳性、127例真阴性、0例假阳性和0例假阴性的结果,这表明使用靶向测序Panel进行NIPS能够精确识别胎儿的单基因疾病。此外,还有其他如Mohan等 [28] 的研究,支持使用靶向测序技术作为单基因疾病安全且早期的产前筛查工具。

目前,一些主要生物技术公司,如Sequenom、Aria Diagnostics、Illumina等,已经推出了不同的NIPS靶向测序Panel,用于筛查胎儿中可能存在的某些遗传病或先天性异常 [29] 。

3.3. 遗传性疾病

靶向测序技术已经在多种遗传性疾病的检测中显示出高效性,例如免疫缺陷、骨髓衰竭综合征、耳聋、神经系统疾病、结缔组织疾病、心肌病等 [30] ,针对不同基因组合的靶向测序通常是遗传性疾病检测的第一线。William Kermode等 [31] 用一个由120个原发免疫缺陷病相关基因组成的Panel来检测常见变异免疫缺陷病,确认了其是一种高效的检测工具。Huang Xinwen等 [32] 设计了一种针对74种新生儿先天性疾病的靶向测序Panel,它在287个已知突变样本中的准确率高达99.65%。家族性高胆固醇血症(FH)是最常见的遗传性疾病之一,预计全球只有不到1%的人口确诊,为此,Wang Hao等 [33] 设计了一个专门针对20个与FH相关基因的靶向测序Panel,并已成功在208个可能或确定的FH先证者中进行了应用。靶向测序方法不仅提高了对遗传性疾病的诊断能力,还有助于疾病的早期筛查和家族遗传风险评估。这为患者提供了更全面的遗传咨询和医疗建议,同时也推动了疾病机制的深入研究,为未来的治疗方法和预防提供了基础。

3.4. 传染性疾病

靶向测序技术被广泛应用于传染性疾病中的多个领域,包括病原学筛查、药物敏感性评估、临床研究以及疫苗研发等。针对不同的传染病,研究者可定制出不同的Panel,如Leber [34] 等开发的多重体外诊断Panel-FilmArray Respiratory Panel 2 (RP2),可直接从鼻咽拭子样本中同时快速检测22种病原体。Hernandez-Neuta等 [35] 设计了一个针对2个细菌属、21个细菌和6个真菌物种以及7个抗菌素耐药性标记物(AMR)的靶向测序Panel,结果表明,该Panel对宿主DNA中的病原体DNA目标具有高度特异性和稳健的检测能力,并且能够准确识别血培养样本中的病原体和AMR。

食源性病原体可造成广泛的健康问题和经济损失,当前迫切需要一种有效的方法来检测食源性病原体以预防食源性疫情,靶向测序Panel在微生物学中也展现出实际应用价值,尤其是在食品安全检查、食源性疾病调查等方面。已有一些实验室开发并评估了针对特定病原体的定制Panel,如Dong-Geun Park团队 [36] 开发的靶向测序Panel,用于发酵食品中病原体多重检测和鉴定,其针对来自五种致病性大肠杆菌、单核细胞增生李斯特菌和鼠伤寒沙门氏菌的13个特定毒力因子基因。此外,Dong-Geun Park团队为检测和鉴定农业废水中食源性病原体,也设计并开发了另一种靶向测序Panel [37] ,其针对六种目标病原体(蜡样芽孢杆菌、小肠结肠炎耶尔森菌、金黄色葡萄球菌、霍乱弧菌、副溶血弧菌和创伤弧菌)的18个特定毒力因子基因。这些定制Panel的设计和开发,在食源性疫情的溯源和防控中具有重大的应用潜力。

3.5. 药物反应性

靶向测序技术能够精确评估药物代谢酶的基因多态性、药物靶点变异和不良反应风险,甚至有助于药物剂量优化和新药研发。PGRNseq [38] 和ClinPharmSeq [39] 是两种定制Panel,分别针对84个和59个与药物遗传学表型相关的基因,旨在研究药物反应与遗传变异的联系。这两个Panel在药物基因组学研究和临床的多个领域均有应用,如药物遗传学研究、临床药物基因组学等,为那些希望深入了解药物基因遗传变异及其对药物反应和个体化医疗的影响的研究者提供了重要的工具。药代动力学(PK)相关基因的遗传变异是预测或解释个体对药物反应的实用药物遗传学生物标志物,Koya Fukunaga等 [40] 开发的Pkseq基于多重PCR技术,能对37种药物转运蛋白、30种细胞色素P450亚型、10种UDP-葡萄糖醛酸基转移酶、5种含黄素单加氧酶、4种谷胱甘肽S-转移酶、4种磺基转移酶和10个其他基因进行靶向测序,从而识别可能影响药物代谢、药物反应及其潜在的不良反应的遗传变异。为检测结核分枝杆菌对14种常用抗结核药物的敏感性,Wu Shenghan等 [41] 开发了一个靶向测序Panel来预测耐药性。通过深入探索基因与药物相互作用的关系,靶向测序技术已经在医学领域中展现出其不可或缺的价值。

4. 技术挑战和发展趋势

靶向测序的技术挑战和发展趋势可以归纳为三个主要方面:技术分析、成本与效率以及新兴技术的探索。在技术分析方面,由于靶向测序产生的数据量庞大,对高效的数据分析算法和工具的需求日益增长。这推动了人工智能和机器学习等先进技术在数据处理和解读方面的应用,从而提高诊断和治疗策略的精准性 [42] [43] 。在成本与效率方面,尽管靶向测序的成本已相对于全基因组测序有所下降,但为了更广泛的应用,仍需不断提高其技术效率和降低成本,使其更广泛应用于各个领域 [44] 。最后,新的靶向技术和方法的不断涌现,如单细胞靶向测序、纳米孔测序等,为靶向技术的不断发展和应用提供了新的方向 [45] [46] 。

参考文献

[1] Ashley, E.A. (2016) Towards Precision Medicine. Nature Reviews Genetics, 17, 507-522.
https://doi.org/10.1038/nrg.2016.86
[2] Berger, B. and Yu, Y.W. (2023) Navigating Bottlenecks and Trade-Offs in Genomic Data Analysis. Nature Reviews Genetics, 24, 235-250.
https://doi.org/10.1038/s41576-022-00551-z
[3] 常凯, 刘晨霞, 许宏宣, 等. 基因测序在精准医疗中的发展与应用概述[J]. 西南军医, 2021, 23(2): 146-148.
[4] Tong, H., Phan, N.V.T., Nguyen, T.T., et al. (2021) Review on Databases and Bioinformatic Approaches on Pharmacogenomics of Adverse Drug Reactions. Pharmacogenomics and Personalized Medicine, 14, 61-75.
https://doi.org/10.2147/PGPM.S290781
[5] Zhao, M., Ma, J., Li, M., et al. (2021) Cytochrome P450 Enzymes and Drug Metabolism in Humans. International Journal of Molecular Sciences, 22, Article No. 12808.
https://doi.org/10.3390/ijms222312808
[6] Rehm, H.L. (2013) Disease-Targeted Sequencing: A Cornerstone in the Clinic. Nature Reviews Genetics, 14, 295-300.
https://doi.org/10.1038/nrg3463
[7] Pei, X.M., Yeung, M.H.Y., Wong, A.N.N., et al. (2023) Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells, 12, Article No. 493.
https://doi.org/10.3390/cells12030493
[8] Beadling, C., Neff, T.L., Heinrich, M.C., et al. (2013) Combining Highly Multiplexed PCR with Semiconductor-Based Sequencing for Rapid Cancer Genotyping. The Journal of Molecular Diagnostics, 15, 171-176.
https://doi.org/10.1016/j.jmoldx.2012.09.003
[9] Tewhey, R., Warner, J.B., Nakano, M., et al. (2009) Microdroplet-Based PCR Enrichment for Large-Scale Targeted Sequencing. Nature Biotechnology, 27, 1025-1031.
https://doi.org/10.1038/nbt.1583
[10] Hedges, D.J., Guettouche, T., Yang, S., et al. (2011) Comparison of Three Targeted Enrichment Strategies on the SOLiD Sequencing Platform. PLOS ONE, 6, E18595.
https://doi.org/10.1371/journal.pone.0018595
[11] Albert, T.J., Molla, M.N., Muzny, D.M., et al. (2007) Direct Selection of Human Genomic Loci by Microarray Hybridization. Nature Methods, 4, 903-905.
https://doi.org/10.1038/nmeth1111
[12] Hodges, E., Xuan, Z., Balija, V., et al. (2007) Genome-Wide in Situ Exon Capture for Selective Resequencing. Nature Genetics, 39, 1522-1527.
https://doi.org/10.1038/ng.2007.42
[13] Pruitt, K.D., Brown, G.R., Hiatt, S.M., et al. (2014) RefSeq: An Update on Mammalian Reference Sequences. Nucleic Acids Research, 42, D756-D763.
[14] Dahl, F., Stenberg, J., Fredriksson, S., et al. (2007) Multigene Amplification and Massively Parallel Sequencing for Cancer Mutation Discovery. Proceedings of the National Academy of Sciences of the United States of America, 104, 9387-9392.
https://doi.org/10.1073/pnas.0702165104
[15] Shen, P., Wang, W., Chi, A.K., et al. (2013) Multiplex Target Capture with Double-Stranded DNA Probes. Genome Medicine, 5, Article No. 50.
https://doi.org/10.1186/gm454
[16] Hardenbol, P., Yu, F., Belmont, J., et al. (2005) Highly Multiplexed Molecular Inversion Probe Genotyping: Over 10,000 Targeted SNPs Genotyped in a Single Tube Assay. Genome Research, 15, 269-275.
https://doi.org/10.1101/gr.3185605
[17] Turner, E.H., Lee, C., Ng, S.B., et al. (2009) Massively Parallel Exon Capture and Library-Free Resequencing across 16 Genomes. Nature Methods, 6, 315-316.
https://doi.org/10.1038/nmeth.f.248
[18] Mamanova, L., Coffey, A.J., Scott, C.E., et al. (2010) Target-Enrichment Strategies for Next-Generation Sequencing. Nature Methods, 7, 111-118.
https://doi.org/10.1038/nmeth.1419
[19] Frampton, G.M., Fichtenholtz, A., Otto, G.A., et al. (2013) Development and Validation of a Clinical Cancer Genomic Profiling Test Based on Massively Parallel DNA Sequencing. Nature Biotechnology, 31, 1023-1031.
https://doi.org/10.1038/nbt.2696
[20] Cheng, D.T., Mitchell, T.N., Zehir, A., et al. (2015) Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. The Journal of Molecular Diagnostics, 17, 251-264.
https://doi.org/10.1016/j.jmoldx.2014.12.006
[21] Shi, Z., Lopez, J., Kalliney, W., et al. (2022) Development and Evaluation of ActSeq: A Targeted Next-Generation Sequencing Panel for Clinical Oncology Use. PLOS ONE, 17, E0266914.
https://doi.org/10.1371/journal.pone.0266914
[22] Xie, C., Zhong, L., Luo, J., et al. (2023) Identification of Mutation Gene Prognostic Biomarker in Multiple Myeloma Through Gene Panel Exome Sequencing and Transcriptome Analysis in Chinese Population. Computers in Biology and Medicine, 163, Article ID: 107224.
https://doi.org/10.1016/j.compbiomed.2023.107224
[23] Yatabe, Y., Sunami, K., Goto, K., et al. (2020) Multiplex Gene-Panel Testing for Lung Cancer Patients. Pathology International, 70, 921-931.
https://doi.org/10.1111/pin.13023
[24] 程亚楠, 于津浦. 肿瘤大基因包高通量测序在临床中的应用进展[J]. 中国肿瘤临床, 2019, 46(2): 94-98.
[25] Liu, L., Li, K., Fu, X., et al. (2016) A Forward Look at Noninvasive Prenatal Testing. Trends in Molecular Medicine, 22, 958-968.
https://doi.org/10.1016/j.molmed.2016.09.008
[26] Rafati, M., Mohamadhashem, F., Jalilian, K., et al. (2022) Identification of a Novel De Novo Variant in OTX2 in a Patient with Congenital Microphthalmia Using Targeted Next-Generation Sequencing Followed by Prenatal Diagnosis. Ophthalmic Genetics, 43, 262-267.
https://doi.org/10.1080/13816810.2021.2002915
[27] Zhang, J., Li, J., Saucier, J.B., et al. (2019) Non-Invasive Prenatal Sequencing for Multiple Mendelian Monogenic Disorders Using Circulating Cell-Free Fetal DNA. Nature Medicine, 25, 439-447.
[28] Mohan, P., Lemoine, J., Trotter, C., et al. (2022) Clinical Experience with Non-Invasive Prenatal Screening for Single-Gene Disorders. Ultrasound in Obstetrics & Gynecology, 59, 33-39.
https://doi.org/10.1002/uog.23756
[29] Rather, R.A. and Saha, S.C. (2023) Reappraisal of Evolving Methods in Non-Invasive Prenatal Screening: Discovery, Biology and Clinical Utility. Heliyon, 9, e13923.
https://doi.org/10.1016/j.heliyon.2023.e13923
[30] Yohe, S. and Thyagarajan, B. (2017) Review of Clinical Next-Generation Sequencing. Archives of Pathology & Laboratory Medicine, 141, 1544-1557.
https://doi.org/10.5858/arpa.2016-0501-RA
[31] Kermode, W., De Santis, D., Truong, L., et al. (2022) A Novel Targeted Amplicon Next-Generation Sequencing Gene Panel for the Diagnosis of Common Variable Immunodeficiency Has a High Diagnostic Yield: Results from the Perth CVID Cohort Study. The Journal of Molecular Diagnostics, 24, 586-599.
https://doi.org/10.1016/j.jmoldx.2022.02.007
[32] Huang, X., Wu, D., Zhu, L., et al. (2022) Application of a Next-Generation Sequencing (NGS) Panel in Newborn Screening Efficiently Identifies Inborn Disorders of Neonates. Orphanet Journal of Rare Diseases, 17, Article No. 66.
https://doi.org/10.1186/s13023-022-02231-x
[33] Wang, H., Yang, H., Liu, Z., et al. (2020) Targeted Genetic Analysis in a Chinese Cohort of 208 Patients Related to Familial Hypercholesterolemia. Journal of Atherosclerosis and Thrombosis, 27, 1288-1298.
https://doi.org/10.5551/jat.54593
[34] Leber, A.L., Everhart, K., Daly, J.A., et al. (2018) Multicenter Evaluation of BioFire FilmArray Respiratory Panel 2 for Detection of Viruses and Bacteria in Nasopharyngeal Swab Samples. Journal of Clinical Microbiology, 56, 1110-1128.
https://doi.org/10.1128/JCM.01945-17
[35] Hernandez-Neuta, I., Magoulopoulou, A., Pineiro, F., et al. (2023) Highly Multiplexed Targeted Sequencing Strategy for Infectious Disease Surveillance. BMC Biotechnology, 23, Article No. 31.
https://doi.org/10.1186/s12896-023-00804-7
[36] Park, D.G., Ha, E.S., Kang, B., et al. (2023) Development and Evaluation of A Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods. Journal of Microbiology and Biotechnology, 33, 83-95.
https://doi.org/10.4014/jmb.2211.11009
[37] Park, D.G., Kwon, J.G., Ha, E.S., et al. (2023) Novel Next Generation Sequencing Panel Method for the Multiple Detection and Identification of Foodborne Pathogens in Agricultural Wastewater. Frontiers in Microbiology, 14, Article ID: 1179934.
https://doi.org/10.3389/fmicb.2023.1179934
[38] Gordon, A.S., Fulton, R.S., Qin, X., et al. (2016) PGRNseq: A Targeted Capture Sequencing Panel for Pharmacogenetic Research and Implementation. Pharmacogenet Genomics, 26, 161-168.
https://doi.org/10.1097/FPC.0000000000000202
[39] Lee, S.B., Shin, J.Y., Kwon, N.J., et al. (2022) ClinPharmSeq: A Targeted Sequencing Panel for Clinical Pharmacogenetics Implementation. PLOS ONE, 17, e0272129.
https://doi.org/10.1371/journal.pone.0272129
[40] Fukunaga, K., Momozawa, Y. and Mushiroda, T. (2021) Update on Next Generation Sequencing of Pharmacokinetics-Related Genes: Development of the PKseq Panel, a Platform for Amplicon Sequencing of Drug-Metabolizing Enzyme and Drug Transporter Genes. Drug Metabolism and Pharmacokinetics, 37, Article ID: 100370.
https://doi.org/10.1016/j.dmpk.2020.11.005
[41] Wu, S.H., Xiao, Y.X., Hsiao, H.C., et al. (2022) Development and Assessment of a Novel Whole-Gene-Based Targeted Next-Generation Sequencing Assay for Detecting the Susceptibility of Mycobacterium Tuberculosis to 14 Drugs. Microbiology Spectrum, 10, e0260522.
https://doi.org/10.1128/spectrum.02605-22
[42] Yu, L. (2023) Artificial Intelligence in Molecular Medicine. The New England Journal of Medicine, 389, 1251-1252.
https://doi.org/10.1056/NEJMc2308776
[43] You, Y., Lai, X., Pan, Y., et al. (2022) Artificial Intelligence in Cancer Target Identification and Drug Discovery. Signal Transduction and Targeted Therapy, 7, Article No. 156.
https://doi.org/10.1038/s41392-022-00994-0
[44] Fusaro, M., Rosain, J., Grandin, V., et al. (2021) Improving the Diagnostic Efficiency of Primary Immunodeficiencies with Targeted Next-Generation Sequencing. Journal of Allergy and Clinical Immunology, 147, 734-737.
https://doi.org/10.1016/j.jaci.2020.05.046
[45] Lei, Y., Tang, R., Xu, J., et al. (2021) Applications of Single-Cell Sequencing in Cancer Research: Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 91.
https://doi.org/10.1186/s13045-021-01105-2
[46] Langsiri, N., Worasilchai, N., Irinyi, L., et al. (2023) Targeted Sequencing Analysis Pipeline for Species Identification of Human Pathogenic Fungi Using Long-Read Nanopore Sequencing. IMA Fungus, 14, Article No. 18.
https://doi.org/10.1186/s43008-023-00125-6