影像组学在卵巢癌免疫治疗预后中的研究进展
Research Progress of Imaging Histology in the Prognosis of Ovarian Cancer Immunotherapy
DOI: 10.12677/acm.2024.1451488, PDF, HTML, XML, 下载: 30  浏览: 44 
作者: 郑子金, 吕晋谊, 朱前勇*:河南大学人民医院妇产科,河南 郑州;刘 宁:郑州大学人民医院妇产科,河南 郑州;李柯静:新乡医学院人民医院妇产科,河南 郑州
关键词: 影像组学卵巢癌免疫治疗预后Imaging Histology Ovarian Cancer Immunotherapy Prognosis
摘要: 卵巢癌的免疫治疗为提高患者生存率开辟了新途径,尤其是免疫检查点抑制剂在卵巢癌治疗中的应用。然而,免疫治疗效果受多因素综合影响,及早预测免疫治疗疗效指标对于指导治疗更为重要。影像组学技术通过整合CT、MRI、PET-CT等多种影像学技术建立预测模型,深度挖掘图像信息,以无创方式全面评估肿瘤整体情况。本文综述了目前影像组学在卵巢癌免疫治疗预后中的研究进展,强调其在提高治疗效果预测准确性、个体化治疗方案制定方面的潜力。
Abstract: Immunotherapy for ovarian cancer has opened a new way to improve the survival rate of patients, especially the application of immune checkpoint inhibitors in the treatment of ovarian cancer. However, the effect of immunotherapy is affected by a combination of factors, and early prediction of immunotherapy efficacy indicators is more important to guide treatment. Imaging histology technology integrates CT, MRI, PET-CT and other imaging technologies to establish a prediction model, deeply exploits image information, and comprehensively evaluates the overall condition of the tumor in a non-invasive manner. This article reviews the current research progress of imaging histology in the prognosis of ovarian cancer immunotherapy, emphasizing its potential in improving the accuracy of treatment effect prediction and individualized treatment plan development.
文章引用:郑子金, 刘宁, 李柯静, 吕晋谊, 朱前勇. 影像组学在卵巢癌免疫治疗预后中的研究进展[J]. 临床医学进展, 2024, 14(5): 759-766. https://doi.org/10.12677/acm.2024.1451488

1. 引言

卵巢癌是全球最致命的妇科恶性肿瘤之一,症状隐匿、预后差,死亡率极高。传统的治疗方式为肿瘤细胞减灭术(CRS)加以铂类为主的化疗,在初治后患者的复发率为60%~70% [1] [2] 。不同于化疗直接杀死肿瘤细胞,免疫治疗激活免疫系统达到杀灭肿瘤细胞的作用,免疫治疗主要围绕免疫检查点抑制剂(immune checkpoint in-hibitor, ICI)在卵巢癌治疗中发挥作用,而ICI表达水平是预测卵巢癌患者预后的重要指标 [3] [4] 。然而,由于个体免疫异质性和肿瘤的免疫逃逸机制等方面存在较大差异,免疫治疗的疗效受到多种因素的综合影响,包括肿瘤微环境、免疫细胞浸润程度等 [5] 。个体免疫系统的差异性意味着不同患者对治疗的反应不同,免疫逃逸机制使免疫细胞难以有效攻击肿瘤细胞。深入了解免疫治疗预后指标,制定个体化治疗方案,以最大程度地提高治疗疗效,这需要对患者的免疫状态和肿瘤特征进行全面评估。

2010年由GILLIES首先提出的影像组学,打破以往影像学检查仅能解释图像特征的观点 [6] 。通过整合CT、MRI、PET-CT等多种影像学技术揭示疾病的宏观特征,从中获取影像图像、分析成像数据及建立预测模型。影像组学全面、多角度地了解患者的病理特征、肿瘤微环境、免疫细胞浸润和ICI的表达水平等关键信息,从而评估患者对免疫治疗的响应情况 [7] 。对于预测患者对免疫治疗的反应以及个体化治疗的制定也具有重要的指导意义 [8] 。本文将就影像组学在卵巢癌免疫治疗预后中的研究进展进行综述,旨在为临床实践和研究提供有益参考。

2. 影像组学在卵巢癌中的应用

2.1. 诊断与鉴别

早期卵巢癌症状表现并不明显,难以被察觉,极易导致误诊,发现时多数已经是晚期 [9] 。虽然病理诊断被视为区分良性和恶性肿瘤的金标准,但其属于侵入性有创检查,仅能反映局部情况,难以全面展现整个肿瘤的状况。此外,病理诊断存在手术局限性和肿瘤播散的风险,限制了其在卵巢癌诊断中的应用 [10] 。影像组学通过提取成像特征,客观定量分析了所提取的数据,建立鉴别卵巢肿瘤良恶性的影像组学模型 [11] 。为了鉴别卵巢肿瘤的良恶性,Li等 [12] 对140例卵巢肿瘤患者进行回顾性分析,研究结果显示,2D和3D放射组学列线图模型在卵巢良性和恶性肿瘤的鉴别诊断中展现出相当良好的诊断效果。Yao等 [13] 学者构建了临床–放射组学列线图,首次应用超声放射组学特征区分卵巢癌的组织病理学类型,帮助妇科医生在手术前无创地识别卵巢癌的类型,从而降低或避免活检和手术风险。上述研究表明,影像组学在卵巢癌患者的诊断和鉴别中发挥重要作用。

2.2. 评估减瘤率与复发

卵巢癌术后有无残留是影响预后复发的关键因素,CRS旨在实现肉眼可见肿瘤的完全切除(R0),患者复发预后的独立预测因素为CRS的完成度 [14] 。最新癌症统计,高级别卵巢癌治疗后6个月内复发率达25%,不完全切除(RT > 1 cm)及对化疗敏感性低,在治疗后18个月内复发的风险达70%~80% [15] [16] 。影像组学放射性预测模型可以关注体内术前肿瘤转移灶的位置、大小和范围及术后残留情况,其对于卵巢癌复发危险因素探测的优势主要体现在对盆腹腔转移监测的高敏感度及高特异度。Gerestein等 [17] 的研究纳入115例FIGO III/IV期卵巢癌患者,使用不同的预测模型评估了术前影像在评估肿瘤可切除性方面的应用。此外,也有研究指出其在术后检测方面的应用,Lorusso等 [18] 对接受CRS的64例FIGO III~IV期卵巢癌患者进行分析,并在手术后30天内进行了CT扫描,观察到术后化疗后CT扫描阳性和阴性患者的无进展生存期(PFS)分别为5个月和28个月。影像学评估现已作为卵巢癌治疗不可或缺的一环,考虑到高复发率和完全切除对预后的重要性,影像组学模型在肿瘤残留检测方面显示出潜在的价值,为术后监测提供了有效工具。

3. 影像组学在卵巢癌免疫治疗预后评估中的价值

3.1. 超声影像组学

传统上,超声不被作为评估卵巢癌肿瘤扩展的首选影像技术。然而,最近研究表明,超声技术具有检测大网膜肿瘤、腹膜癌以及直肠乙状结肠浸润的能力 [19] [20] 。此外,由于超声具有价格低廉、操作简便、无电离辐射及能够进行高分辨率实时成像等优势,超声在促进肿瘤免疫治疗研究方面逐渐凸显。特别值得注意的是,在卵巢癌患者中,阴道内导入器的应用能够详细评估子宫和卵巢内部情况,为肿瘤免疫治疗提供了重要的观察和分析手段 [21] [22] 。美国超声成像指南指出超声分子成像(USMI)通过分子靶向配体定位靶标,在分子水平上检测、表征和监测卵巢癌,用于临床研究中体内经阴道USMI与离体组织学和免疫组织化学之间的准确关联 [23] 。Willmann等 [24] 在卵巢癌的临床试验中的研究显示,USMI能够通过离体免疫染色作为标准参考来进行有效表征。

超声影像组学已逐渐被广泛用于研究各种类型癌症的免疫治疗,如乳腺癌和宫颈癌 [25] [26] 。Nero等 [27] 将超声图像模型用于预测卵巢癌女性的BRCA 1/2基因状态,研究表明超声技术的影像组学模型是可行的。Moro等 [28] 展开了一项回顾性临床试验,从妇科肿瘤科数据库中鉴定出30例病理诊断为复发性颗粒细胞瘤(25例)和睾丸支持–睾丸间质细胞瘤(5例)的患者,在总共的66次复发里,其中34次中进行了术前超声检查。Yao等研究 [29] 使用超声Rad-score模型预测卵巢癌患者的五年无病生存期,其中Rad-score模型参数表征肿瘤异质性,能反映基因组异质性。超声影像组学在卵巢癌研究中不仅对肿瘤扩展具检测能力,还在免疫治疗和基因状态预测方面显示潜力。

3.2. CT影像组学

腹盆腔CT是卵巢癌最常用的检查方法,可观察到肿瘤病变内微小脂肪及钙化,且有助于检出卵巢生殖细胞来源的肿瘤 [30] 。基于CT影像组学特征的定量分析为医学图像提供了量化研究的可能,因此可用于预测肿瘤治疗的疗效 [31] 。在肿瘤微环境中,趋化因子受体系统可通过增强肿瘤微环境中CD8+T细胞的活化和增殖提高抗PD-L1单抗的抗肿瘤效应 [32] 。采用CT影像组学特征模型构建以预测趋化因子表达水平,并评估其在免疫治疗预后中的价值。Yang等 [33] 教授研究发现,趋化因子CXCL13通过增强卵巢癌肿瘤微环境中的免疫活性,提高PD-L1抑制剂的疗效。有助于改善肿瘤患者的预后,对抗肿瘤免疫和预测肿瘤组织中体液免疫B细胞的免疫治疗疗效产生影响 [34] 。Xu等 [35] 运用逻辑回归方法选择7例卵巢癌患者的CT组学特征进行模型构建,结果表明CXCL13是卵巢癌的预测性生物标志物,且与浆细胞和嗜酸性粒细胞浸润程度相关。Wan等 [36] 研究人员通过从癌症基因组图谱数据库中纳入343例卵巢癌患者,进行了基因为基础的预后分析。研究结果表明,基于CT的影像组学可作为预后预测的新工具,并揭示CCR5在肿瘤和正常样本中表现为差异表达的与预后相关的基因,参与免疫应答和肿瘤侵袭转移的调控。

此外,CT也有其不足之处,姚晋等 [37] 指出多层螺旋CT不易探测到小于2 mm的病灶,所以会在出现腹腔积液时而未发现腹腔种植转移病灶。但是由于CT能够在较短时间内获取满意的扫描增强图像,清晰展现肿瘤浸润范围,因此应用盆腔CT对于卵巢癌患者进行完整的病程跟踪随访以及评估术后治疗的转归具有重要意义。

3.3. MRI影像组学

在多种影像学模型中,MRI提供了优质的软组织对比度和空间分辨率 [38] 。与PET/CT及CT相比,MRI的造影剂通常具有更长的半衰期,因此可以在相对较长的时间内跟踪免疫细胞。Taylor等 [39] 运用MRI对播散性浆液性上皮性卵巢癌小鼠模型中的新型硅化癌细胞免疫治疗反应进行分析,监测治疗反应。通过荧光素酶标记的肿瘤细胞的生物发光成像、流式细胞术分析免疫细胞和组织病理学验证肿瘤进展,MRI也进一步确认了癌症相关的腹水积聚和组织解剖结构的累积情况。Bouchlaka等 [40] 研究发现,在免疫缺陷小鼠中肿瘤细胞内注射NK细胞后,长达8天的实验期内,通过纵向MRI可以检测到PFC标记的NK细胞。MRI监测显示,NK细胞的数量在1周内保持相对稳定。由Zhang等 [41] 教授进行的一项基于MRI技术的回顾性模型分析,采用基于MRI影像组学的方法构建了卵巢癌患者生存分析模型,通过观察Kaplan-Meier图获得了与患者生存状态最相关的MRI影像组学特征,并使用Lasso回归方法对这些组学特征进行分析建模。结果表明,该影像组学模型也能够为卵巢肿瘤患者提供高精度的生存评估。

MRI技术在ICI的无创预测和治疗效果监测方面具有潜力 [42] 。虽然在卵巢癌免疫治疗监测方面研究有限,但随着MRI技术和卵巢癌免疫治疗的不断发展,对于预测与卵巢癌相关的重要预后信息的意义会日益凸显。这将会为临床诊疗提供了更全面、更准确的信息,有助于优化研究方案的制定和监测效果。

3.4. PET/CT影像组学

18氟脱氧葡萄糖(18F-FDG) PET/CT是广泛应用于临床的分子成像技术,在一定程度上能弥补CT影像学的不足,在评估肿瘤对免疫治疗疗效预后方面具有巨大的优势 [43] 。作为恶性肿瘤免疫治疗的重大突破,目前PET/CT已应用于多种恶性肿瘤,中华医学会核医学会PET组专家共识指出:在肿瘤ICIs治疗中合理、规范应用PET/CT,与实体瘤疗效评价标准相比,使用PET/CT相关评价标准可以更好地预测药物的免疫治疗反应和预后 [44] 。2019年,欧洲核医学年会(European Association of Nuclear Medicine, EANM) 报告指出,采用18F-FDG PET/CT对于评估肿瘤免疫治疗反应以及解读免疫相关不良反应具有显著的优势 [42] 。Kaira等 [45] 首次在报道中指出18F-FDG PET/CT代谢反应可有效预测免疫治疗后1个月的疗效和生存期。此外,病理研究证实PEF/CT在卵巢上皮性癌的免疫疗效评估、肿瘤分期及诊断方面得到广泛应用 [46] ,对卵巢癌复发转移的诊断具有较高的敏感性和准确性,是卵巢癌治疗后随访中有价值且适用的策略。Wang等 [47] 采用随机分组法将卵巢癌患者分为训练组和验证组,融合PET/CT图像,提取整个肿瘤区域的影像组学特征,结果表明PET/CT可以指导卵巢癌患者预后分层,并与Ki-67在肿瘤组织中的表达有关,该方法对卵巢癌的诊断和免疫治疗具有重要意义。Mu等学者 [48] 研究表明PET-CT影像组学特征可以用于预测PD-L1表达水平和肿瘤致癌驱动基因的突变。

PET/CT在卵巢癌评估中也有其它独特价值,由于卵巢癌肿瘤细胞存在FDG高代谢,因此PEF/CT在卵巢癌的诊断、分期、疗效评价中发挥重要作用 [49] 。Peng等 [50] 研究发现,PET-CT影像组学模型图在预测风险分层方面优于临床TNM分期系统,可以作为预后预测的可靠而有力的工具。

总而言之,PET/CT在免疫治疗预后的预测研究方面处于探索阶段,其能够有效区分存活肿瘤细胞构成的残存病灶与由炎症细胞、坏死组织、以及可能存在的纤维组织等多因素共同组成的残余肿块,为临床决策提供了重要的图像学依据。

4. 不足与展望

免疫治疗策略已成为癌症治疗的第四大支柱,并有望显著减轻放化疗产生的毒副作用,提高对复发性原发性癌症和转移瘤的持久应答率。影像组学技术通过分析图像数据,研究人员能够更准确地评估患者的免疫状况和治疗效果,以指导个体化的免疫治疗策略。但是,目前对于影像组学在卵巢癌免疫治疗效果方面研究较少,大多为在肺癌、乳腺癌等,对于治疗机制、患者选择以及治疗效果的具体机制也尚未深入研究。其次,影像组学的应用还面临技术标准化和规范化的挑战。不同研究中使用的影像分析方法和评估指标存在差异,可能导致结果的不一致性。建立统一的影像组学研究标准将有助于提高研究的可重复性和可比性。

展望未来,可以在临床实践中为提高患者生存率和治疗效果提供新方向,把卵巢肿瘤患者预后的预测作为当前影像组学研究的新焦点。随着影像组学技术的不断创新和发展,通过整合多模型影像数据和深度学习算法,我们有望实现更加精准的卵巢癌免疫治疗预后评估。总体而言,影像组学在卵巢癌免疫治疗预后中的研究进展为开展精准个体化治疗奠定了基础,为提高患者的生存质量和治疗效果贡献了重要的科研成果。未来的研究将继续推动这一领域的发展,为卵巢癌患者带来更多希望。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CaA Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Schuurman, M.S., Kruitwagen, R., Portielje, J.E.A., Roes, E.M., Lemmens, V. and Van Deraa, M.A. (2018) Treatment and Outcome of Elderly Patients with Advanced Stage Ovarian Cancer: A Nationwide Analysis. Gynecologic Oncology, 149, 270-274.
https://doi.org/10.1016/j.ygyno.2018.02.017
[3] Kaiser, J. and Couzin-Frankel, J. (2018) Cancer Immunotherapy Sweeps Nobel for Medicine. Science (New York, NY), 362, 13.
https://doi.org/10.1126/science.362.6410.13
[4] 薛春燕, 谢荃沁, 徐云, 等. PD-L1和PD-L2在卵巢癌组织中的表达及对患者预后判断的价值[J]. 现代免疫学, 2020, 40(1): 1-8.
[5] Akkin, S., Varan, G. and Bilensoy, E. (2021) A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules (Basel, Switzerland), 26, Article No. 3382.
https://doi.org/10.3390/molecules26113382
[6] Gillies, R.J., Anderson, A.R., Gatenby, R.A., et al. (2010) The Biology Underlying Molecular Imaging in Oncology: From Genome to Anatome and Back Again. Clinical Radiology, 65, 517-521.
https://doi.org/10.1016/j.crad.2010.04.005
[7] Khorrami, M., Prasanna, P., Gupta, A., et al. (2020) Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer. Cancer Immunology Research, 8, 108-119.
https://doi.org/10.1158/2326-6066.CIR-19-0476
[8] Wu, J., Mayer, A.T. and Li, R. (2022) Integrated Imaging and Molecular Analysis to Decipher Tumor Microenvironment in the Era of Immunotherapy. Seminars in Cancer Biology, 84, 310-328.
https://doi.org/10.1016/j.semcancer.2020.12.005
[9] Xiong, S. and Tang, K. (2022) A Diagnostic Dilemma of a Pulmonary Nodule of a Patient Who Suffered Advanced Ovarian Cancer: A Case Report and a Hypothesis. International Journal of Surgery Case Reports, 94, Article ID: 107111.
https://doi.org/10.1016/j.ijscr.2022.107111
[10] 孟靖涵, 何秀丽. IOTA SR与CA125、HE4、ROMA、RMI1、GI-RADS对卵巢良恶性肿瘤的诊断价值比较[J]. 中国实用妇科与产科杂志, 2021, 37(1): 100-104.
[11] Ferreira-Junior, J.R., Koenigkam-Santos, M., Magalhães Tenório, A.P., et al. (2020) CT-Based Radiomics for Prediction of Histologic Subtype and Metastatic Disease in Primary Malignant Lung Neoplasms. International Journal of Computer Assisted Radiology and Surgery, 15, 163-172.
https://doi.org/10.1007/s11548-019-02093-y
[12] Li, S., Liu, J., Xiong, Y., et al. (2022) Application Values of 2d and 3d Radiomics Models Based on Ct Plain Scan in Differentiating Benign from Malignant Ovarian Tumors. BioMed Research International, 2022, Article ID: 5952296.
https://doi.org/10.1155/2022/5952296
[13] Yao, F., Ding, J., Lin, F., et al. (2022) Nomogram Based on Ultrasound Radiomics Score and Clinical Variables for Predicting Histologic Subtypes of Epithelial Ovarian Cancer. The British Journal of Radiology, 95, Article ID: 20211332.
https://doi.org/10.1259/bjr.20211332
[14] Sato, S. and Itamochi, H. (2014) Neoadjuvant Chemotherapy in Advanced Ovarian Cancer: Latest Results and Place in Therapy. Therapeutic Advances in Medical Oncology, 6, 293-304.
https://doi.org/10.1177/1758834014544891
[15] Sehouli, J. and Grabowski, J.P. (2017) Surgery for Recurrent Ovarian Cancer: Options and Limits. Best Practice & Research Clinical Obstetrics & Gynaecology, 41, 88-95.
https://doi.org/10.1016/j.bpobgyn.2016.10.009
[16] Nougaret, S., Sadowski, E., Lakhman, Y., et al. (2022) The BUMPy Road of Peritoneal Metastases in Ovarian Cancer. Diagnostic and Interventional Imaging, 103, 448-459.
https://doi.org/10.1016/j.diii.2022.05.003
[17] Gerestein, C.G., Eijkemans, M.J., Bakker, J., et al. (2011) Nomogram for Suboptimal Cytoreduction at Primary Surgery for Advanced Stage Ovarian Cancer. Anticancer Research, 31, 4043-4049.
[18] Lorusso, D., Sarno, I., Di Donato, V., et al. (2014) Is Postoperative Computed Tomography Evaluation a Prognostic Indicator in Patients with Optimally Debulked Advanced Ovarian Cancer? Oncology, 87, 293-299.
https://doi.org/10.1159/000365357
[19] Weinberger, V., Fischerova, D., Semeradova, I., et al. (2016) Prospective Evaluation of Ultrasound Accuracy in the Detection of Pelvic Carcinomatosis in Patients with Ovarian Cancer. Ultrasound in Medicine & Biology, 42, 2196-2202.
https://doi.org/10.1016/j.ultrasmedbio.2016.05.014
[20] Zikan, M., Fischerova, D., Semeradova, I., et al. (2017) Accuracy of Ultrasound in Prediction of Rectosigmoid Infiltration in Epithelial Ovarian Cancer. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 50, 533-538.
https://doi.org/10.1002/uog.17363
[21] Gupta, A., Jha, P., Baran, T.M., et al. (2022) Ovarian Cancer Detection in Average-Risk Women: Classic-versus Nonclassic-Appearing Adnexal Lesions at Us. Radiology, 303, 603-610.
https://doi.org/10.1148/radiol.212338
[22] Jha, P., Gupta, A., Baran, T.M., et al. (2022) Diagnostic Performance of the Ovarian-Adnexal Reporting and Data System (O-Rads) Ultrasound Risk Score in Women in the United States. JAMA Network Open, 5, E2216370.
https://doi.org/10.1001/jamanetworkopen.2022.16370
[23] Antil, N., Wang, H., Kaffas, A.E., et al. (2023) In Vivo Ultrasound Molecular Imaging in the Evaluation of Complex Ovarian Masses: A Practical Guide to Correlation with ex Vivo Immunohistochemistry. Advanced Biology, 7, E2300091.
https://doi.org/10.1002/adbi.202300091
[24] Willmann, J.K., Bonomo, L., Testa, A.C., et al. (2017) Ultrasound Molecular Imaging with Br55 in Patients with Breast and Ovarian Lesions: First-in-Human Results. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2133-2140.
https://doi.org/10.1200/JCO.2016.70.8594
[25] Fang, J., Zhao, W., Li, Q., et al. (2020) Correlation Analysis of Conventional Ultrasound Characteristics and Strain Elastography with Ki-67 Status in Breast Cancer. Ultrasound in Medicine & Biology, 46, 2972-2978.
https://doi.org/10.1016/j.ultrasmedbio.2020.06.024
[26] Jin, X., Ai, Y., Zhang, J., et al. (2020) Noninvasive Prediction of Lymph Node Status for Patients with Early-Stage Cervical Cancer Based on Radiomics Features from Ultrasound Images. European Radiology, 30, 4117-4124.
https://doi.org/10.1007/s00330-020-06692-1
[27] Nero, C., Ciccarone, F., Boldrini, L., et al. (2020) Germline BRCA 1-2 Status Prediction through Ovarian Ultrasound Images Radiogenomics: A Hypothesis Generating Study (PROBE Study). Scientific Reports, 10, Article No. 16511.
https://doi.org/10.1038/s41598-020-73505-2
[28] Moro, F., Giudice, M.T., Bolomini, G., et al. (2023) Imaging in Gynecological Disease: Clinical and Ultrasound Characteristics of Recurrent Ovarian Stromal Cell Tumors. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology.
[29] Yao, F., Ding, J., Hu, Z., et al. (2021) Ultrasound-Based Radiomics Score: A Potential Biomarker for the Prediction of Progression-Free Survival in Ovarian Epithelial Cancer. Abdominal Radiology (New York), 46, 4936-4945.
https://doi.org/10.1007/s00261-021-03163-z
[30] Rundo, F., Banna, G.L., Prezzavento, L., et al. (2020) 3D Non-Local Neural Network: A Non-Invasive Biomarker for Immunotherapy Treatment Outcome Prediction. Case-Study: Metastatic Urothelial Carcinoma. Journal of Imaging, 6, Article No. 133.
https://doi.org/10.3390/jimaging6120133
[31] Yin, X., Liao, H., Yun, H., et al. (2022) Artificial Intelligence-Based Prediction of Clinical Outcome in Immunotherapy and Targeted Therapy of Lung Cancer. Seminars in Cancer Biology, 86, 146-159.
https://doi.org/10.1016/j.semcancer.2022.08.002
[32] 高境泽, 吴霞. 卵巢癌组织中CXCR3表达与免疫细胞浸润的相关性研究[J]. 现代免疫学, 2021, 41(3): 177-183.
[33] Yang, M., Lu, J., Zhang, G., et al. (2021) CXCL13 Shapes Immunoactive Tumor Microenvironment and Enhances the Efficacy of PD-1 Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Journal for Immunotherapy of Cancer, 9, e001136.
https://doi.org/10.1136/jitc-2020-001136
[34] Brenna, E. and Pedroza-Pacheco, I. (2022) Harnessing CXCL13 in Ovarian Cancer. Nature Reviews Immunology, 22, Article No. 145.
https://doi.org/10.1038/s41577-022-00683-7
[35] Xu, W., Zhu, C., Ji, D., et al. (2023) CT-Based Radiomics Prediction of CXCL13 Expression in Ovarian Cancer. Medical Physics, 50, 6801-6814.
https://doi.org/10.1002/mp.16730
[36] Wan, S., Zhou, T., Che, R., et al. (2023) CT-Based Machine Learning Radiomics Predicts CCR5 Expression Level and Survival in Ovarian Cancer. Journal of Ovarian Research, 16, Article No. 1.
https://doi.org/10.1186/s13048-022-01089-8
[37] 姚晋, 闵鹏秋, 黄娟. 腹膜转移瘤的CT征象[J]. 中国普外基础与临床杂志, 2005, 12(6): 620-623.
[38] Ahrens, E.T. and Bulte, J.W. (2013) Tracking Immune Cells in Vivo Using Magnetic Resonance Imaging. Nature Reviews Immunology, 13, 755-763.
https://doi.org/10.1038/nri3531
[39] Taylor, E.N., Wilson, C.M., Franco, S., et al. (2022) Monitoring Therapeutic Responses to Silicified Cancer Cell Immunotherapy Using Pet/Mri in a Mouse Model of Disseminated Ovarian Cancer. International Journal of Molecular Sciences, 23, Article ID: 10525.
https://doi.org/10.3390/ijms231810525
[40] Bouchlaka, M.N., Ludwig, K.D., Gordon, J.W., et al. (2016) (19)F-MRI for Monitoring Human NK Cells in Vivo. Oncoimmunology, 5, E1143996.
https://doi.org/10.1080/2162402X.2016.1143996
[41] Zhang, H., Mao, Y., Chen, X., et al. (2019) Magnetic Resonance Imaging Radiomics in Categorizing Ovarian Masses and Predicting Clinical Outcome: A Preliminary Study. European Radiology, 29, 3358-3371.
https://doi.org/10.1007/s00330-019-06124-9
[42] Cadour, F., Cautela, J., Rapacchi, S., 等. 免疫检查点抑制剂性心肌炎的心脏MRI表现及预后价值[J]. 国际医学放射学杂志, 2022, 45(4): 481.
[43] Aide, N., Hicks, R.J., Le Tourneau, C., et al. (2019) FDG PET/CT for Assessing Tumour Response to Immunotherapy: Report on the EANM Symposium on Immune Modulation and Recent Review of the Literature. European Journal of Nuclear Medicine and Molecular Imaging, 46, 238-250.
https://doi.org/10.1007/s00259-018-4171-4
[44] (2020) Expert Consensus on Assessing Tumor Response to Immune Checkpoint Inhibitors by PET/CT (2020 Edition). Chinese Journal of Oncology, 42, 697-705.
[45] Kaira, K., Higuchi, T., Naruse, I., et al. (2018) Metabolic Activity by (18)F-FDG-PET/CT Is Predictive of Early Response after Nivolumab in Previously Treated NSCLC. European Journal of Nuclear Medicine and Molecular Imaging, 45, 56-66.
https://doi.org/10.1007/s00259-017-3806-1
[46] 李敏, 李绪清, 颜士杰, 等. 18F-脱氧葡萄糖PET/CT联合CA125在诊断卵巢癌复发转移中的应用价值[J]. 重庆医科大学学报, 2017, 42(12): 1635-1638.
[47] Wang, X., Xu, C., Grzegorzek, M., et al. (2022) Habitat Radiomics Analysis of Pet/Ct Imaging in High-Grade Serous Ovarian Cancer: Application to Ki-67 Status and Progression-Free Survival. Frontiers in Physiology, 13, Article ID: 948767.
https://doi.org/10.3389/fphys.2022.948767
[48] Mu, W., Jiang, L., Shi, Y., et al. (2021) Non-Invasive Measurement of PD-L1 Status and Prediction of Immunotherapy Response Using Deep Learning of PET/CT Images. Journal for Immunotherapy of Cancer, 9, e002118.
https://doi.org/10.1136/jitc-2020-002118
[49] Mapelli, P., Incerti, E., Fallanca, F., et al. (2016) Imaging Biomarkers in Ovarian Cancer: The Role of 18F-FDG PET/CT. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 60, 93-102.
[50] Peng, H., Dong, D., Fang, M.J., et al. (2019) Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25, 4271-4279.
https://doi.org/10.1158/1078-0432.CCR-18-3065