炎症标志物、前白蛋白和白蛋白在晚期实体肿瘤患者抗PD-1治疗中临床疗效的预测价值
The Predictive Value of Inflammatory Markers, Prealbumin, and Albumin in the Clinical Efficacy of PD-1 Therapy in Advanced Solid Tumor Patients
DOI: 10.12677/acm.2024.1451540, PDF, HTML, XML, 下载: 50  浏览: 108 
作者: 陈 琦:青岛大学药学院,山东 青岛;王 振:南京医科大学临床医学院,江苏 南京;吕香丽, 尹利顺:菏泽市定陶区人民医院药剂科,山东 菏泽;黄 璐:萍矿总医院肿瘤科,江西 萍乡;钟晓强*:自贡市第三人民医院急诊科,四川 自贡;郎连群*:青岛市市立医院肿瘤科,山东 青岛
关键词: 晚期实体肿瘤炎症标志物前白蛋白白蛋白PD-1抑制剂预后Advanced Solid Tumors Inflammatory Markers Prealbumin Albumin PD-1 Inhibitor Prognosis
摘要: 目的:本研究旨在评估探究炎症标志物、前白蛋白和白蛋白对晚期实体肿瘤患者抗PD-1治疗中临床疗效的预测价值。方法:回顾性分析2019年1月至2023年10月在青岛市市立医院接受PD-1抑制剂治疗的374例晚期实体肿瘤患者,并收集上述患者的基线临床特征和血液参数。通过X-tile软件3.6.1版本分析炎症标志物,计算最佳截断值并将其分为高和低水平组,绘制两组间Kaplan-Meier生存曲线,进行Log-Rank检验。单因素和多因素COX回归分析估算无进展生存期(PFS)的风险比及95%可信区间,绘制森林图进行展示。在整个分析过程中,P < 0.05被认为具有统计学意义。结果:C反应蛋白(CRP)基线水平升高和前白蛋白(PAB)基线水平降低与患者的PFS显著缩短相关(P < 0.01)。多因素分析结果表明,白蛋白(ALB)、CRP和PAB是影响患者PFS的独立预后因素(P < 0.05)。结论:在晚期实体肿瘤患者接受PD-1抑制剂治疗过程中,炎症标志物水平的下降以及PAB和ALB水平的升高表明患者病情缓解,相反则提示病情进展。本研究中,虽然动态监测炎症标志物水平变化与irAEs的发生未见明显相关,但它们对于预测PD-1抑制剂抗肿瘤治疗的临床疗效以及提高治疗应答率具有潜在价值。
Abstract: Objective: This study aims to assess the predictive value of inflammatory markers, prealbumin, and albumin for the clinical efficacy of PD-1 therapy in advanced solid tumor patients. Methods: A retrospective analysis was conducted on 374 advanced solid tumor patients who received PD-1 inhibitor treatment at Qingdao Municipal Hospital from January 2019 to October 2023. Baseline clinical characteristics and blood parameters of these patients were collected. Using X-tile software version 3.6.1, inflammatory markers were analyzed, optimal cutoff values were calculated, and patients were categorized into high and low-level groups. Kaplan-Meier survival curves were plotted for the two groups, and the Log-Rank test was performed. Univariate and multivariate COX regression analyses were conducted to estimate the hazard ratio and 95% confidence interval for progression-free survival (PFS), and forest plots were generated for display. The correlation between clinical baseline data, relevant indicators, and immune-related adverse events (irAEs) in patients was analyzed. Throughout the analysis, P < 0.05 was considered statistically significant. Results: Elevated baseline levels of C-reactive protein (CRP) and decreased baseline levels of prealbumin (PAB) were significantly associated with shortened PFS in patients (P < 0.01). Multivariate analysis results indicated that albumin (ALB), CRP, and PAB were independent prognostic factors affecting patient PFS (P < 0.05). Conclusion: In patients with advanced solid tumors receiving PD-1 inhibitor treatment, a decrease in inflammatory marker levels and an increase in PAB and ALB levels suggest disease improvement, while the opposite indicates disease progression. Although dynamic monitoring of changes in inflammatory marker levels did not show a clear correlation with the occurrence of irAEs in this study, they have potential value in predicting the clinical efficacy of PD-1 inhibitor anti-tumor treatment and improving treatment response rates.
文章引用:陈琦, 王振, 吕香丽, 尹利顺, 黄璐, 钟晓强, 郎连群. 炎症标志物、前白蛋白和白蛋白在晚期实体肿瘤患者抗PD-1治疗中临床疗效的预测价值[J]. 临床医学进展, 2024, 14(5): 1180-1193. https://doi.org/10.12677/acm.2024.1451540

1. 引言

随着人类寿命延长、生活方式的改变以及气候环境变化的影响,各类恶性肿瘤的发生率持续上升 [1] 。PD-1抑制剂(programmed cell death-1 inhibitor, PD-1 inhibitor)的主要作用是通过重新激活肿瘤微环境(tumor microenvironment, TME)中的细胞毒性T细胞(cytotoxic T cells, CTL)来发挥其抗肿瘤效果。近年来,PD-1抑制剂已成为多种晚期肿瘤标准治疗方法之一,并显著提高了患者的生存率 [2] 。尽管PD-1抑制剂已经展示出良好临床获益,但在大多数肿瘤中缓解率仍低于40% [3] 。考虑PD-1抑制剂存在有限的治疗响应率以及可能引发的包括皮肤反应、免疫相关疾病等在内的多种潜在不良反应,寻找适当的生物标志物来筛选药物受益人群显得至关重要。目前公认的有效生物标志物包括肿瘤细胞中微卫星不稳定性(microsatellite instability, MSI)、肿瘤突变负荷(tumor mutation burden, TMB)以及PD-L1 (programmed death-ligand 1)表达水平 [4] 。然而,由于检测成本高昂且获取样本困难,后续治疗和疗效预测仍面临着较大的困扰。相比之下,外周血的获取更为容易,创伤较小,并且能够全面地反映患者的机体状态以及肿瘤情况。

多项研究表明,炎症标志物和血浆蛋白与PD-1抑制剂抗肿瘤治疗的疗效和预后密切相关。其中,白蛋白(albumin, ALB)、前白蛋白(prealbumin, PAB)和C反应蛋白(C-reactive protein, CRP)等在多种肿瘤的发生、发展以及预后中有着预测价值,可能成为癌症患者治疗的重要独立预测因子,甚至超越其他炎症标志物 [5] [6] 。研究指出,晚期实体瘤患者高水平的炎症标志物与不良预后密切相关 [7] [8] [9] 。肿瘤细胞与急性期蛋白、细胞因子和免疫细胞等共同介导全身炎症反应。肿瘤相关的炎症反应促进肿瘤微环境中的肿瘤细胞增殖、迁移和微血管生成,最终导致肿瘤进展。CRP是一种源自肝脏的急性期蛋白,外周血中CRP水平升高可能标志着肿瘤进展 [10] 。ALB和PAB是常见营养指标,由肝脏合成和分泌,与机体营养状态及炎性状态相关,也是反映肿瘤患者预后的生物标志物 [11] [12] 。低白蛋白血症可通过减少免疫微环境中氨基酸含量来抑制抗肿瘤免疫细胞的活化及功能。血清中ALB水平也与PD-1抑制剂药物清除速率密切相关 [13] [14] 。相较于ALB,PAB具有更快的半衰期(仅为1.9天),因此更准确地反映患者营养状态变化 [15] 。在一项纳入5239例晚期非小细胞肺癌(Non-Small Cell Lung Cancer, NSCLC)患者的回顾性分析中发现,当ALB ≥ 3.5 g/dl时,患者的无进展生存期(Progression-Free Survival, PFS)、总生存期(Overall Survival, OS)和客观数目缓解率(Objective Response Rate, ORR)均得到显著改善。相反,较低水平的血清白蛋白与较差的总生存期相关 [16] 。Chen N等人的研究也指出,在接受免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICI)治疗的晚期食管癌患者中,治疗前PAB和ALB水平与PFS和OS显著相关 [17] 。

尽管已有大量研究证实外周血中单一或联合指标与免疫治疗疗效和预后有关,但在真实世界中,关于炎症标志物和血浆蛋白的预后价值仍相对缺乏。本研究旨在通过监测晚期实体肿瘤患者外周血中炎症标志物和血浆蛋白的动态变化,深入探讨它们在抗PD-1治疗中的疗效预测价值。

2. 资料与方法

2.1. 患者资料

本研究回顾性收集2019年1月至2023年10月在青岛市市立医院接受PD-1抑制剂治疗的晚期实体肿瘤患者共4875例。其中,符合纳入标准且随访资料完善的患者共计374例。通过住院、门诊复查和电话联系等方式进行患者随访,记录疗效评价和生存状况。随访截止日期:2023年10月。

纳入标准:① 年龄 ≥ 18岁或≤80岁;② 所有恶性肿瘤患者经组织病理学证实且肿瘤分期为IIIB-IV期;③ 根据RECIST标准1.1版至少有一个靶病灶;④ 美国东部肿瘤协作组体能状态评分(Eastern Cooperative Oncology Group Performance Status, ECOG)为0~2分;⑤ 一线或二线治疗期间接受PD-1抑制剂治疗;⑥ PD-1抑制剂治疗至少持续2个周期;⑦ 首次接受PD-1抑制剂治疗前外周血检查及影像学报告均记录完整;⑧ 每2~3个月行影像学检查以评估疗效。

排除标准:① 合并2种及以上恶性肿瘤;② 治疗周期内未进行影像学评估疗效;③ 合并严重基础疾病(如严重肾脏、肝脏及心脏功能受损);④ 合并自身免疫疾病或免疫缺陷;⑤ 临床资料不完整。

本研究已经过青岛市市立医院伦理委员会的审查和批准。374例患者基线特征汇总见表1

2.2. 样本资料搜集

通过医院电子病案管理系统收集患者信息,包括患者基本临床资料及外周血液参数。

① 患者基本临床资料:性别、年龄、吸烟史、肿瘤类型、分化程度、肿瘤分期、ECOG评分、药物过敏史、治疗线数、治疗方案、首次用药时间、首次疾病进展时间、接受PD-1抑制剂治疗前一周内的影像学评估及疗效评价、免疫相关不良事件(Immune-Related Adverse Events, irAEs)类型与严重程度分级、无进展生存期。

② 外周血液参数:收集的血液参数包括首次使用PD-1抑制剂前一周内、首次PD和首次PR时的以下指标:

淋巴细胞计数(lymphocytes, LYMPH)、中性粒细胞计数(neutrophils, NEUT)、单核细胞计数(monocytes, MONO)、白细胞计数(white blood cell, WBC)、白蛋白(albumin, ALB)、前白蛋白(prealbumin, PAB)、C反应蛋白(C-reactive protein, CRP)、血浆纤维蛋白原(fibrinogen, FIB)、血小板计数(platelets, PLT)。

并对以下比值进行计算:中性粒细胞绝对值/淋巴细胞绝对值(NEUT/LYMPH, NLR)、淋巴细胞绝对值/单核细胞绝对值(LYMPH/MONO, LMR)、血小板计数/淋巴细胞绝对值(PLT/LYMPH, PLR)、C反应蛋白/前白蛋白(CRP/PAB, CPR)、C反应蛋白/白蛋白(CRP/ALB, CAR)、白蛋白/血浆纤维蛋白原(ALB/FIB, AFR)。

2.3. 试验药物与治疗方案

① 所有入组患者使用的PD-1抑制剂品类及规格如下:

替雷利珠单抗(广州百济神州生物制药有限公司,规格:(10 ml:100 mg)/支,批准文号:国药准字S20190045);

斯鲁利单抗(上海复宏汉霖生物制药有限公司,规格:(10 ml:100 mg)/支,批准文号:国药准字S20220013);

信迪利单抗(信达生物制药有限公司,规格:(4 ml:100 mg)/支,批准文号:国药准字S20180016);

特瑞普利单抗(上海君实生物医药科技股份有限公司,规格:(6 ml:240 mg)/支,批准文号:国药准字S20180015);

派安普利单抗(中山康方生物医药有限公司,规格:(10 ml:100 mg)/支,批准文号:国药准字:S20210033);

卡瑞利珠单抗(苏州盛迪亚生物医药有限公司,规格:200 mg/瓶,国药准字:S20190027);

帕博利珠单抗(MSD Ireland Carlow,规格:(4 ml:100 mg)/支,进口药品注册证号:S20180019)。

本研究为回顾性资料,治疗过程根据患者情况进行用药调整,治疗时间根据实际情况确定。

② 治疗方案:

PD-1抑制剂单药使用、联合化疗(铂类、紫杉醇类、5-氟尿嘧啶、卡培他滨、替吉奥、培美曲塞、雷替曲塞、依托泊苷、伊立替康)、联合靶向(安罗替尼、仑伐替尼、阿昔替尼、阿帕替尼、仑伐替尼、呋喹替尼、阿昔替尼、贝伐珠单抗、重组人血管内皮抑制素注射液、曲妥珠单抗、西妥昔单抗)。

2.4. 临床疗效评价标准

为确保评估疗效客观性,对基线状态的肿瘤总负荷进行了评估,并每6~8周进行影像学检查以评估疗效。采用实体瘤疗效评价标准(RECIST1.1版本),分为疾病进展(Disease Progression, PD)、疾病稳定(Disease Stabilization, SD)、部分缓解(Partial Remission, PR)和完全缓解(Complete Remission, CR)。并计算疾病控制率(Disease Control Rate, DCR)和客观缓解率(Objective Response Rate, ORR)。其中疾病控制率(DCR) = (CR + PR + SD)例数/总例数 × 100%,客观缓解率(ORR) = (CR + PR)例数/总例数 × 100%。无进展生存期(Progression-Free Survival, PFS)指患者在治疗中或治疗后病情稳定、无进展的时间。本文将PFS作为主要的研究终点,PFS、DCR和ORR为主要的疗效指标,不良事件为主要的安全性指标。

2.5. irAEs评价标准

在本研究中,根据美国国家癌症研究所颁发的《不良事件通用术语标准》第5.0版(CTCAE 5.0),记录患者在使用PD-1抑制剂期间发生的免疫相关不良事件。

2.6. 统计方法

使用IBM SPSS 26.0软件分析临床数据。对于符合正态分布的计量资料使用均数 ± 标准差表示;对于符合偏态分布资料使用中位数及P25-P75四分位数描述;计数资料采用频数(%)进行描述。使用X-tile软件3.6.1分析炎症标志物,计算最佳截断值并将其分为高和低水平组,绘制两组间Kaplan-Meier生存曲线,进行Log-Rank检验。单因素和多因素COX回归分析估算PFS的风险比及95%可信区间,并绘制森林图。分析临床基线资料及相关指标与患者irAEs的相关性。在整个分析过程中,P < 0.05表示差异有统计学意义。

3. 结果

3.1. 患者基本临床资料

本研究回顾了374例晚期实体瘤患者资料。患者中位年龄为65岁(32~80岁),男性占78.1%,ECOG评分为0~1分的占97.9%,吸烟史占比44.4%。大多数患者肿瘤分期为Ⅳ期(69.5%),PD-L1表达水平 ≥ 50%的为10.4%,远处转移部位 < 2处的为57.8%。76.5%的患者选择PD-1抑制剂作为一线治疗,23.5%选择二线治疗。治疗方式包括PD-1抑制剂单药治疗(17.4%)、PD-1抑制剂 + 化疗(57.2%)、PD-1抑制剂 + 化疗 + 靶向治疗(16.6%)、PD-1抑制剂 + 靶向治疗(8.8%)。肿瘤类型以肺癌(48.9%)和胃癌(19.3%)居多。全部患者完成疗效评价,中位PFS为9.23个月,平均PFS为11.3个月,包括CR (0.5%)、PR (31.0%)、SD (67.6%),DCR为99.2%,ORR为31.6%。共有200例患者在PD-1抑制剂治疗期间发生irAEs (见表1)。

Table 1. General information and clinical baseline characteristics of patients (n = 374)

表1. 患者的一般资料和临床基线特征(n = 374)

3.2. 炎症标志物对患者PFS的预测作用

3.2.1. 炎症标志物基线水平的最佳截断值及Kaplan-Meier生存分析

通过X-Tile软件分析PAB和CRP的截断值,得到PAB的最佳分界值为172 mg/L,CRP的最佳分界值为1.05 mg/L。根据这些截断值,将患者分为高水平PAB组(≥172 mg/L, n = 228)和低水平PAB组(<172 mg/L, n = 146),以及高水平CRP组(≥1.05 mg/L, n = 266)和低水平CRP组(<1.05 mg/L, n = 108)。采用多变量Cox比例风险回归分析筛选独立危险因素,并建立K-M方法绘制生存曲线。对数秩检验被用来评估生存差异。结果显示,在高PAB组中的患者的PFS显著高于低PAB组(335 d vs 233 d, P < 0.01) (见图1(B)),而在低CRP组中的患者的PFS显著高于高CRP组(376 d vs 252 d, P < 0.01) (见图1(D))。结果表明PAB基线水平的降低和CRP基线水平的升高与患者的PFS显著缩短相关(P < 0.01)。

注解:PAB,前白蛋白(图(A),(B));CRP,(C)反应蛋白(图(C),(D))。*P < 0.01,表示差异有统计学意义。

Figure 1. Cutoff values of baseline blood parameters determined by X-tile software and Kaplan-Meier analysis

图1. 由X-tile软件测定的基线血液参数的截断值及Kaplan-Meier生存分析

3.2.2. 患者临床特征和血液参数单因素和多因素分析

单因素分析表明吸烟史、免疫治疗线数、肿瘤分期、ALB、CRP、PAB与PFS显著相关(P < 0.05或P < 0.01)。在单因素分析结果的基础上,进行多因素分析。结果显示吸烟史(P = 0.023, HR: 0.77, 95%CI: 0.615~0.964)、免疫治疗线数(P = 0.009, HR: 1.393, 95%CI: 1.086~1.787)、肿瘤分期(P = 0.007, HR: 1.313, 95%CI: 1.076~1.602)、ALB (P = 0.048, HR: 0.752, 95%CI: 0.566~0.997)、CRP (P = 0.001, HR: 1.491, 95%CI: 1.179~1.886)和PAB (P = 0.017, HR: 0.756, 95%CI: 0.601~0.951)是影响患者PFS的独立预后因素(见表2)。根据COX回归森林图可知,无吸烟史、二线治疗、肿瘤分期为IV期会影响患者的PFS,尤其是低水平ALB或PAB以及高水平CRP预示患者预后差(见图2)。

Table 2. Univariate and multivariate analyses of patient PFS under different parametric characteristics

表2. 不同参数特征下的患者PFS的单因素和多因素分析

注解:ALB,白蛋白;CRP,C反应蛋白;FIB,血浆纤维蛋白原;PAB,前白蛋白。*P < 0.05或**P < 0.01,表明相关参数与患者PFS之间存在统计学上的显著相关性。

Figure 2. COX regression forest plot

图2. COX回归森林图

3.3. PD-1抑制剂安全性评价

本研究涉及374例接受免疫治疗的患者,其中200例(53.47%)发生了免疫相关不良事件,其中最常见的irAEs为皮疹(10.96%, 41/374),其次是甲状腺功能减退(9.89%, 37/374)。对不良反应严重程度进行分级,I~II级有229例,III~IV级有55例,而V级有3例。其中,V级不良反应分别为免疫性肺炎(0.53%, 2/374)和垂体炎(0.26%, 1/374),这些患者均因病情过重最终死亡。对每一项irAEs进行相关性评价,肯定有关的有74例(19.79%),很可能有关的有204例(54.55%),可能有关的11例(2.94%)。因irAEs停药的患者有39例,其中发生率最高的是免疫性肺炎(26.73%, 10/374)以及皮疹(21.39%, 8/374)。发生不良反应后需要激素替代治疗的患者有39例,其中大多数为甲状腺功能减退(90.91%, 34/374),通常采用左甲状腺素钠片作为替代治疗药物。全身激素治疗的患者有35例,其中发生率最高的分别为免疫性肺炎(4.28%, 16/374)和皮疹(3.21%, 12/374),临床常用药物为地塞米松注射液/甲泼尼龙片(见表3)。

Table 3. Number of adverse reactions, severity classification and correlation analysis

表3. 不良反应发生例数、严重程度分级及相关性分析

4. 讨论

PD-1抑制剂已成为多种肿瘤的一线治疗方案,然而,约30%的患者在治疗后仍然发生肿瘤进展。生物标志物的研究有助于筛选对PD-1治疗响应良好的人群 [18] [19] [20] 。有研究表明,一些生物标志物可以用来筛选抗PD-1治疗的有效人群 [21] [22] [23] 。目前已经获得美国食品药品监督管理局(FDA)批准用于免疫治疗的生物标志物包括PD-L1表达、TMB和MSI。然而,在临床中这些生物标志物的应用存在局限性,并不是理想的选择。原因如下:① 与肿瘤疗效相关性尚不确定 [24] ;② 缺乏统一的评判标准和标准化的检测试剂;③ 需要侵入性获取组织样本且成本较高;④ 适用范围相对较窄等方面存在问题。相比之下,外周血标志物具备快速经济、无创简便以及可动态监测等优势。外周血中某些特定的炎性指标已被证实与肺癌和黑色素瘤免疫治疗疗效及预后相关,但在大多数实体瘤中,其预测价值仍未明确 [25] 。因此,进行大规模回顾性研究,探索外周血炎症标志物和血浆蛋白在预测晚期实体瘤患者预后中的潜在价值至关重要。

炎症反应释放细胞因子,促进细胞增殖和血管生成,同时改变原癌基因的激活、抑癌基因的表达和转化,从而促进肿瘤的发生、发展、侵袭和转移 [26] 。有研究发现,肿瘤引起的炎性状态增加白介素-6 (Interleukin-6, IL-6)产生,触发CRP合成,但高浓度的CRP可能预示着肿瘤进展 [27] - [32] 。另外,CRP、IL-6和肿瘤坏死因子-α (Tumor Necrosis Factor-alpha, TNF-α)等炎性因子与PAB、ALB呈负相关 [33] [34] ],低水平的PAB和ALB会损害免疫系统并抑制细胞介导的免疫功能,但高水平PAB和ALB的肿瘤患者在OS、PFS等方面均有不同程度改善 [35] [36] [37] [38] 。机制可能涉及IL-6通过抑制PPARα来降低小鼠肝生酮,导致免疫治疗失败 [39] 。Saal J等 [40] 报道了一项单臂II期和三项随机III期临床试验(IMvigor210、OAK、IMvigor211、IMmotion151),接受阿替利珠单抗治疗的3391名多癌种患者中,ALB > 35 g/L的患者有明显的生存获益。Li等 [41] 发现,在接受PD-1抑制剂二线治疗的NSCLC患者中,PAB是OS的独立预后因素(P < 0.01)。本研究结果也与既往研究一致,CRP基线水平升高及PAB基线水平降低与患者的PFS显著缩短密切相关(P值均<0.01),多因素分析结果表明,ALB、CRP和PAB是影响患者PFS的独立预后因素(P值均<0.05)。CRP和PAB最佳截断值分为1.05 mg/L (P = 0.001, HR: 1.491, 95%CI: 1.179~1.886)和172 mg/L (P = 0.017, HR: 0.756, 95%CI: 0.601~0.951),与既往研究类似。

吸烟史(P = 0.023, HR: 0.77, 95%CI: 0.615~0.964)、免疫治疗线数(P = 0.009, HR: 1.393, 95%CI: 1.086~1.787)、肿瘤分期(P = 0.007, HR: 1.313, 95%CI: 1.076~1.602)也是影响患者PFS的独立预后因素。与既往研究结果一致 [42] [43] ,在本研究中,多因素分析显示,有吸烟史、一线治疗以及肿瘤分期为III期的患者表现出更好的PFS。分析原因如下:(1) 接受多线治疗的晚期肿瘤患者通常处于疾病终末期且肿瘤负荷较高,对化疗或放疗耐受性较差,并伴有营养不良等问题,从而导致免疫治疗疗效不佳。(2) 处于早期阶段的肿瘤患者通常具有较为健全的免疫系统功能和较高的T细胞功能状态,能更好地调动自身免疫系统以提高治疗效果 [44] 。(3) 吸烟患者体内体细胞突变更频繁,有更高水平的PD-L1表达,免疫治疗效果相对更佳 [45] 。综上所述,临床病理特征在免疫治疗中也具有一定程度上预测价值。

本研究结果显示,所有等级免疫相关不良事件(irAEs)的发生率为53.47%,其中以皮疹、甲状腺功能减退、瘙痒和免疫性肺炎最为常见。irAEs致死率为0.80% (其中包括2例免疫性肺炎和1例垂体炎)。irAEs发生的中位时间为3.63个月,平均发生时间为5.00个月。与既往有研究报道类似 [46] 。本研究中皮疹是最常见的不良事件,可能是患者的皮肤和肿瘤之间存在共同的T细胞克隆,共同的T细胞克隆识别的靶抗原为肿瘤组织与皮肤组织共同表达的上皮类细胞抗原 [47] 。此外,总体不良反应发生率略高,但III~IV级不良反应及其与治疗的确定性相关性占比较低。这可能与样本量偏小、肿瘤分期较晚、联合使用其他抗肿瘤药物或存在超适应症用药等因素有关。

到目前为止,irAEs与疗效之间的具体机制尚未完全明确。根据已掌握的文献资料显示,在PFS、OS和ORR方面,发生irAEs的患者与未发生irAEs的患者相比有显著改善 [48] [49] 。然而本研究中并没有观察到此现象,先前也有报道得出了相同结论 [50] 。分析原因可能是由于本研究案例数较少以及对irAEs评估的准确性不足导致的统计学差异。此外,回顾性研究与临床研究方法不同,临床研究入组标准更为严格。

本研究明确了CRP、PAB和ALB在接受抗PD-1治疗的晚期实体瘤患者中具有重要意义。然而,本研究存在一些不足:(1) 作为单中心回顾性研究具有一定的局限性且样本数量较少,研究数据缺乏代表性;(2) 个体间外周血指标差异较大,外周血指标的截断值并无一定标准,导致了评估的不确定性;(3) 受限于患者治疗方案的异质性,结果存在一定的偏倚。为了进一步验证本研究的发现并为抗PD-1治疗的疗效预测提供可靠的参考,未来研究需要在多中心的前瞻性研究中包含更大的样本量。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Hargadon, K.M., Johnson, C.E. and Williams, C.J. (2018) Immune Checkpoint Blockade Therapy for Cancer: An Overview of FDA-Approved Immune Checkpoint Inhibitors. International Immunopharmacology, 62, 29-39.
https://doi.org/10.1016/j.intimp.2018.06.001
[3] Dai, X., Gao, Y. and Wei, W. (2022) Post-Translational Regulations of PD-L1 and PD-1: Mechanisms and Opportunities for Combined Immunotherapy. Seminars in Cancer Biology, 85, 246-252.
https://doi.org/10.1016/j.semcancer.2021.04.002
[4] Iwai, Y., Hamanishi, J., Chamoto, K., et al. (2017) Cancer Immunotherapies Targeting the PD-1 Signaling Pathway. Journal of Biomedical Science, 24, Article No. 26.
https://doi.org/10.1186/s12929-017-0329-9
[5] Allin, K.H. and Nordestgaard, B.G. (2011) Elevated C-Reactive Protein in the Diagnosis, Prognosis, and Cause of Cancer. Critical Reviews in Clinical Laboratory Sciences, 48, 155-170.
https://doi.org/10.3109/10408363.2011.599831
[6] Cehreli, R., Yavuzsen, T., Ates, H., et al. (2019) Can Inflammatory and Nutritional Serum Markers Predict Chemotherapy Outcomes and Survival in Advanced Stage Nonsmall Cell Lung Cancer Patients? BioMed Research International, 2019, Article ID: 1648072.
https://doi.org/10.1155/2019/1648072
[7] Geng, Y., Qi, Q., Sun, M., et al. (2015) Prognostic Nutritional Index Predicts Survival and Correlates with Systemic Inflammatory Response in Advanced Pancreatic Cancer. European Journal of Surgical Oncology, 41, 1508-1514.
https://doi.org/10.1016/j.ejso.2015.07.022
[8] Riedl, JM., Posch, F., Moik, F., et al. (2017) Inflammatory Biomarkers in Metastatic Colorectal Cancer: Prognostic and Predictive Role beyond the First Line Setting. Oncotarget, 8, 96048-96061.
https://doi.org/10.18632/oncotarget.21647
[9] Lococo, F., Chiappetta, M., Evangelista, J., et al. (2022). Role of Peripheral Blood Markers for Detecting Response and Predicting Prognosis in Patients with Non-Small-Cell Lung Cancer Undergoing Neoadjuvant Therapy and Surgery. Lung, 200, 393-400.
https://doi.org/10.1007/s00408-022-00541-2
[10] Shen, L., Li, Z.M. and Lu, S. (2011) [Clinical Significa,Nce of C-Reactive Protein in Patients with Stage I Non-Small Cell Lung Cancer]. Chinese Journal of Oncology, 33, 442-446.
[11] Gupta, D. and Lis, C.G. (2010) Pretreatment Serum Albumin as a Predictor of Cancer Survival: A Systematic Review of the Epidemiological Literature. Nutrition Journal, 9, Article No. 69.
https://doi.org/10.1186/1475-2891-9-69
[12] Guller, M., Herberg, M., Amin, N., et al. (2021) Nutritional Status as a Predictive Biomarker for Immunotherapy Outcomes in Advanced Head and Neck Cancer. Cancers, 13, Article 5772.
https://doi.org/10.3390/cancers13225772
[13] Hurkmans, D.P., Basak, E.A., Van Dijk, T., et al. (2019) A Prospective Cohort Study on the Pharmacokinetics of Nivolumab in Metastatic Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Cancer Patients. The Journal for ImmunoTherapy of Cancer, 7, 192.
[14] Zheng, M. (2022) Serum Albumin: A Pharmacokinetic Marker for Optimizing Treatment Outcome of Immune Checkpoint Blockade. Journal for ImmunoTherapy of Cancer, 10, e005670.
https://doi.org/10.1136/jitc-2022-005670
[15] Liu, C., Bai, Y., Liu, Y., et al. (2023) Effect of Standard Nutritional Support Therapy Based on Nutritional Risk Screening on Post-Operative Nutritional Status and Quality of Life in Patients with Glioma. American Journal of Translational Research, 15, 6217-6225.
[16] Pu, D., Xu, Q., Zhou, LY., et al. (2021) Inflammation-Nutritional Markers of Peripheral Blood Could Predict Survival in Advanced Non-Small-Cell Lung Cancer Patients Treated with PD-1 Inhibitors. Thoracic Cancer, 12, 2914-2923.
https://doi.org/10.1111/1759-7714.14152
[17] Chen, N., Yu, Y., Shen, W., et al. (2023) Nutritional Status as Prognostic Factor of Advanced Oesophageal Cancer Patients Treated with Immune Checkpoint Inhibitors. Clinical Nutrition, 43, 142-153.
https://doi.org/10.1016/j.clnu.2023.11.030
[18] Mok, T.S.K., Wu, Y.L., Kudaba, I., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet, 393, 1819-1830.
https://doi.org/10.1016/S0140-6736(18)32409-7
[19] Li, Q., Han, J., Yang, Y. and Chen, Y. (2022) PD-1/PD-L1 Checkpoint Inhibitors in Advanced Hepatocellular Carcinoma Immunotherapy. Frontiers in Immunology, 13, Article 1070961.
https://doi.org/10.3389/fimmu.2022.1070961
[20] Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[21] Marabelle, A., Fakih, M., Lopez, J., et al. (2020). Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. The Lancet Oncology, 21, 1353-1365.
https://doi.org/10.1016/S1470-2045(20)30445-9
[22] Le, D.T., Durham, J.N., Smith, K.N., et al. (2017) Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science, 357, 409-413.
https://doi.org/10.1126/science.aan6733
[23] Davis, A.A. and Patel, V.G. (2019) the Role of PD-L1 Expression as a Predictive Biomarker: An Analysis of All US Food and Drug Administration (FDA) Approvals of Immune Checkpoint Inhibitors. Journal for Immuno Therapy of Cancer, 7, 278.
https://doi.org/10.1186/s40425-019-0768-9
[24] Garassino, M.C., Gadgeel, S., Esteban, E., et al. (2020) Patient-Reported Outcomes Following Pembrolizumab or Placebo plus Pemetrexed and Platinum in Patients with Previously Untreated, Metastatic, Non-Squamous Non-Small-Cell Lung Cancer (KEYNOTE-189): A Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 21, 387-397.
https://doi.org/10.1016/S1470-2045(19)30801-0
[25] Shiravand, Y., Khodadadi, F., Kashani, S.M.A., et al. (2022) Immune Checkpoint Inhibitors in Cancer Therapy. Current Oncology, 29, 3044-3060.
https://doi.org/10.3390/curroncol29050247
[26] Nigam, M., Mishra, A.P., Deb, V.K., et al. (2023) Evaluation of the Association of Chronic Inflammation and Cancer: Insights and Implications. Biomedicine & Pharmacotherapy, 164, Article ID: 115015.
https://doi.org/10.1016/j.biopha.2023.115015
[27] Chen, J., Wei, S., Zhao, T., et al. (2022) Clinical Significance of Serum Biomarkers in Stage IV Non-Small-Cell Lung Cancer Treated with PD-1 Inhibitors: LIPI Score, NLR, DNLR, LMR, and PAB. Disease Marker, 2022, Article ID: 7137357.
https://doi.org/10.1155/2022/7137357
[28] Xiao, X., Wang, S. and Long, G. (2019) C-Reactive Protein Is a Significant Predictor of Improved Survival in Patients with Advanced Non-Small Cell Lung Cancer. Medicine, 98, e16238.
https://doi.org/10.1097/MD.0000000000016238
[29] Zhu, M., Ma, Z., Zhang, X., et al. (2022) C-Reactive Protein and Cancer Risk: A Pan-Cancer Study of Prospective Cohort and Mendelian Randomization Analysis. BMC Medicine, 20, Article No. 301.
https://doi.org/10.1186/s12916-022-02506-x
[30] Zheng, F., Meng, Q., Zhang, L., et al. (2023) Prognostic Roles of Hematological Indicators for the Efficacy and Prognosis of Immune Checkpoint Inhibitors in Patients with Advanced Tumors: A Retrospective Cohort Study. World Journal of Surgical Oncology, 21, Article No. 198.
https://doi.org/10.1186/s12957-023-03077-8
[31] Riedl, J.M., Barth, D.A., Brueckl, W.M., et al. (2020) C-Reactive Protein (CRP) Levels in Immune Checkpoint Inhibitor Response and Progression in Advanced Non-Small Cell Lung Cancer: A Bi-Center Study. Cancers, 12, Article 2319.
https://doi.org/10.3390/cancers12082319
[32] Iivanainen, S., Ahvonen, J., Knuuttila, A., et al. (2019) Elevated CRP Levels Indicate Poor Progression-Free and Overall Survival on Cancer Patients Treated with PD-1 Inhibitors. ESMO Open, 4, e000531.
https://doi.org/10.1136/esmoopen-2019-000531
[33] Fanali, G., Di Masi, A., Trezza, V., et al. (2012) Human Serum Albumin: From Bench to Bedside. Molecular Aspects of Medicine, 33, 209-290.
https://doi.org/10.1016/j.mam.2011.12.002
[34] Dennis, R.A., Johnson, L.E., Roberson, P.K., et al. (2008) Changes in Prealbumin, Nutrient Intake, and Systemic Inflammation in Elderly Recuperative Care Patients. Journal of the American Geriatrics Society, 56, 1270-1275.
https://doi.org/10.1111/j.1532-5415.2008.01789.x
[35] Guo, Y., Wei, L., Patel, S.H., et al. (2022) Serum Albumin: Early Prognostic Marker of Benefit for Immune Checkpoint Inhibitor Monotherapy but Not Chemoimmunotherapy. Clinical Lung Cancer, 23, 345-355.
https://doi.org/10.1016/j.cllc.2021.12.010
[36] Luo, H., Huang, J., Zhu, Z., et al. (2019) Prognostic Value of Pretreatment Serum Transthyretin Level in Patients with Gastrointestinal Cancers. Disease Markers, 2019, Article ID: 7142065.
https://doi.org/10.1155/2019/7142065
[37] Han, S., Huang, Y., Li, Z., et al. (2015) The Prognostic Role of Preoperative Serum Albumin Levels in Glioblastoma Patients. BMC Cancer, 15, Article No. 108.
https://doi.org/10.1186/s12885-015-1125-0
[38] Cui, X., Jia, Z., Chen, D., et al. (2020) The Prognostic Value of the C-Reactive Protein to Albumin Ratio in Cancer: An Updated Meta-Analysis. Medicine, 99, e19165.
https://doi.org/10.1097/MD.0000000000019165
[39] Flint, T.R., Janowitz, T., Connell, C.M., et al. (2016) Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-Tumor Immunity. Cell Metabolism, 24, 672-684.
https://doi.org/10.1016/j.cmet.2016.10.010
[40] Saal, J., Ellinger, J., Ritter, M., et al. (2023) Pretreatment Albumin Is a Prognostic and Predictive Biomarker for Response to Atezolizumab across Solid Tumors. Clinical & Translational Immunology, 12, e1472.
https://doi.org/10.1002/cti2.1472
[41] Li, X.Q., Zhao, Z.L., Hou, M.L., et al. (2021) [The Influence of Cachexia on the Immunotherapy Efficacy of Sintilimab for Non-Small Cell Lung Cancer]. Chinese Journal of Oncology, 43, 1292-1297.
[42] Landre, T., Des Guetz, G., Chouahnia, K., et al. (2020) Immune Checkpoint Inhibitors for Patients Aged ≥ 75 Years with Advanced Cancer in First-and Second-Line Settings: A Meta-Analysis. Drugs Aging, 37, 747-754.
https://doi.org/10.1007/s40266-020-00788-5
[43] Chen, L., Zhao, R., Sun, H., et al. (2022) The Prognostic Value of Gastric Immune Prognostic Index in Gastric Cancer Patients Treated with PD-1/PD-L1 Inhibitors. Frontiers in Pharmacology, 13, Article 833584.
https://doi.org/10.3389/fphar.2022.833584
[44] Topalian, S.L., Taube, J.M. and Pardoll, D.M. (2020)Neoadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science, 367, eaax0182.
https://doi.org/10.1126/science.aax0182
[45] Bodor. J., Bauman, N., et al. (2023) Real-World Progression-Free Survival (RwPFS) and the Impact of PD-L1 and Smoking in Driver-Mutated Non-Small Cell Lung Cancer (NSCLC) Treated with Immunotherapy. Journal of Cancer Research and Clinical Oncology, 149, 1755-1763.
https://doi.org/10.1007/s00432-022-04089-9
[46] Johnson, D.B., Nebhan, C.A., Moslehi, J.J., et al. (2022) Immune-Checkpoint Inhibitors: Long-Term Implications of Toxicity. Nature Reviews Clinical Oncology, 19, 254-267.
https://doi.org/10.1038/s41571-022-00600-w
[47] Berner, F., Bomze, D., Diem, S., et al. (2019) Association of Checkpoint Inhibitor-Induced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer. JAMA Oncology, 5, 1043-1047.
https://doi.org/10.1001/jamaoncol.2019.0402
[48] Tardy, M.P., Gastaud, L., Boscagli, A., et al. (2017) Autoimmune Hemolytic Anemia after Nivolumab Treatment in Hodgkin Lymphoma Responsive to Immunosuppressive Treatment. A Case Report. Hematological Oncology, 35, 875-877.
https://doi.org/10.1002/hon.2338
[49] Socinski, M.A., Jotte, R.M., Cappuzzo, F., et al. (2023) Association of Immune-Related Adverse Events with Efficacy of Atezolizumab in Patients with Non-Small Cell Lung Cancer: Pooled Analyses of the Phase 3 IMpower130, IMpower132, and IMpower150 Randomized Clinical Trials. JAMA Oncology, 9, 527-535.
https://doi.org/10.1001/jamaoncol.2022.7711
[50] 严颐丹, 刘利, 赵灵逸, 等. 一项单中心回顾性研究: 真实世界中PD-1抑制剂在晚期癌症患者免疫治疗中的有效性和安全性[J]. 肿瘤, 2023, 43(3): 161-170.