硫氧还蛋白-1在重症急性胰腺炎中的作用
Role of Thioredoxin-1 in Severe Acute Pancreatitis
DOI: 10.12677/acm.2024.1451559, PDF, HTML, XML, 下载: 41  浏览: 64 
作者: 赵习浩:青岛大学医学部,山东 青岛
关键词: 急性重症胰腺炎硫氧还蛋白肠粘膜屏障Acute Severe Pancreatitis Thioredoxin Intestinal Mucosal Barrier
摘要: 在重症急性胰腺炎(severe acute pancreatitis, SAP)中,肠道黏膜屏障的破坏可引起肠道细菌移位,诱发或加重全身性感染。硫氧还蛋白(thioredoxin, Trx)系统在机体氧化还原平衡和细胞增殖中发挥重要的调节作用,其中Trx-1除具有氧化还原和抗氧化活性外,还有细胞生长调节作用、调控转录因子及基因表达作用、抗凋亡作用等多种生物活性。本研究旨在探讨Trx-1在SAP大鼠肠道屏障损伤中的作用。健康成年雄性Sprague-Dawley大鼠随机分为假手术组、SAP组、SAP 重组人硫氧还蛋白(Trx-1)组。采用5%牛磺胆酸钠逆行注射胆管建立大鼠SAP模型。SAP前24 h腹腔注射重组人硫氧还蛋白,24 h后采集各组血清和肠道组织标本进行分析。Trx预处理通过增加Trx-1的量显著降低SAP的全身炎症反应和减轻肠道上皮损伤。我们的研究表明,Trx-1表达上调可以减轻SAP中肠黏膜屏障的损伤。
Abstract: In severe acute pancreatitis (SAP), disruption of the intestinal mucosal barrier can cause intestinal bacterial translocation and induce or exacerbate systemic infections. The thioredoxin (Trx) system plays an important regulatory role in redox homeostasis and cell proliferation in the organism, in which Trx-1, in addition to its redox and antioxidant activities, also has a variety of biological activities, such as cell growth regulation, modulation of transcription factors and gene expression, and anti-apoptotic effects. The aim of this study was to investigate the role of Trx-1 in intestinal barrier injury in SAP rats. Healthy adult male Sprague-Dawley rats were randomly divided into sham-operated group, SAP group, and SAP recombinant human thioredoxin (Trx) group. The rat SAP model was established by retrograde injection of 5% sodium taurocholate into the bile ducts. Recombinant human thioredoxin was injected intraperitoneally 24 h before SAP, and serum and intestinal tissue specimens were collected from each group 24 h later for analysis. Trx pretreatment significantly reduced the systemic inflammatory response and attenuated intestinal epithelial injury in SAP by increasing the amount of TRX-1. Our study suggests that upregulation of Trx-1 expression attenuates intestinal mucosal barrier damage in SAP.
文章引用:赵习浩. 硫氧还蛋白-1在重症急性胰腺炎中的作用[J]. 临床医学进展, 2024, 14(5): 1345-1351. https://doi.org/10.12677/acm.2024.1451559

1. 引言

重症急性胰腺炎(SAP)是一种具有较高死亡率的急性胰腺炎亚型,SAP通常继发于胰腺感染和多器官衰竭 [1] 。肠道黏膜可以阻止潜在的、有害的恶性肠道细菌和内毒素进入体循环和肠外组织 [2] ,而SAP可以诱导肠粘膜损伤,并在此过程中导致肠道内微生物和内毒素通过肠道黏膜屏障进入血液和淋巴系统,从而侵入远处器官 [3] 。经由此途径可导致继发性感染、全身炎症反应综合征和多器官功能障碍综合征。因此,探索一种有效的保护肠粘膜屏障的方法以降低SAP对肠粘膜的损伤,从而预防SAP引起的肠源性感染是十分重要的。

硫氧还蛋白,硫氧还蛋白还原酶(thioredoxin reductase, TrxR)与烟酰胺腺嘌呤二核苷磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)一起构成Trx系统 [4] ,以往研究表明,Trx具有多种生物学功能,其中最主要的功能是能够直接清除细胞内过氧化氢及氧自由基等ROS成分,调节细胞内氧化还原平衡 [5] 。已知Trx有多种亚型,研究最多的主要是存在于细胞质和细胞核中的Trx1和仅位于线粒体中Trx2两种亚型,Trx包括Trx-1和Trx-2在内都具有氧化还原和抗氧化活性 [6] 。Trx-1除具有氧化还原和抗氧化活性外,还有细胞生长调节作用,调控转录因子及基因表达作用,抗凋亡作用等多种生物活性 [7] 。

肠粘膜屏障损伤在SAP发病机制及预后上具有重要意义,且Trx-1对SAP肠粘膜的作用及其机制一直没有被研究。通过查阅文献我们推测,上调Trx-1的表达将会减轻SAP肠粘膜屏障的损伤,将为SAP的临床治疗提供有力的武器,具有重要的临床意义。

2. 材料与方法

2.1. 建模

将选取的30只SPF级健康成年雄性SD大鼠,随机分为3组:假手术组(SO组)、重症急性胰腺炎组(SAP组)、重组人硫氧还蛋白(SAP + Trx组)。在建模前所有大鼠禁食12 h,禁水6 h。大鼠称重后腹腔注射3%戊巴比妥钠(20 mg/kg)进行麻醉。备皮消毒后行腹正中小切口开腹,使用血管夹在肝门部将胰胆管阻断。将连接微量泵的24G套管针逆行穿进胰胆管,通过标准压力控制向胆胰管内注入新鲜制备的5%牛磺胆酸钠溶液(1 ml/kg)诱导SAP模型 [8] 。SO组以同样的方法向胰胆管内注入等量无菌生理盐水。SAP + Trx组在SAP模型建立前24小时以10 mg/kg向大鼠腹腔内注射Trx [9] ,同时,SO组和SAP组大鼠腹腔注射等量的溶剂。

2.2. 样本采集

诱导SAP模型后,在特定时间点再次麻醉各组大鼠。采集下腔静脉血液样本并分装到两个微管。其中一份血液样本离心后,取上清液储存在−20℃以供随后的血清分析。取胰头、近盲肠部回肠组织,用4%多聚甲醛将其中一部分固定,用于制备组织切片。

2.3. 样本采集

(1) 使用自动生化分析仪测定血液样本中的血清淀粉酶(amylase, AMY)和脂肪酶(lipase, LIPA)活性;

(2) 采用检测试剂盒测定血清肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、白细胞介素-6 (interleukin-6, IL-6)水平,检测方法按照南京建成生物科技公司提供检测说明书;

(3) 采用标准化试剂检测盒测丙二醛(malondialdehyde, MDA)、谷胱甘肽(glutathione, GSH)、超氧化物歧化酶(superoxide dismutase, SOD)含量,检测方法按照南京建成生物科技公司提供检测说明书。

2.4. 样本采集

(1) 将固定好的胰腺、小肠、肺、肾组织标本石蜡包埋,制成5 μm切片;

(2) 使用苏木精–伊红(HE)染色,步骤如下:二甲苯切片脱蜡→乙醇水化→苏木精染色→盐酸乙醇分化→蒸馏水洗→氨水反蓝→蒸馏水洗→伊红染色→乙醇脱水→二甲苯透明→树脂封固→光镜观察;

(3) 用光镜观察各种组织的病理变化;

(4) 胰腺、小肠的损伤程度按以前的标准进行评分 [10] [11] 。

3. 结果

3.1. SAP肠道损伤模型是否成功建立

为了评价SAP肠道损伤模型是否成功建立,我们观察血清淀粉酶和脂肪酶的变化,并通过HE染色对胰腺组织和回肠进行组织病理学分析(图1(a))。急性重症胰腺炎诱导24 h后,血清淀粉酶和脂肪酶显著升高(图1(b)和图1(c))。胰腺组织HE染色显示,SAP组发生了以间质水肿、炎症浸润、胰腺腺泡细胞空泡化或坏死。回肠组织HE染色显示,与SO组相比,SAP组回肠组织水肿、出血、绒毛脱落、粘膜细胞坏死、白细胞浸润。这些数据结果表明,SAP诱导的肠黏膜屏障损伤模型的建立是成功的。

(a) (b) (c) (d) (e) (f) (g)

Figure 1. Trx-1 is involved in SAP-induced intestinal barrier injury. The rats in SO and SAP groups were anesthetized 24 h after operation, and the pancreas, intestinal tissue and serum were collected. (a) Representative images of pancreas and intestinal tissues of each group after hematoxylin and eosin staining (×200); (b) Serum amylase; (c) Serum lipase; (d) Western blot analysis of Trx-1 protein in ileum; (e) Content of malondialdehyde; (f) SOD activity; (g) GPX activity. Data are expressed as the mean ± SD (n = 8). *P < 0.05 vs. SO group, one-way ANOVA

图1. Trx-1参与了SAP诱导的肠屏障损伤。SO组和SAP组术后24 h麻醉,收集胰腺、肠道组织及血清。(a) 苏木精和伊红染色后各组大鼠胰腺和肠道组织的代表性图像(×200);(b) 血清淀粉酶;(c) 血清脂肪酶;(d) 回肠Trx-1蛋白的Western blot分析;(e) 丙二醛含量;(f) SOD活性;(g) GPX活性。数据用均数 ± 标准差表示(n = 8),与SO组比较,*P < 0.05,单因素方差分析

3.2. Trx-1参与SAP诱导的肠黏膜屏障损伤

Trx-1被广泛认为是氧化应激的主要调节因子。为了证实Trx-1参与了SAP诱导的肠道屏障损伤,我们观察了肠道Trx-1表达和氧化应激的变化(图1(d)~(g))。与SO组相比,SAP组Trx-1表达量和MDA含量显著升高(P < 0.05),SOD和GPX活性显著降低(P < 0.05)。这些结果表明,氧化应激在SAP肠道损伤中受损,Trx-1参与了SAP诱导的肠黏膜屏障损伤。

3.3. Trx-1的高表达的可减轻SAP引起的炎症

为了探讨Trx-1对SAP炎症反应的影响,我们分析了大鼠血清促炎因子(TNF-α, IL-6)的水平。与SO组相比,SAP组血清TNF-α (图2(b))、IL-6 (图2(c))水平显著升高(P < 0.05)。与SAP组比较,上调Trx-1表达后,SAP + Trx组TNF-α、IL-6水平显著降低(P < 0.05)。这些数据表明,Trx-1的上调可显著减轻SAP引起的全身炎症反应。术后24 h行HE染色,观察胰腺和肠黏膜的病理变化(图2(a))。SAP组胰腺损伤更为严重,如间质水肿、滤泡细胞坏死、炎症细胞浸润。经Trx预处理的SAP大鼠病理胰腺损伤和组织学评分显著降低。SAP组肠道损伤更为严重,如水肿、出血、绒毛丢失、粘膜细胞坏死等。与SAP组比较,SAP + Trx组肠组织病理损伤明显减轻,组织学评分明显降低(P < 0.05)。这些结果表明,上调Trx-1的表达可显著减轻SAP肠道屏障的损伤。

(a) (b) (c)

Figure 2. Effects of up-regulated Trx-1 expression on intestinal mucosal barrier and inflammatory factors in SAP. After 24 h anesthesia, vena cava was removed and blood samples were collected to obtain serum and histological analysis of distal ileum. (a) Intestinal pathological images (×200); (b) Serum TNF-α levels; (c) Serum IL-6 levels; Data were expressed as mean ± SD (n = 8), compared with the SO group, *P < 0.05, compared with the SAP group, #P < 0.05, one-way ANOVA

图2. Trx-1表达上调对SAP肠黏膜屏障及炎性因子的影响。各组大鼠麻醉24 h后,取下腔静脉采血获得血清及回肠末端组织学分析。(a) 肠病理图像(×200);(b) 血清TNF-α水平;(c) 血清IL-6水平;数据以mean ± SD表示(n = 8),与SO组比较,*P < 0.05,与SAP组比较,#P < 0.05,单因素方差分析

4. 讨论

重症急性胰腺炎是一种病死率高、发展快的疾病,可伴有多器官功能衰竭 [12] 。在SAP期间,肠上皮屏障被破坏,从而导致细菌易位和一系列并发症。为了探索减轻SAP严重程度的措施。我们选择健康、无病原体的成年雄性SD大鼠作为研究对象。胆胰管逆行注射牛磺胆酸钠建立的SAP模型具有相对的有效性、稳定性、可重复性和可比性,被广泛接受。采用该方法成功建立了大鼠SAP肠黏膜损伤模型。SAP的严重程度随时间而变化,根据文献报道和我们之前的研究结果,SAP建模后24小时肠道损伤最严重 [13] 。因此,本研究建模后24 h采集样品。

我们的实验结果显示,SAP回肠组织中Trx-1蛋白表达显著升高,说明SAP应激刺激下大鼠回肠组织中Trx-1表达略有增强,这是肠道组织的一种保护机制。本研究观察到与SAP相关的肠粘膜组织损伤,以及全身炎症反应,可以通过提高Trx-1的表达得到改善。Trx-1在疾病发展过程中维持肠道健康发挥着重要作用。我们的实验表明,Trx-1表达上调可显著减轻肠黏膜损伤、全身炎症反应,证实Trx-1具有强大的抗炎和抗氧化作用。而Trx-1是通过何种途径减轻炎症反应的仍需进一步研究。SAP诱导的肠黏膜损伤是一个涉及复杂细胞死亡机制的动态过程,这些类型的细胞死亡之间的关系值得进一步探讨。因此,Trx-1在SAP大鼠其他类型细胞死亡中的作用将是我们未来研究的重点。

5. 结论

综上所述,我们的研究表明,在SAP诱导的肠道上皮损伤中,提高Trx-1的表达可以改善肠粘膜损伤。提示Trx-1将是治疗SAP相关性肠损伤的一种新的治疗方法。

参考文献

[1] Gloor, B., Müller, C.A., Worni, M., Martignoni, M.E., Uhl, W. and Büchler, M.W. (2001) Late Mortality in Patients with Severe Acute Pancreatitis. British Journal of Surgery, 88, 975-979.
https://doi.org/10.1046/j.0007-1323.2001.01813.x
[2] Zhou, M.T., Chen, C.S., Chen, B.C., et al. (2010) Acute Lung Injury and ARDS in Acute Pancreatitis: Mechanisms and Potential Intervention. World Journal of Gastroenterology, 16, 2094-2099.
https://doi.org/10.3748/wjg.v16.i17.2094
[3] Dervenis, C., Smailis, D. and Hatzitheoklitos, E. (2003) Bacterial Translocation and Its Prevention in Acute Pancreatitis. Journal of Hepato-Biliary-Pancreatic Surgery, 10, 415-418.
https://doi.org/10.1007/s00534-002-0727-5
[4] Nordberg, J. and Arner, E.S. (2001) Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System. Free Radical Biology and Medicine, 31, 1287-1312.
https://doi.org/10.1016/S0891-5849(01)00724-9
[5] Li, X.N., Song, J., Zhang, L., et al. (2009) Activation of the AMPK-FOxO3 Pathway Reduces Faty Acid-Induced Increase in Intracellular Reactive Oxygen Species by Upregulating Thioredoxin. Diabetes, 58, 2246-2257.
https://doi.org/10.2337/db08-1512
[6] Rubartelli, A., Bajetto, A., Allavena, G., et al. (1992) Secretion of Thioredoxin by Normal and Neoplastic Cells through a Leaderless Secretory Pathway. Journal of Biological Chemistry, 267, 24161-24164.
https://doi.org/10.1016/S0021-9258(18)35742-9
[7] Berggren, M., Gallegos, A., Gasdaska, J.R., et al. (1996) Thioredoxin and Thioredoxin Reductase Gene Expression in Human Tumors and Cell Lines and the Effects of Serum Stimulation and Hypoxia. Anticancer Research, 16, 3459-3466.
[8] Ursini, F., Maiorino, M., Valente, M., et al. (1982) Purification from Pig Liver of a Protein Which Protects Liposomes and Biomembranes from Peroxidative Degradation and Exhibits Glutathione Peroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochimica et Biophysica Acta, 710, 197-211.
https://doi.org/10.1016/0005-2760(82)90150-3
[9] Patrick, D.M., Leone, A.K., Shellnberger, J.J., Dudowicz, K.A. and King, J.M. (2006) Proinflammatorycytokinestumor Necrosis Factor Alpha and Interferon Gamma Modulate Epithelial Barrier Function in Madin-Darby Canine Kidney Cells through Mitogen Activated Protein Kinase Signaling. BMC Physiology, 6, 2-12.
https://doi.org/10.1186/1472-6793-6-2
[10] Schmidt, J., Rattner, D.W., Lewandrowski, K., Compton, C.C., Mandavilli, U., Knoefel, W.T. and Warshaw, A.L. (1992) A Better Model of Acute Pancreatitis for Evaluating Therapy. Annals of Surgery, 215, 44-56.
https://doi.org/10.1097/00000658-199201000-00007
[11] Chiu, C.J., McArdle, A.H., Brown, R., Scott, H.J. and Gurd, F.N. (1970) Intestinal Mucosal Lesion in Low-Flow States. I. A Morphological, Hemodynamic, and Metabolic Reappraisal. Archives of Surgery, 101, 478-483.
https://doi.org/10.1001/archsurg.1970.01340280030009
[12] Petrov, M.S., Shanbhag, S., Chakraborty, M., et al. (2010) Organ Failure and Infection of Pancreatic Necrosis as Determinants of Mortality in Patients with Acute Pancreatitis. Gastroenterology, 139, 813-820.
https://doi.org/10.1053/j.gastro.2010.06.010
[13] Ma, D., Jiang, P., Jiang, Y., Li, H. and Zhang, D. (2021) Effects of Lipid Peroxidation-Mediated Ferroptosis on Severe Acute Pancreatitis-Induced Intestinal Barrier Injury and Bacterial Translocation. Oxidative Medicine and Cellular Longevity, 2021, Article ID 6644576.
https://doi.org/10.1155/2021/6644576