|
[1]
|
Ai, L., Yang, Y., Wang, B., Chang, J., Tang, Z., Yang, B., et al. (2021) Insights into Photoluminescence Mechanisms of Carbon Dots: Advances and Perspectives. Science Bulletin, 66, 839-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., et al. (2004) Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society, 126, 12736-12737. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sun, Y., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., et al. (2006) Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 128, 7756-7757. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xia, C., Zhu, S., Feng, T., Yang, M. and Yang, B. (2019) Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 6, Article 1901316. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shoval, A., Markus, A., Zhou, Z., Liu, X., Cazelles, R., Willner, I., et al. (2019) Anti‐VEGF‐Aptamer Modified C‐Dots—A Hybrid Nanocomposite for Topical Treatment of Ocular Vascular Disorders. Small, 15, Article 1902776. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zheng, M., Liu, S., Li, J., Qu, D., Zhao, H., Guan, X., et al. (2014) Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Advanced Materials, 26, 3554-3560. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yan, F., Jiang, Y., Sun, X., Bai, Z., Zhang, Y. and Zhou, X. (2018) Surface Modification and Chemical Functionalization of Carbon Dots: A Review. Microchimica Acta, 185, Article No. 424. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bajpai, V.K., Khan, I., Shukla, S., Kang, S., Aziz, F., Tripathi, K.M., et al. (2020) Multifunctional N-P-Doped Carbon Dots for Regulation of Apoptosis and Autophagy in B16F10 Melanoma Cancer Cells and in vitro Imaging Applications. Theranostics, 10, 7841-7856. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, X., Fu, Y., Zhao, S., Xiao, J., Lan, M., Wang, B., et al. (2022) Metal Ions-Doped Carbon Dots: Synthesis, Properties, and Applications. Chemical Engineering Journal, 430, Article 133101. [Google Scholar] [CrossRef]
|
|
[10]
|
Farahmandzadeh, F., Salehi, S., Molaei, M., Fallah, H. and Nejadshafiee, V. (2023) CdS Semiconductor Quantum Dots; Facile Synthesis, Application as off Fluorescent Sensor for Detection of Lead (Pb2+) Ions and Catalyst for Degradation of Dyes from Water. Journal of Fluorescence, 33, 1515-1524. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, J.H., Li, D.Y., He, J.H., Yuan, D., Li, R.S., Zhen, S.J., et al. (2020) Polarity-Sensitive Polymer Carbon Dots Prepared at Room-Temperature for Monitoring the Cell Polarity Dynamics during Autophagy. ACS Applied Materials & Interfaces, 12, 4815-4820. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jiang, Q., Liu, L., Li, Q., Cao, Y., Chen, D., Du, Q., et al. (2021) NIR-Laser-Triggered Gadolinium-Doped Carbon Dots for Magnetic Resonance Imaging, Drug Delivery and Combined Photothermal Chemotherapy for Triple Negative Breast Cancer. Journal of Nanobiotechnology, 19, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, M., Meng, Y., Liu, J., Yu, W. and Yang, B. (2018) Facile Synthesis of Mg2+‐Doped Carbon Dots as Novel Biomaterial Inducing Cell Osteoblastic Differentiation. Particle & Particle Systems Characterization, 36, Article 1800315. [Google Scholar] [CrossRef]
|
|
[14]
|
Geng, B., Li, P., Fang, F., Shi, W., Glowacki, J., Pan, D., et al. (2021) Antibacterial and Osteogenic Carbon Quantum Dots for Regeneration of Bone Defects Infected with Multidrug-Resistant Bacteria. Carbon, 184, 375-385. [Google Scholar] [CrossRef]
|
|
[15]
|
Sun, Q., Wang, Z., Liu, B., Jia, T., Wang, C., Yang, D., et al. (2020) Self-Generation of Oxygen and Simultaneously Enhancing Photodynamic Therapy and MRI Effect: An Intelligent Nanoplatform to Conquer Tumor Hypoxia for Enhanced Phototherapy. Chemical Engineering Journal, 390, Article 124624. [Google Scholar] [CrossRef]
|
|
[16]
|
Lebeaux, D., Ghigo, J. and Beloin, C. (2014) Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiology and Molecular Biology Reviews, 78, 510-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lamont, R.J., Koo, H. and Hajishengallis, G. (2018) The Oral Microbiota: Dynamic Communities and Host Interactions. Nature Reviews Microbiology, 16, 745-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ostadhossein, F., Moitra, P., Altun, E., Dutta, D., Sar, D., Tripathi, I., et al. (2021) Function-Adaptive Clustered Nanoparticles Reverse Streptococcus Mutans Dental Biofilm and Maintain Microbiota Balance. Communications Biology, 4, Article No. 846. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, M., Huang, L., Xu, X., Wei, X., Yang, X., Li, X., et al. (2022) Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano, 16, 9479-9497. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tang, S., Zhang, H., Mei, L., Dou, K., Jiang, Y., Sun, Z., et al. (2022) Fucoidan-Derived Carbon Dots against Enterococcus faecalis Biofilm and Infected Dentinal Tubules for the Treatment of Persistent Endodontic Infections. Journal of Nanobiotechnology, 20, Article No. 321. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
European Society of Endodontology (2006) Quality Guidelines for Endodontic Treatment: Consensus Report of the European Society of Endodontology. International Endodontic Journal, 39, 921-930. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mozaffari, M.S., Emami, G., Khodadadi, H. and Baban, B. (2019) Stem Cells and Tooth Regeneration: Prospects for Personalized Dentistry. EPMA Journal, 10, 31-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lu, J., Li, R., Ni, S., Xie, Y., Liu, X., Zhang, K., et al. (2022) Metformin Carbon Nanodots Promote Odontoblastic Differentiation of Dental Pulp Stem Cells by Pathway of Autophagy. Frontiers in Bioengineering and Biotechnology, 10, Article 1002291. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, L., Li, X., Bu, W., Jin, N., Meng, Y., Wang, Y., et al. (2022) Carbon Dots Enhance Extracellular Matrix Secretion for Dentin-Pulp Complex Regeneration through PI3K/Akt/mTOR Pathway-Mediated Activation of Autophagy. Materials Today Bio, 16, Article 100344. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cao, Y., Yang, M., Zhang, R., Ning, X., Zong, M., Liu, X., et al. (2024) Carbon Dot-Based Photo-Cross-Linked Gelatin Methacryloyl Hydrogel Enables Dental Pulp Regeneration: A Preliminary Study. ACS Applied Materials & Interfaces, 16, 22976-22988. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Amaral, F.L.B., Colucci, V., Palma‐Dibb, R.G. and Corona, S.A.M. (2007) Assessment of in vitro Methods Used to Promote Adhesive Interface Degradation: A Critical Review. Journal of Esthetic and Restorative Dentistry, 19, 340-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, W., Jin, H., Zhang, H., Wu, L., Chen, G., Shao, H., et al. (2021) Synergistic Effects of Graphene Quantum Dots and Carbodiimide in Promoting Resin-Dentin Bond Durability. Dental Materials, 37, 1498-1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pihlstrom, B.L., Michalowicz, B.S. and Johnson, N.W. (2005) Periodontal Diseases. The Lancet, 366, 1809-1820. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jong, R.A. and van der Reijden, W.A. (2010) Feasibility and Therapeutic Strategies of Vaccines against Porphyromonas gingivalis. Expert Review of Vaccines, 9, 193-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ardekani, S.M., Dehghani, A., Ye, P., Nguyen, K. and Gomes, V.G. (2019) Conjugated Carbon Quantum Dots: Potent Nano-Antibiotic for Intracellular Pathogens. Journal of Colloid and Interface Science, 552, 378-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
欧燕珍. 硒掺杂碳量子点的体外抗氧化及抗炎性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkaWjBDt8_rTOnKA7PWSN5MI3rZEk6GlbdSQy3DxiznhnnoEHbDhlJQeJU_A69jlsq&uniplatform=NZKPT
|
|
[32]
|
Liu, J., Lu, S., Tang, Q., Zhang, K., Yu, W., Sun, H., et al. (2017) One-Step Hydrothermal Synthesis of Photoluminescent Carbon Nanodots with Selective Antibacterial Activity against Porphyromonas gingivalis. Nanoscale, 9, 7135-7142. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liang, G., Shi, H., Qi, Y., Li, J., Jing, A., Liu, Q., et al. (2020) Specific Anti-Biofilm Activity of Carbon Quantum Dots by Destroying P. gingivalis Biofilm Related Genes. International Journal of Nanomedicine, 15, 5473-5489. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pourhajibagher, M., Parker, S., Chiniforush, N. and Bahador, A. (2019) Photoexcitation Triggering via Semiconductor Graphene Quantum Dots by Photochemical Doping with Curcumin versus Perio-Pathogens Mixed Biofilms. Photodiagnosis and Photodynamic Therapy, 28, 125-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, F., Zhang, J., Zhang, M., An, Y., Chen, F. and Wu, Z. (2010) A Review on Endogenous Regenerative Technology in Periodontal Regenerative Medicine. Biomaterials, 31, 7892-7927. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ren, C., Hao, X., Wang, L., Hu, Y., Meng, L., Zheng, S., et al. (2021) Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway. Advanced Healthcare Materials, 10, Article 2100196. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Xin, X., Liu, J., Liu, X., Xin, Y., Hou, Y., Xiang, X., et al. (2024) Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS Nano, 18, 8307-8324. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
An, N., Yan, X., Qiu, Q., Zhang, Z., Zhang, X., Zheng, B., et al. (2024) Human Periodontal Ligament Stem Cell Sheets Activated by Graphene Oxide Quantum Dots Repair Periodontal Bone Defects by Promoting Mitochondrial Dynamics Dependent Osteogenic Differentiation. Journal of Nanobiotechnology, 22, Article No. 133. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Peng, X., Yang, H., Li, C., Zhang, Y., Chen, S. and Long, Y. (2019) Green and Orange Fluorescent Carbon Dots for Detecting Oral Cancer by Staining Tissue Sections. Journal of Nanoscience and Nanotechnology, 19, 7509-7516. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sri, S., Kumar, R., Panda, A.K. and Solanki, P.R. (2018) Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 10, 37835-37845. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Samantara, A.K., Maji, S., Ghosh, A., Bag, B., Dash, R. and Jena, B.K. (2016) Good’s Buffer Derived Highly Emissive Carbon Quantum Dots: Excellent Biocompatible Anticancer Drug Carrier. Journal of Materials Chemistry B, 4, 2412-2420. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Das, R.K., Panda, S., Bhol, C.S., Bhutia, S.K. and Mohapatra, S. (2019) N-Doped Carbon Quantum Dot (NCQD)-Deposited Carbon Capsules for Synergistic Fluorescence Imaging and Photothermal Therapy of Oral Cancer. Langmuir, 35, 15320-15329. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, Q., Zhou, R., Xie, Y., Li, Y., Chen, Y. and Cai, X. (2020) Sulphur‐Doped Carbon Dots as a Highly Efficient Nano‐Photodynamic Agent against Oral Squamous Cell Carcinoma. Cell Proliferation, 53, e12786. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kong, T., Liu, T., Zhang, Y. and Wang, M. (2022) Carbon Dots with Intrinsic Theranostic Properties for Photodynamic Therapy of Oral Squamous Cell Carcinoma. Journal of Biomaterials Applications, 37, 850-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Nasrin, A., Hassan, M. and Gomes, V.G. (2020) Two-Photon Active Nucleus-Targeting Carbon Dots: Enhanced ROS Generation and Photodynamic Therapy for Oral Cancer. Nanoscale, 12, 20598-20603. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
唐琪, 王丹丹, 布文奂, 等. 维生素C碳点对口腔鳞状细胞癌KB细胞增殖、自噬和凋亡的影响[J]. 吉林大学学报(医学版), 2017, 43(4): 667-671, 857.
|
|
[47]
|
刘玉兰, 孟琳, 唐琪, 等. 抗坏血酸碳点通过促进自噬杀伤舌鳞癌细胞[J]. 口腔医学研究, 2018, 34(1): 35-38.
|
|
[48]
|
Zhang, R., Hou, Y., Sun, L., Liu, X., Zhao, Y., Zhang, Q., et al. (2023) Recent Advances in Carbon Dots: Synthesis and Applications in Bone Tissue Engineering. Nanoscale, 15, 3106-3119. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shao, D., Lu, M., Xu, D., Zheng, X., Pan, Y., Song, Y., et al. (2017) Carbon Dots for Tracking and Promoting the Osteogenic Differentiation of Mesenchymal Stem Cells. Biomaterials Science, 5, 1820-1827. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
刘一戈, 王梓霖, 郭陟永, 等. 具有促进成骨及抗菌双重作用的新型碳点的制备及在感染性骨缺损中的应用评价[J]. 中国口腔颌面外科杂志, 2023, 21(1): 11-18.
|
|
[51]
|
Wang, B., Yang, M., Liu, L., Yan, G., Yan, H., Feng, J., et al. (2019) Osteogenic Potential of Zn2+-Passivated Carbon Dots for Bone Regeneration in vivo. Biomaterials Science, 7, 5414-5423. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Khajuria, D.K., Kumar, V.B., Gigi, D., Gedanken, A. and Karasik, D. (2018) Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Applied Materials & Interfaces, 10, 19373-19385. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Geng, B., Fang, F., Li, P., Xu, S., Pan, D., Zhang, Y., et al. (2021) Surface Charge-Dependent Osteogenic Behaviors of Edge-Functionalized Graphene Quantum Dots. Chemical Engineering Journal, 417, Article 128125. [Google Scholar] [CrossRef]
|
|
[54]
|
Bu, W., Xu, X., Wang, Z., Jin, N., Liu, L., Liu, J., et al. (2020) Ascorbic Acid-Pei Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Interfaces, 12, 50287-50302. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, Y., Ding, C., Ge, Z., Li, Z., Chen, L., Guo, X., et al. (2023) A Novel Antibacterial and Fluorescent Coating Composed of Polydopamine and Carbon Dots on the Surface of Orthodontic Brackets. Journal of Materials Science: Materials in Medicine, 34, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
赫东梅. 钛植入体表面碳基纳米材料改性TiO2纳米棒阵列抗菌性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2022. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkaWjBDt8_rTOnKA7PWSN5MLKVu8E1yIhmHrmpExiaLRhmM8fvCS5lLRHTUsiMyDXZ&uniplatform=NZKPT
|
|
[57]
|
Shaikh, A.F., Tamboli, M.S., Patil, R.H., Bhan, A., Ambekar, J.D. and Kale, B.B. (2019) Bioinspired Carbon Quantum Dots: An Antibiofilm Agents. Journal of Nanoscience and Nanotechnology, 19, 2339-2345. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Li, X., Huang, R., Tang, F., Li, W., Wong, S.S.W., Leung, K.C., et al. (2019) Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia against Invasive Fungal Infections. ACS Applied Materials & Interfaces, 11, 46591-46603. [Google Scholar] [CrossRef] [PubMed]
|