[1]
|
Barthlott, W. and Neinhuis, C. (1997) Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 202, 1-8. https://doi.org/10.1007/s004250050096
|
[2]
|
Neinhuis, C. (1997) Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Annals of Botany, 79, 667-677. https://doi.org/10.1006/anbo.1997.0400
|
[3]
|
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., et al. (2008) Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 24, 4114-4119. https://doi.org/10.1021/la703821h
|
[4]
|
Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., et al. (2000) Adhesive Force of a Single Gecko Foot-Hair. Nature, 405, 681-685. https://doi.org/10.1038/35015073
|
[5]
|
Gao, X. and Jiang, L. (2004) Water-Repellent Legs of Water Striders. Nature, 432, 36-36. https://doi.org/10.1038/432036a
|
[6]
|
江雷. 从自然到仿生的超疏水纳米界面材料[J]. 新材料产业, 2003, 65(3): 60-62.
|
[7]
|
Li, X., Reinhoudt, D. and Crego-Calama, M. (2007) What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces. Chemical Society Reviews, 36, 1350-1368. https://doi.org/10.1039/b602486f
|
[8]
|
Young, T. (1805) III. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87. https://doi.org/10.1098/rstl.1805.0005
|
[9]
|
Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28, 988-994. https://doi.org/10.1021/ie50320a024
|
[10]
|
Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces. Transactions of the Faraday Society, 40, 546-551. https://doi.org/10.1039/tf9444000546
|
[11]
|
张冰, 刘香鸾, 黄英. 氨基聚硅氧烷对改性环氧树脂的形态与性能的影响[J]. 功能高分子学报, 2000, 13(1): 69-72.
|
[12]
|
Cui, X., Gao, Y., Zhong, S., Zheng, Z., Cheng, Y. and Wang, H. (2012) Synthesis and Surface Properties of Semi-Interpenetrating Fluorine-Containing Polyacrylate and Epoxy Resin Networks. Journal of Polymer Research, 19, Article No. 9832. https://doi.org/10.1007/s10965-012-9832-6
|
[13]
|
Shon, M. and Kwon, H. (2009) Comparison of Surface Modification with Amino Terminated Polydimethylsiloxane and Amino Branched Polydimethylsiloxane on the Corrosion Protection of Epoxy Coating. Corrosion Science, 51, 650-657. https://doi.org/10.1016/j.corsci.2008.11.022
|
[14]
|
Wu, L., Zhang, X. and Hu, J. (2014) Corrosion Protection of Mild Steel by One-Step Electrodeposition of Superhydrophobic Silica Film. Corrosion Science, 85, 482-487. https://doi.org/10.1016/j.corsci.2014.04.026
|
[15]
|
Feng, L., Zhu, Y., Wang, J. and Shi, X. (2017) One-Step Hydrothermal Process to Fabricate Superhydrophobic Surface on Magnesium Alloy with Enhanced Corrosion Resistance and Self-Cleaning Performance. Applied Surface Science, 422, 566-573. https://doi.org/10.1016/j.apsusc.2017.06.066
|
[16]
|
Li, H., Zhao, Y. and Yuan, X. (2013) Facile Preparation of Superhydrophobic Coating by Spraying a Fluorinated Acrylic Random Copolymer Micelle Solution. Soft Matter, 9, 1005-1009. https://doi.org/10.1039/c2sm26689j
|
[17]
|
Cengiz, U., Z. Avci, M., Erbil, H.Y. and Sarac, A.S. (2012) Superhydrophobic Terpolymer Nanofibers Containing Perfluoroethyl Alkyl Methacrylate by Electrospinning. Applied Surface Science, 258, 5815-5821. https://doi.org/10.1016/j.apsusc.2012.02.107
|
[18]
|
Yuan, S., Pehkonen, S.O., Liang, B., Ting, Y.P., Neoh, K.G. and Kang, E.T. (2011) Superhydrophobic Fluoropolymer-Modified Copper Surface via Surface Graft Polymerisation for Corrosion Protection. Corrosion Science, 53, 2738-2747. https://doi.org/10.1016/j.corsci.2011.05.008
|
[19]
|
Xu, Q.F., Mondal, B. and Lyons, A.M. (2011) Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method. ACS Applied Materials & Interfaces, 3, 3508-3514. https://doi.org/10.1021/am200741f
|
[20]
|
Cui, Y., Paxson, A.T., Smyth, K.M. and Varanasi, K.K. (2012) Hierarchical Polymeric Textures via Solvent-Induced Phase Transformation: A Single-Step Production of Large-Area Superhydrophobic Surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394, 8-13. https://doi.org/10.1016/j.colsurfa.2011.11.014
|
[21]
|
Mahajan, M., Bhargava, S.K. and O’Mullane, A.P. (2013) Electrochemical Formation of Porous Copper 7,7,8,8-Tetra-cyanoquinodimethane and Copper 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane Honeycomb Surfaces with Superhydrophobic Properties. Electrochimica Acta, 101, 186-195. https://doi.org/10.1016/j.electacta.2012.09.068
|
[22]
|
Yan, Z., Liang, X., Shen, H. and Liu, Y. (2017) Preparation and Basic Properties of Superhydrophobic Silicone Rubber with Micro-Nano Hierarchical Structures Formed by Picosecond Laser-Ablated Template. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 1743-1750. https://doi.org/10.1109/tdei.2017.005924
|
[23]
|
Song, J., Lu, Y., Huang, S., Liu, X., Wu, L. and Xu, W. (2013) A Simple Immersion Approach for Fabricating Superhydrophobic Mg Alloy Surfaces. Applied Surface Science, 266, 445-450. https://doi.org/10.1016/j.apsusc.2012.12.063
|
[24]
|
Wang, J., Li, A., Chen, H. and Chen, D. (2011) Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina. Journal of Bionic Engineering, 8, 122-128. https://doi.org/10.1016/s1672-6529(11)60022-x
|
[25]
|
Li, Y., Zhang, X., Cui, Y., Wang, H. and Wang, J. (2019) Anti-Corrosion Enhancement of Superhydrophobic Coating Utilizing Oxygen Vacancy Modified Potassium Titanate Whisker. Chemical Engineering Journal, 374, 1326-1336. https://doi.org/10.1016/j.cej.2019.06.028
|
[26]
|
夏秋, 大气压等离子体射流制备超疏水涂层及其减阻研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2015.
|
[27]
|
Zhu, J., Wan, H. and Hu, X. (2016) A Rapid One-Step Process for the Construction of Corrosion-Resistant Bionic Superhydrophobic Surfaces. Progress in Organic Coatings, 100, 56-62. https://doi.org/10.1016/j.porgcoat.2016.01.018
|
[28]
|
Feng, L., Zhao, L., Qiang, X., Liu, Y., Sun, Z. and Wang, B. (2014) Fabrication of Superhydrophobic Copper Surface with Excellent Corrosion Resistance. Applied Physics A, 119, 75-83. https://doi.org/10.1007/s00339-014-8959-1
|
[29]
|
Wang, P., Qiu, R., Zhang, D., Lin, Z. and Hou, B. (2010) Fabricated Super-Hydrophobic Film with Potentiostatic Electrolysis Method on Copper for Corrosion Protection. Electrochimica Acta, 56, 517-522. https://doi.org/10.1016/j.electacta.2010.09.017
|
[30]
|
Scarratt, L.R.J., Steiner, U. and Neto, C. (2017) A Review on the Mechanical and Thermodynamic Robustness of Superhydrophobic Surfaces. Advances in Colloid and Interface Science, 246, 133-152. https://doi.org/10.1016/j.cis.2017.05.018
|
[31]
|
Qian, B. and Shen, Z. (2005) Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir, 21, 9007-9009. https://doi.org/10.1021/la051308c
|
[32]
|
赵坤. 铝合金基体上超疏水表面的制备及其性能[J]. 材料科学与工程学报, 2010, 28(3): 448-452.
|
[33]
|
黄子发, 孙林玉, 罗雨婷, 等. 一种酸刻蚀法制备铝合金超疏水表面薄膜[J]. 湖南工业大学学报, 2011, 25(4): 5-8.
|
[34]
|
Huang, Z.F., Sun, L.Y., Luo, Y.T., et al. (2011) An Acid Etching Method for Preparing Superhydrophobic Surface Films on Aluminum Alloys. Journal of Hunan University of Technology, 25, 5-8.
|
[35]
|
辛道银. 铝锌金属表面的超双疏改性及其自清洁性能[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2013.
|
[36]
|
Guo, Z., Fang, J., Wang, L. and Liu, W. (2007) Fabrication of Superhydrophobic Copper by Wet Chemical Reaction. Thin Solid Films, 515, 7190-7194. https://doi.org/10.1016/j.tsf.2007.02.100
|
[37]
|
马福民, 郝全勇, 张燕, 等. 氧化还原法刻蚀制备铜基超疏水表面[J]. 科学技术与工程, 2013, 13(14): 3960-3962.
|
[38]
|
孙巧珍, 邵鑫, 赵利民, 等. 锌基底上超疏水表面的制备[J]. 聊城大学学报(自然科学版), 2009, 22(4): 48-50.
|
[39]
|
石磊, 曹磊, 古毓康, 等. 金属锌表面超疏水薄膜的耐蚀及摩擦学性能的表征[J]. 表面技术, 2017, 46(9): 203-208.
|
[40]
|
刘英雨. 不锈钢基超疏水表面制备技术研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[41]
|
杨红静. 不锈钢基底超疏水表面的制备及应用[D]: [硕士学位论文]. 大连: 大连理工大学, 2015.
|
[42]
|
Ming, W., Wu, D., van Benthem, R. and de With, G. (2005) Superhydrophobic Films from Raspberry-Like Particles. Nano Letters, 5, 2298-2301. https://doi.org/10.1021/nl0517363
|
[43]
|
Zhou, X., Kong, J., Sun, J., Li, H. and He, C. (2017) Stable Superhydrophobic Porous Coatings from Hybrid ABC Triblock Copolymers and Their Anticorrosive Performance. ACS Applied Materials & Interfaces, 9, 30056-30063. https://doi.org/10.1021/acsami.7b08482
|
[44]
|
Lan, L., Wang, H., Zhu, L., Di, Y., Kang, J. and Qiu, J. (2021) Preparation and Wetting Mechanism of Laser‐Etched Composite Self‐Assembled 1h,1h,2h,2h‐Perfluorodecyltriethoxysilane Superhydrophobic Surface Coating. Physica Status Solidi (a), 219, Article 2100568. https://doi.org/10.1002/pssa.202100568
|
[45]
|
Zhang, X., Chen, R., Liu, Y. and Hu, J. (2016) Electrochemically Generated Sol-Gel Films as Inhibitor Containers of Superhydrophobic Surfaces for the Active Corrosion Protection of Metals. Journal of Materials Chemistry A, 4, 649-656. https://doi.org/10.1039/c5ta07443f
|
[46]
|
Lee, J. and Hwang, W. (2016) Exploiting the Silicon Content of Aluminum Alloys to Create a Superhydrophobic Surface Using the Sol-Gel Process. Materials Letters, 168, 83-85. https://doi.org/10.1016/j.matlet.2015.12.137
|
[47]
|
Wen, X., Wang, K., Pi, P., Yang, J., Cai, Z., Zhang, L., et al. (2011) Organic-Inorganic Hybrid Superhydrophobic Surfaces Using Methyltriethoxysilane and Tetraethoxysilane Sol-Gel Derived Materials in Emulsion. Applied Surface Science, 258, 991-998. https://doi.org/10.1016/j.apsusc.2011.06.085
|
[48]
|
Lu, S., Chen, Y., Xu, W. and Liu, W. (2010) Controlled Growth of Superhydrophobic Films by Sol-Gel Method on Aluminum Substrate. Applied Surface Science, 256, 6072-6075. https://doi.org/10.1016/j.apsusc.2010.03.122
|
[49]
|
Aslan Çakır, M., Yetim, T., Yetim, A.F. and Çelik, A. (2023) Superamphiphobic TiO2 Film by Sol-Gel Dip Coating Method on Commercial Pure Titanium. Journal of Materials Engineering and Performance, 33, 1472-1484. https://doi.org/10.1007/s11665-023-08049-3
|
[50]
|
Gao, S., Dong, X., Huang, J., Li, S., Li, Y., Chen, Z., et al. (2018) Rational Construction of Highly Transparent Superhydrophobic Coatings Based on a Non-Particle, Fluorine-Free and Water-Rich System for Versatile Oil-Water Separation. Chemical Engineering Journal, 333, 621-629. https://doi.org/10.1016/j.cej.2017.10.006
|
[51]
|
Zang, D., Zhu, R., Zhang, W., Yu, X., Lin, L., Guo, X., et al. (2017) Corrosion‐Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Advanced Functional Materials, 27, Article 1605446. https://doi.org/10.1002/adfm.201605446
|
[52]
|
Yuan, J., Wang, J., Zhang, K. and Hu, W. (2017) Fabrication and Properties of a Superhydrophobic Film on an Electroless Plated Magnesium Alloy. RSC Advances, 7, 28909-28917. https://doi.org/10.1039/c7ra04387b
|
[53]
|
Gao, R., Liu, Q., Wang, J., Zhang, X., Yang, W., Liu, J., et al. (2014) Fabrication of Fibrous Szaibelyite with Hierarchical Structure Superhydrophobic Coating on AZ31 Magnesium Alloy for Corrosion Protection. Chemical Engineering Journal, 241, 352-359. https://doi.org/10.1016/j.cej.2013.10.075
|
[54]
|
Li, L., Huang, T., Lei, J., He, J., Qu, L., Huang, P., et al. (2015) Robust Biomimetic-Structural Superhydrophobic Surface on Aluminum Alloy. ACS Applied Materials & Interfaces, 7, 1449-1457. https://doi.org/10.1021/am505582j
|
[55]
|
Li, W. and Kang, Z. (2014) Fabrication of Corrosion Resistant Superhydrophobic Surface with Self-Cleaning Property on Magnesium Alloy and Its Mechanical Stability. Surface and Coatings Technology, 253, 205-213. https://doi.org/10.1016/j.surfcoat.2014.05.038
|
[56]
|
Xiang, T., Ding, S., Li, C., Zheng, S., Hu, W., Wang, J., et al. (2017) Effect of Current Density on Wettability and Corrosion Resistance of Superhydrophobic Nickel Coating Deposited on Low Carbon Steel. Materials & Design, 114, 65-72. https://doi.org/10.1016/j.matdes.2016.10.047
|
[57]
|
Fan, Y., He, Y., Luo, P., Chen, X. and Liu, B. (2016) A Facile Electrodeposition Process to Fabricate Corrosion-Resistant Superhydrophobic Surface on Carbon Steel. Applied Surface Science, 368, 435-442. https://doi.org/10.1016/j.apsusc.2016.01.252
|
[58]
|
Xu, Z., Jiang, D., Wei, Z., Chen, J. and Jing, J. (2018) Fabrication of Superhydrophobic Nano-Aluminum Films on Stainless Steel Meshes by Electrophoretic Deposition for Oil-Water Separation. Applied Surface Science, 427, 253-261. https://doi.org/10.1016/j.apsusc.2017.08.189
|
[59]
|
Yang, Z., Liu, X. and Tian, Y. (2019) Fabrication of Super-Hydrophobic Nickel Film on Copper Substrate with Improved Corrosion Inhibition by Electrodeposition Process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 205-212. https://doi.org/10.1016/j.colsurfa.2018.10.024
|
[60]
|
Zhang, X., Jiang, F., Chen, R., Chen, Y. and Hu, J. (2020) Robust Superhydrophobic Coatings Prepared by Cathodic Electrophoresis of Hydrophobic Silica Nanoparticles with the Cationic Resin as the Adhesive for Corrosion Protection. Corrosion Science, 173, Article 108797. https://doi.org/10.1016/j.corsci.2020.108797
|
[61]
|
Zou, Y., Wang, Y., Xu, S., Jin, T., Wei, D., Ouyang, J., et al. (2019) Superhydrophobic Double-Layer Coating for Efficient Heat Dissipation and Corrosion Protection. Chemical Engineering Journal, 362, 638-649. https://doi.org/10.1016/j.cej.2019.01.086
|
[62]
|
Peng, S., Tian, D., Yang, X. and Deng, W. (2014) Highly Efficient and Large-Scale Fabrication of Superhydrophobic Alumina Surface with Strong Stability Based on Self-Congregated Alumina Nanowires. ACS Applied Materials & Interfaces, 6, 4831-4841. https://doi.org/10.1021/am4057858
|
[63]
|
夏晓健, 蔡建宾, 林德源, 等. 铝合金表面超疏水涂层的制备及其在盐雾环境中耐蚀行为的研究[J]. 湖南师范大学自然科学学报, 2020, 43(5): 57-64.
|
[64]
|
Wang, N., Xiong, D., Pan, S., Deng, Y., Shi, Y. and Wang, K. (2016) Superhydrophobic Paper with Superior Stability against Deformations and Humidity. Applied Surface Science, 389, 354-360. https://doi.org/10.1016/j.apsusc.2016.07.110
|
[65]
|
Zhu, P., Zhu, L., Ge, F., Wang, G. and Zeng, Z. (2021) Robust and Transparent Superamphiphobic Coating Prepared via Layer-by-Layer Spraying. Surface and Coatings Technology, 426, Article 127793. https://doi.org/10.1016/j.surfcoat.2021.127793
|
[66]
|
Daneshmand, H., Sazgar, A. and Araghchi, M. (2021) Fabrication of Robust and Versatile Superhydrophobic Coating by Two-Step Spray Method: An Experimental and Molecular Dynamics Simulation Study. Applied Surface Science, 567, Article 150825. https://doi.org/10.1016/j.apsusc.2021.150825
|
[67]
|
Qiao, M., Ji, G., Lu, Y. and Zhang, B. (2023) Sustainable Corrosion-Resistant Superhydrophobic Composite Coating with Strengthened Robustness. Journal of Industrial and Engineering Chemistry, 121, 215-227. https://doi.org/10.1016/j.jiec.2023.01.025
|
[68]
|
Long, M., Peng, S., Deng, W., Yang, X., Miao, K., Wen, N., et al. (2017) Robust and Thermal-Healing Superhydrophobic Surfaces by Spin-Coating of Polydimethylsiloxane. Journal of Colloid and Interface Science, 508, 18-27. https://doi.org/10.1016/j.jcis.2017.08.027
|
[69]
|
Zhang, H., Zeng, X., Gao, Y., Shi, F., Zhang, P. and Chen, J. (2011) A Facile Method to Prepare Superhydrophobic Coatings by Calcium Carbonate. Industrial & Engineering Chemistry Research, 50, 3089-3094. https://doi.org/10.1021/ie102149y
|
[70]
|
Gao, S., Li, Z., Yang, S., Jiang, K., Li, Y., Zeng, H., et al. (2009) Transferrable Superhydrophobic Surface Constructed by a Hexagonal Cui Powder without Modification by Low-Free-Energy Materials. ACS Applied Materials & Interfaces, 1, 2080-2085. https://doi.org/10.1021/am900466f
|
[71]
|
Abbasi, S., Nouri, M. and Sabour Rouhaghdam, A. (2019) A Novel Combined Method for Fabrication of Stable Corrosion Resistance Superhydrophobic Surface on Al Alloy. Corrosion Science, 159, Article 108144. https://doi.org/10.1016/j.corsci.2019.108144
|
[72]
|
Guo, F., Duan, S., Wu, D., Matsuda, K., Wang, T. and Zou, Y. (2021) Facile Etching Fabrication of Superhydrophobic 7055 Aluminum Alloy Surface towards Chloride Environment Anticorrosion. Corrosion Science, 182, Article 109262. https://doi.org/10.1016/j.corsci.2021.109262
|
[73]
|
Dou, W., Wu, J., Gu, T., Wang, P. and Zhang, D. (2018) Preparation of Super-Hydrophobic Micro-Needle CuO Surface as a Barrier against Marine Atmospheric Corrosion. Corrosion Science, 131, 156-163. https://doi.org/10.1016/j.corsci.2017.11.012
|
[74]
|
Liu, W., Xu, Q., Han, J., Chen, X. and Min, Y. (2016) A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance. Corrosion Science, 110, 105-113. https://doi.org/10.1016/j.corsci.2016.04.015
|
[75]
|
Jie, H., Xu, Q., Wei, L. and Min, Y. (2016) Etching and Heating Treatment Combined Approach for Superhydrophobic Surface on Brass Substrates and the Consequent Corrosion Resistance. Corrosion Science, 102, 251-258. https://doi.org/10.1016/j.corsci.2015.10.013
|
[76]
|
Wang, S., Guo, X., Xie, Y., Liu, L., Yang, H., Zhu, R., et al. (2012) Preparation of Superhydrophobic Silica Film on Mg-Nd-Zn-Zr Magnesium Alloy with Enhanced Corrosion Resistance by Combining Micro-Arc Oxidation and Sol-Gel Method. Surface and Coatings Technology, 213, 192-201. https://doi.org/10.1016/j.surfcoat.2012.10.046
|
[77]
|
Rao, A.V., Latthe, S.S., Mahadik, S.A. and Kappenstein, C. (2011) Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate. Applied Surface Science, 257, 5772-5776. https://doi.org/10.1016/j.apsusc.2011.01.099
|
[78]
|
Mousavi, S.M.A. and Pitchumani, R. (2021) A Study of Corrosion on Electrodeposited Superhydrophobic Copper Surfaces. Corrosion Science, 186, Article 109420. https://doi.org/10.1016/j.corsci.2021.109420
|
[79]
|
Zhang, X., Chen, Y. and Hu, J. (2020) Robust Superhydrophobic SiO2/Polydimethylsiloxane Films Coated on Mild Steel for Corrosion Protection. Corrosion Science, 166, Article 108452. https://doi.org/10.1016/j.corsci.2020.108452
|