|
[1]
|
Barthlott, W. and Neinhuis, C. (1997) Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 202, 1-8. [Google Scholar] [CrossRef]
|
|
[2]
|
Neinhuis, C. (1997) Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Annals of Botany, 79, 667-677. [Google Scholar] [CrossRef]
|
|
[3]
|
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., et al. (2008) Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 24, 4114-4119. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., et al. (2000) Adhesive Force of a Single Gecko Foot-Hair. Nature, 405, 681-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gao, X. and Jiang, L. (2004) Water-Repellent Legs of Water Striders. Nature, 432, 36-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
江雷. 从自然到仿生的超疏水纳米界面材料[J]. 新材料产业, 2003, 65(3): 60-62.
|
|
[7]
|
Li, X., Reinhoudt, D. and Crego-Calama, M. (2007) What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces. Chemical Society Reviews, 36, 1350-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Young, T. (1805) III. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87. [Google Scholar] [CrossRef]
|
|
[9]
|
Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28, 988-994. [Google Scholar] [CrossRef]
|
|
[10]
|
Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces. Transactions of the Faraday Society, 40, 546-551. [Google Scholar] [CrossRef]
|
|
[11]
|
张冰, 刘香鸾, 黄英. 氨基聚硅氧烷对改性环氧树脂的形态与性能的影响[J]. 功能高分子学报, 2000, 13(1): 69-72.
|
|
[12]
|
Cui, X., Gao, Y., Zhong, S., Zheng, Z., Cheng, Y. and Wang, H. (2012) Synthesis and Surface Properties of Semi-Interpenetrating Fluorine-Containing Polyacrylate and Epoxy Resin Networks. Journal of Polymer Research, 19, Article No. 9832. [Google Scholar] [CrossRef]
|
|
[13]
|
Shon, M. and Kwon, H. (2009) Comparison of Surface Modification with Amino Terminated Polydimethylsiloxane and Amino Branched Polydimethylsiloxane on the Corrosion Protection of Epoxy Coating. Corrosion Science, 51, 650-657. [Google Scholar] [CrossRef]
|
|
[14]
|
Wu, L., Zhang, X. and Hu, J. (2014) Corrosion Protection of Mild Steel by One-Step Electrodeposition of Superhydrophobic Silica Film. Corrosion Science, 85, 482-487. [Google Scholar] [CrossRef]
|
|
[15]
|
Feng, L., Zhu, Y., Wang, J. and Shi, X. (2017) One-Step Hydrothermal Process to Fabricate Superhydrophobic Surface on Magnesium Alloy with Enhanced Corrosion Resistance and Self-Cleaning Performance. Applied Surface Science, 422, 566-573. [Google Scholar] [CrossRef]
|
|
[16]
|
Li, H., Zhao, Y. and Yuan, X. (2013) Facile Preparation of Superhydrophobic Coating by Spraying a Fluorinated Acrylic Random Copolymer Micelle Solution. Soft Matter, 9, 1005-1009. [Google Scholar] [CrossRef]
|
|
[17]
|
Cengiz, U., Z. Avci, M., Erbil, H.Y. and Sarac, A.S. (2012) Superhydrophobic Terpolymer Nanofibers Containing Perfluoroethyl Alkyl Methacrylate by Electrospinning. Applied Surface Science, 258, 5815-5821. [Google Scholar] [CrossRef]
|
|
[18]
|
Yuan, S., Pehkonen, S.O., Liang, B., Ting, Y.P., Neoh, K.G. and Kang, E.T. (2011) Superhydrophobic Fluoropolymer-Modified Copper Surface via Surface Graft Polymerisation for Corrosion Protection. Corrosion Science, 53, 2738-2747. [Google Scholar] [CrossRef]
|
|
[19]
|
Xu, Q.F., Mondal, B. and Lyons, A.M. (2011) Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method. ACS Applied Materials & Interfaces, 3, 3508-3514. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cui, Y., Paxson, A.T., Smyth, K.M. and Varanasi, K.K. (2012) Hierarchical Polymeric Textures via Solvent-Induced Phase Transformation: A Single-Step Production of Large-Area Superhydrophobic Surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394, 8-13. [Google Scholar] [CrossRef]
|
|
[21]
|
Mahajan, M., Bhargava, S.K. and O’Mullane, A.P. (2013) Electrochemical Formation of Porous Copper 7,7,8,8-Tetra-cyanoquinodimethane and Copper 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane Honeycomb Surfaces with Superhydrophobic Properties. Electrochimica Acta, 101, 186-195. [Google Scholar] [CrossRef]
|
|
[22]
|
Yan, Z., Liang, X., Shen, H. and Liu, Y. (2017) Preparation and Basic Properties of Superhydrophobic Silicone Rubber with Micro-Nano Hierarchical Structures Formed by Picosecond Laser-Ablated Template. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 1743-1750. [Google Scholar] [CrossRef]
|
|
[23]
|
Song, J., Lu, Y., Huang, S., Liu, X., Wu, L. and Xu, W. (2013) A Simple Immersion Approach for Fabricating Superhydrophobic Mg Alloy Surfaces. Applied Surface Science, 266, 445-450. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, J., Li, A., Chen, H. and Chen, D. (2011) Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina. Journal of Bionic Engineering, 8, 122-128. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, Y., Zhang, X., Cui, Y., Wang, H. and Wang, J. (2019) Anti-Corrosion Enhancement of Superhydrophobic Coating Utilizing Oxygen Vacancy Modified Potassium Titanate Whisker. Chemical Engineering Journal, 374, 1326-1336. [Google Scholar] [CrossRef]
|
|
[26]
|
夏秋, 大气压等离子体射流制备超疏水涂层及其减阻研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2015.
|
|
[27]
|
Zhu, J., Wan, H. and Hu, X. (2016) A Rapid One-Step Process for the Construction of Corrosion-Resistant Bionic Superhydrophobic Surfaces. Progress in Organic Coatings, 100, 56-62. [Google Scholar] [CrossRef]
|
|
[28]
|
Feng, L., Zhao, L., Qiang, X., Liu, Y., Sun, Z. and Wang, B. (2014) Fabrication of Superhydrophobic Copper Surface with Excellent Corrosion Resistance. Applied Physics A, 119, 75-83. [Google Scholar] [CrossRef]
|
|
[29]
|
Wang, P., Qiu, R., Zhang, D., Lin, Z. and Hou, B. (2010) Fabricated Super-Hydrophobic Film with Potentiostatic Electrolysis Method on Copper for Corrosion Protection. Electrochimica Acta, 56, 517-522. [Google Scholar] [CrossRef]
|
|
[30]
|
Scarratt, L.R.J., Steiner, U. and Neto, C. (2017) A Review on the Mechanical and Thermodynamic Robustness of Superhydrophobic Surfaces. Advances in Colloid and Interface Science, 246, 133-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qian, B. and Shen, Z. (2005) Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir, 21, 9007-9009. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
赵坤. 铝合金基体上超疏水表面的制备及其性能[J]. 材料科学与工程学报, 2010, 28(3): 448-452.
|
|
[33]
|
黄子发, 孙林玉, 罗雨婷, 等. 一种酸刻蚀法制备铝合金超疏水表面薄膜[J]. 湖南工业大学学报, 2011, 25(4): 5-8.
|
|
[34]
|
Huang, Z.F., Sun, L.Y., Luo, Y.T., et al. (2011) An Acid Etching Method for Preparing Superhydrophobic Surface Films on Aluminum Alloys. Journal of Hunan University of Technology, 25, 5-8.
|
|
[35]
|
辛道银. 铝锌金属表面的超双疏改性及其自清洁性能[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2013.
|
|
[36]
|
Guo, Z., Fang, J., Wang, L. and Liu, W. (2007) Fabrication of Superhydrophobic Copper by Wet Chemical Reaction. Thin Solid Films, 515, 7190-7194. [Google Scholar] [CrossRef]
|
|
[37]
|
马福民, 郝全勇, 张燕, 等. 氧化还原法刻蚀制备铜基超疏水表面[J]. 科学技术与工程, 2013, 13(14): 3960-3962.
|
|
[38]
|
孙巧珍, 邵鑫, 赵利民, 等. 锌基底上超疏水表面的制备[J]. 聊城大学学报(自然科学版), 2009, 22(4): 48-50.
|
|
[39]
|
石磊, 曹磊, 古毓康, 等. 金属锌表面超疏水薄膜的耐蚀及摩擦学性能的表征[J]. 表面技术, 2017, 46(9): 203-208.
|
|
[40]
|
刘英雨. 不锈钢基超疏水表面制备技术研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
[41]
|
杨红静. 不锈钢基底超疏水表面的制备及应用[D]: [硕士学位论文]. 大连: 大连理工大学, 2015.
|
|
[42]
|
Ming, W., Wu, D., van Benthem, R. and de With, G. (2005) Superhydrophobic Films from Raspberry-Like Particles. Nano Letters, 5, 2298-2301. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhou, X., Kong, J., Sun, J., Li, H. and He, C. (2017) Stable Superhydrophobic Porous Coatings from Hybrid ABC Triblock Copolymers and Their Anticorrosive Performance. ACS Applied Materials & Interfaces, 9, 30056-30063. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lan, L., Wang, H., Zhu, L., Di, Y., Kang, J. and Qiu, J. (2021) Preparation and Wetting Mechanism of Laser‐Etched Composite Self‐Assembled 1h,1h,2h,2h‐Perfluorodecyltriethoxysilane Superhydrophobic Surface Coating. Physica Status Solidi (a), 219, Article 2100568. [Google Scholar] [CrossRef]
|
|
[45]
|
Zhang, X., Chen, R., Liu, Y. and Hu, J. (2016) Electrochemically Generated Sol-Gel Films as Inhibitor Containers of Superhydrophobic Surfaces for the Active Corrosion Protection of Metals. Journal of Materials Chemistry A, 4, 649-656. [Google Scholar] [CrossRef]
|
|
[46]
|
Lee, J. and Hwang, W. (2016) Exploiting the Silicon Content of Aluminum Alloys to Create a Superhydrophobic Surface Using the Sol-Gel Process. Materials Letters, 168, 83-85. [Google Scholar] [CrossRef]
|
|
[47]
|
Wen, X., Wang, K., Pi, P., Yang, J., Cai, Z., Zhang, L., et al. (2011) Organic-Inorganic Hybrid Superhydrophobic Surfaces Using Methyltriethoxysilane and Tetraethoxysilane Sol-Gel Derived Materials in Emulsion. Applied Surface Science, 258, 991-998. [Google Scholar] [CrossRef]
|
|
[48]
|
Lu, S., Chen, Y., Xu, W. and Liu, W. (2010) Controlled Growth of Superhydrophobic Films by Sol-Gel Method on Aluminum Substrate. Applied Surface Science, 256, 6072-6075. [Google Scholar] [CrossRef]
|
|
[49]
|
Aslan Çakır, M., Yetim, T., Yetim, A.F. and Çelik, A. (2023) Superamphiphobic TiO2 Film by Sol-Gel Dip Coating Method on Commercial Pure Titanium. Journal of Materials Engineering and Performance, 33, 1472-1484. [Google Scholar] [CrossRef]
|
|
[50]
|
Gao, S., Dong, X., Huang, J., Li, S., Li, Y., Chen, Z., et al. (2018) Rational Construction of Highly Transparent Superhydrophobic Coatings Based on a Non-Particle, Fluorine-Free and Water-Rich System for Versatile Oil-Water Separation. Chemical Engineering Journal, 333, 621-629. [Google Scholar] [CrossRef]
|
|
[51]
|
Zang, D., Zhu, R., Zhang, W., Yu, X., Lin, L., Guo, X., et al. (2017) Corrosion‐Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Advanced Functional Materials, 27, Article 1605446. [Google Scholar] [CrossRef]
|
|
[52]
|
Yuan, J., Wang, J., Zhang, K. and Hu, W. (2017) Fabrication and Properties of a Superhydrophobic Film on an Electroless Plated Magnesium Alloy. RSC Advances, 7, 28909-28917. [Google Scholar] [CrossRef]
|
|
[53]
|
Gao, R., Liu, Q., Wang, J., Zhang, X., Yang, W., Liu, J., et al. (2014) Fabrication of Fibrous Szaibelyite with Hierarchical Structure Superhydrophobic Coating on AZ31 Magnesium Alloy for Corrosion Protection. Chemical Engineering Journal, 241, 352-359. [Google Scholar] [CrossRef]
|
|
[54]
|
Li, L., Huang, T., Lei, J., He, J., Qu, L., Huang, P., et al. (2015) Robust Biomimetic-Structural Superhydrophobic Surface on Aluminum Alloy. ACS Applied Materials & Interfaces, 7, 1449-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Li, W. and Kang, Z. (2014) Fabrication of Corrosion Resistant Superhydrophobic Surface with Self-Cleaning Property on Magnesium Alloy and Its Mechanical Stability. Surface and Coatings Technology, 253, 205-213. [Google Scholar] [CrossRef]
|
|
[56]
|
Xiang, T., Ding, S., Li, C., Zheng, S., Hu, W., Wang, J., et al. (2017) Effect of Current Density on Wettability and Corrosion Resistance of Superhydrophobic Nickel Coating Deposited on Low Carbon Steel. Materials & Design, 114, 65-72. [Google Scholar] [CrossRef]
|
|
[57]
|
Fan, Y., He, Y., Luo, P., Chen, X. and Liu, B. (2016) A Facile Electrodeposition Process to Fabricate Corrosion-Resistant Superhydrophobic Surface on Carbon Steel. Applied Surface Science, 368, 435-442. [Google Scholar] [CrossRef]
|
|
[58]
|
Xu, Z., Jiang, D., Wei, Z., Chen, J. and Jing, J. (2018) Fabrication of Superhydrophobic Nano-Aluminum Films on Stainless Steel Meshes by Electrophoretic Deposition for Oil-Water Separation. Applied Surface Science, 427, 253-261. [Google Scholar] [CrossRef]
|
|
[59]
|
Yang, Z., Liu, X. and Tian, Y. (2019) Fabrication of Super-Hydrophobic Nickel Film on Copper Substrate with Improved Corrosion Inhibition by Electrodeposition Process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 205-212. [Google Scholar] [CrossRef]
|
|
[60]
|
Zhang, X., Jiang, F., Chen, R., Chen, Y. and Hu, J. (2020) Robust Superhydrophobic Coatings Prepared by Cathodic Electrophoresis of Hydrophobic Silica Nanoparticles with the Cationic Resin as the Adhesive for Corrosion Protection. Corrosion Science, 173, Article 108797. [Google Scholar] [CrossRef]
|
|
[61]
|
Zou, Y., Wang, Y., Xu, S., Jin, T., Wei, D., Ouyang, J., et al. (2019) Superhydrophobic Double-Layer Coating for Efficient Heat Dissipation and Corrosion Protection. Chemical Engineering Journal, 362, 638-649. [Google Scholar] [CrossRef]
|
|
[62]
|
Peng, S., Tian, D., Yang, X. and Deng, W. (2014) Highly Efficient and Large-Scale Fabrication of Superhydrophobic Alumina Surface with Strong Stability Based on Self-Congregated Alumina Nanowires. ACS Applied Materials & Interfaces, 6, 4831-4841. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
夏晓健, 蔡建宾, 林德源, 等. 铝合金表面超疏水涂层的制备及其在盐雾环境中耐蚀行为的研究[J]. 湖南师范大学自然科学学报, 2020, 43(5): 57-64.
|
|
[64]
|
Wang, N., Xiong, D., Pan, S., Deng, Y., Shi, Y. and Wang, K. (2016) Superhydrophobic Paper with Superior Stability against Deformations and Humidity. Applied Surface Science, 389, 354-360. [Google Scholar] [CrossRef]
|
|
[65]
|
Zhu, P., Zhu, L., Ge, F., Wang, G. and Zeng, Z. (2021) Robust and Transparent Superamphiphobic Coating Prepared via Layer-by-Layer Spraying. Surface and Coatings Technology, 426, Article 127793. [Google Scholar] [CrossRef]
|
|
[66]
|
Daneshmand, H., Sazgar, A. and Araghchi, M. (2021) Fabrication of Robust and Versatile Superhydrophobic Coating by Two-Step Spray Method: An Experimental and Molecular Dynamics Simulation Study. Applied Surface Science, 567, Article 150825. [Google Scholar] [CrossRef]
|
|
[67]
|
Qiao, M., Ji, G., Lu, Y. and Zhang, B. (2023) Sustainable Corrosion-Resistant Superhydrophobic Composite Coating with Strengthened Robustness. Journal of Industrial and Engineering Chemistry, 121, 215-227. [Google Scholar] [CrossRef]
|
|
[68]
|
Long, M., Peng, S., Deng, W., Yang, X., Miao, K., Wen, N., et al. (2017) Robust and Thermal-Healing Superhydrophobic Surfaces by Spin-Coating of Polydimethylsiloxane. Journal of Colloid and Interface Science, 508, 18-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zhang, H., Zeng, X., Gao, Y., Shi, F., Zhang, P. and Chen, J. (2011) A Facile Method to Prepare Superhydrophobic Coatings by Calcium Carbonate. Industrial & Engineering Chemistry Research, 50, 3089-3094. [Google Scholar] [CrossRef]
|
|
[70]
|
Gao, S., Li, Z., Yang, S., Jiang, K., Li, Y., Zeng, H., et al. (2009) Transferrable Superhydrophobic Surface Constructed by a Hexagonal Cui Powder without Modification by Low-Free-Energy Materials. ACS Applied Materials & Interfaces, 1, 2080-2085. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Abbasi, S., Nouri, M. and Sabour Rouhaghdam, A. (2019) A Novel Combined Method for Fabrication of Stable Corrosion Resistance Superhydrophobic Surface on Al Alloy. Corrosion Science, 159, Article 108144. [Google Scholar] [CrossRef]
|
|
[72]
|
Guo, F., Duan, S., Wu, D., Matsuda, K., Wang, T. and Zou, Y. (2021) Facile Etching Fabrication of Superhydrophobic 7055 Aluminum Alloy Surface towards Chloride Environment Anticorrosion. Corrosion Science, 182, Article 109262. [Google Scholar] [CrossRef]
|
|
[73]
|
Dou, W., Wu, J., Gu, T., Wang, P. and Zhang, D. (2018) Preparation of Super-Hydrophobic Micro-Needle CuO Surface as a Barrier against Marine Atmospheric Corrosion. Corrosion Science, 131, 156-163. [Google Scholar] [CrossRef]
|
|
[74]
|
Liu, W., Xu, Q., Han, J., Chen, X. and Min, Y. (2016) A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance. Corrosion Science, 110, 105-113. [Google Scholar] [CrossRef]
|
|
[75]
|
Jie, H., Xu, Q., Wei, L. and Min, Y. (2016) Etching and Heating Treatment Combined Approach for Superhydrophobic Surface on Brass Substrates and the Consequent Corrosion Resistance. Corrosion Science, 102, 251-258. [Google Scholar] [CrossRef]
|
|
[76]
|
Wang, S., Guo, X., Xie, Y., Liu, L., Yang, H., Zhu, R., et al. (2012) Preparation of Superhydrophobic Silica Film on Mg-Nd-Zn-Zr Magnesium Alloy with Enhanced Corrosion Resistance by Combining Micro-Arc Oxidation and Sol-Gel Method. Surface and Coatings Technology, 213, 192-201. [Google Scholar] [CrossRef]
|
|
[77]
|
Rao, A.V., Latthe, S.S., Mahadik, S.A. and Kappenstein, C. (2011) Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate. Applied Surface Science, 257, 5772-5776. [Google Scholar] [CrossRef]
|
|
[78]
|
Mousavi, S.M.A. and Pitchumani, R. (2021) A Study of Corrosion on Electrodeposited Superhydrophobic Copper Surfaces. Corrosion Science, 186, Article 109420. [Google Scholar] [CrossRef]
|
|
[79]
|
Zhang, X., Chen, Y. and Hu, J. (2020) Robust Superhydrophobic SiO2/Polydimethylsiloxane Films Coated on Mild Steel for Corrosion Protection. Corrosion Science, 166, Article 108452. [Google Scholar] [CrossRef]
|