[1]
|
Wu, Q., Dong, Q., Sun, W., Huang, Y., Wang, Q. and Zhou, W. (2014) Discrimination of Chinese Teas with Different Fermentation Degrees by Stepwise Linear Discriminant Analysis (S-LDA) of the Chemical Compounds. Journal of Agricultural and Food Chemistry, 62, 9336-9344. https://doi.org/10.1021/jf5025483
|
[2]
|
Li, J., Xu, R., Zong, L., Brake, J., Cheng, L., Wu, J., et al. (2021) Dynamic Evolution and Correlation between Metabolites and Microorganisms during Manufacturing Process and Storage of Fu Brick Tea. Metabolites, 11, Article 703. https://doi.org/10.3390/metabo11100703
|
[3]
|
Fan, Y. and Pedersen, O. (2020) Gut Microbiota in Human Metabolic Health and Disease. Nature Reviews Microbiology, 19, 55-71. https://doi.org/10.1038/s41579-020-0433-9
|
[4]
|
Jasirwan, C.O.M., Muradi, A., Hasan, I., Simadibrata, M. and Rinaldi, I. (2021) Correlation of Gut Firmicutes/Bacteroidetes Ratio with Fibrosis and Steatosis Stratified by Body Mass Index in Patients with Non-Alcoholic Fatty Liver Disease. Bioscience of Microbiota, Food and Health, 40, 50-58. https://doi.org/10.12938/bmfh.2020-046
|
[5]
|
Chen, G., Xie, M., Wan, P., Chen, D., Dai, Z., Ye, H., et al. (2018) Fuzhuan Brick Tea Polysaccharides Attenuate Metabolic Syndrome in High-Fat Diet Induced Mice in Association with Modulation in the Gut Microbiota. Journal of Agricultural and Food Chemistry, 66, 2783-2795. https://doi.org/10.1021/acs.jafc.8b00296
|
[6]
|
Wang, M., Chen, G., Chen, D., Ye, H., Sun, Y., Zeng, X., et al. (2019) Purified Fraction of Polysaccharides from Fuzhuan Brick Tea Modulates the Composition and Metabolism of Gut Microbiota in Anaerobic Fermentation in Vitro. International Journal of Biological Macromolecules, 140, 858-870. https://doi.org/10.1016/j.ijbiomac.2019.08.187
|
[7]
|
Yang, W., Ren, D., Zhao, Y., Liu, L. and Yang, X. (2021) Fuzhuan Brick Tea Polysaccharide Improved Ulcerative Colitis in Association with Gut Microbiota-Derived Tryptophan Metabolism. Journal of Agricultural and Food Chemistry, 69, 8448-8459. https://doi.org/10.1021/acs.jafc.1c02774
|
[8]
|
Zhang, B., Ren, D., Zhao, A., Shao, H., Li, T., Niu, P., et al. (2022) Eurotium cristatum Exhibited Anti-Colitis Effects via Modulating Gut Microbiota-Dependent Tryptophan Metabolism. Journal of Agricultural and Food Chemistry, 70, 16164-16175. https://doi.org/10.1021/acs.jafc.2c05464
|
[9]
|
Chen, G., Xie, M., Wan, P., Chen, D., Ye, H., Chen, L., et al. (2018) Digestion under Saliva, Simulated Gastric and Small Intestinal Conditions and Fermentation in Vitro by Human Intestinal Microbiota of Polysaccharides from Fuzhuan Brick Tea. Food Chemistry, 244, 331-339. https://doi.org/10.1016/j.foodchem.2017.10.074
|
[10]
|
Foster, M.T., Gentile, C.L., Cox-York, K., Wei, Y., Wang, D., Estrada, A.L., et al. (2016) Fuzhuan Tea Consumption Imparts Hepatoprotective Effects and Alters Intestinal Microbiota in High Saturated Fat Diet-Fed Rats. Molecular Nutrition & Food Research, 60, 1213-1220. https://doi.org/10.1002/mnfr.201500654
|
[11]
|
Zhou, C., Zhou, X., Wen, Z., Liu, L., Yang, Z., Yang, L., et al. (2020) Compound Fu Brick Tea Modifies the Intestinal Microbiome Composition in High-Fat Diet-Induced Obesity Mice. Food Science & Nutrition, 8, 5508-5520. https://doi.org/10.1002/fsn3.1850
|
[12]
|
Liu, D., Huang, J., Luo, Y., Wen, B., Wu, W., Zeng, H., et al. (2019) Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. Journal of Agricultural and Food Chemistry, 67, 13589-13604. https://doi.org/10.1021/acs.jafc.9b05833
|
[13]
|
Shivaji, S. (2019) Connect between Gut Microbiome and Diseases of the Human Eye. Journal of Biosciences, 44, Article No. 110. https://doi.org/10.1007/s12038-019-9931-1
|
[14]
|
Cani, P.D. (2019) Microbiota and Metabolites in Metabolic Diseases. Nature Reviews Endocrinology, 15, 69-70. https://doi.org/10.1038/s41574-018-0143-9
|
[15]
|
Amsterdam, J.D., Li, Q.S., Xie, S.X. and Mao, J.J. (2020) Putative Antidepressant Effect of Chamomile (Matricaria chamomilla L.) Oral Extract in Subjects with Comorbid Generalized Anxiety Disorder and Depression. The Journal of Alternative and Complementary Medicine, 26, 815-821. https://doi.org/10.1089/acm.2019.0252
|
[16]
|
Ding, R., Goh, W., Wu, R., Yue, X., Luo, X., Khine, W.W.T., et al. (2019) Revisit Gut Microbiota and Its Impact on Human Health and Disease. Journal of Food and Drug Analysis, 27, 623-631. https://doi.org/10.1016/j.jfda.2018.12.012
|
[17]
|
Régnier, M., Van Hul, M., Knauf, C. and Cani, P.D. (2021) Gut Microbiome, Endocrine Control of Gut Barrier Function and Metabolic Diseases. Journal of Endocrinology, 248, R67-R82. https://doi.org/10.1530/joe-20-0473
|
[18]
|
de La Serre, C.B., Ellis, C.L., Lee, J., Hartman, A.L., Rutledge, J.C. and Raybould, H.E. (2010) Propensity to High-Fat Diet-Induced Obesity in Rats Is Associated with Changes in the Gut Microbiota and Gut Inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299, G440-G448. https://doi.org/10.1152/ajpgi.00098.2010
|
[19]
|
Chen, D., Yang, Z., Chen, X., Huang, Y., Yin, B., Guo, F., et al. (2015) Effect of Lactobacillus Rhamnosus Hsryfm 1301 on the Gut Microbiota and Lipid Metabolism in Rats Fed a High-Fat Diet. Journal of Microbiology and Biotechnology, 25, 687-695. https://doi.org/10.4014/jmb.1409.09085
|
[20]
|
Wieser, V., Moschen, A.R. and Tilg, H. (2013) Inflammation, Cytokines and Insulin Resistance: A Clinical Perspective. Archivum Immunologiae et Therapiae Experimentalis, 61, 119-125. https://doi.org/10.1007/s00005-012-0210-1
|
[21]
|
Brooks, L., Viardot, A., Tsakmaki, A., Stolarczyk, E., Howard, J.K., Cani, P.D., et al. (2017) Fermentable Carbohydrate Stimulates Ffar2-Dependent Colonic PYY Cell Expansion to Increase Satiety. Molecular Metabolism, 6, 48-60. https://doi.org/10.1016/j.molmet.2016.10.011
|
[22]
|
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. and Kimura, I. (2015) Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 7, 2839-2849. https://doi.org/10.3390/nu7042839
|
[23]
|
Guo, P., Feng, J.P., Feng, C., et al. (2019) Research Advances in Gut Flora and Related Diseases. Chinese Journal of Internal Medicine, 58, 476-480.
|
[24]
|
晏群, 冯波. 肠道菌群、肠促胰素与糖代谢异常[J]. 上海医学, 2021, 44(10): 722-725.
|
[25]
|
Song, X., Sun, X., Oh, S.F., Wu, M., Zhang, Y., Zheng, W., et al. (2019) Microbial Bile Acid Metabolites Modulate Gut Rorγ+ Regulatory T Cell Homeostasis. Nature, 577, 410-415. https://doi.org/10.1038/s41586-019-1865-0
|
[26]
|
Agus, A., Clément, K. and Sokol, H. (2020) Gut Microbiota-Derived Metabolites as Central Regulators in Metabolic Disorders. Gut, 70, 1174-1182. https://doi.org/10.1136/gutjnl-2020-323071
|
[27]
|
Wu, J., Wang, K., Wang, X., Pang, Y. and Jiang, C. (2020) The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein & Cell, 12, 360-373. https://doi.org/10.1007/s13238-020-00814-7
|
[28]
|
González Hernández, M.A., Canfora, E.E., Jocken, J.W.E. and Blaak, E.E. (2019) The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 11, Article 1943. https://doi.org/10.3390/nu11081943
|
[29]
|
Wang, D., Liu, C., Tian, M., Tan, C., Shu, G., Jiang, Q., et al. (2019) Propionate Promotes Intestinal Lipolysis and Metabolic Benefits via AMPK/LSD1 Pathway in Mice. Journal of Endocrinology, 243, 187-197. https://doi.org/10.1530/joe-19-0188
|
[30]
|
Wieser, V., Moschen, A.R. and Tilg, H. (2013) Inflammation, Cytokines and Insulin Resistance: A Clinical Perspective. Archivum Immunologiae et Therapiae Experimentalis, 61, 119-125. https://doi.org/10.1007/s00005-012-0210-1
|
[31]
|
Brooks, L., Viardot, A., Tsakmaki, A., Stolarczyk, E., Howard, J.K., Cani, P.D., et al. (2017) Fermentable Carbohydrate Stimulates Ffar2-Dependent Colonic PYY Cell Expansion to Increase Satiety. Molecular Metabolism, 6, 48-60. https://doi.org/10.1016/j.molmet.2016.10.011
|
[32]
|
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. and Kimura, I. (2015) Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 7, 2839-2849. https://doi.org/10.3390/nu7042839
|
[33]
|
Pasanisi, F., Contaldo, F., de Simone, G., et al. (2001) Benefits of Sustained Moderate Weight Loss in Obesity. Nutrition, Metabolism and Cardiovascular Diseases, 11, 401-406.
|
[34]
|
Li, Q., Liu, Z., Huang, J., Luo, G., Liang, Q., Wang, D., et al. (2012) Anti-Obesity and Hypolipidemic Effects of Fuzhuan Brick Tea Water Extract in High-Fat Diet-Induced Obese Rats. Journal of the Science of Food and Agriculture, 93, 1310-1316. https://doi.org/10.1002/jsfa.5887
|
[35]
|
Zeng, Z., Xie, Z., Chen, G., Sun, Y., Zeng, X. and Liu, Z. (2022) Anti-Inflammatory and Gut Microbiota Modulatory Effects of Polysaccharides from Fuzhuan Brick Tea on Colitis in Mice Induced by Dextran Sulfate Sodium. Food & Function, 13, 649-663. https://doi.org/10.1039/d1fo02702f
|
[36]
|
Zhou, M., Tian, X., Wu, Z., Li, K. and Li, Z. (2021) Fuzhuan Brick Tea Supplemented with Areca Nuts: Effects on Serum and Gut Microbiota in Mice. Journal of Food Biochemistry, 45, e13737. https://doi.org/10.1111/jfbc.13737
|
[37]
|
Tang, Y., Chen, B., Huang, X., He, X., Yi, J., Zhao, H., et al. (2022) Fu Brick Tea Alleviates High Fat Induced Non-Alcoholic Fatty Liver Disease by Remodeling the Gut Microbiota and Liver Metabolism. Frontiers in Nutrition, 9, Article 1062323. https://doi.org/10.3389/fnut.2022.1062323
|
[38]
|
Ye, Y., Warusawitharana, H., Zhao, H., Liu, Z., Li, B., Wu, Y., et al. (2022) Tea Polyphenols Attenuates Inflammation via Reducing Lipopolysaccharides Level and Inhibiting TLR4/NF-κB Pathway in Obese Mice. Plant Foods for Human Nutrition, 77, 105-111. https://doi.org/10.1007/s11130-021-00937-0
|
[39]
|
Zhu, M., Ouyang, J., Zhou, F., Zhao, C., Zhu, W., Liu, C., et al. (2023) Polysaccharides from Fu Brick Tea Ameliorate Obesity by Modulating Gut Microbiota and Gut Microbiota-Related Short Chain Fatty Acid and Amino Acid Metabolism. The Journal of Nutritional Biochemistry, 118, Article 109356. https://doi.org/10.1016/j.jnutbio.2023.109356
|
[40]
|
Wang, Y., Zhao, A., Du, H., Liu, Y., Qi, B. and Yang, X. (2021) Theabrownin from Fu Brick Tea Exhibits the Thermogenic Function of Adipocytes in High-Fat-Diet-Induced Obesity. Journal of Agricultural and Food Chemistry, 69, 11900-11911. https://doi.org/10.1021/acs.jafc.1c04626
|
[41]
|
Liu, T., Liu, X., Huang, G., Liu, L., Chen, Q. and Wang, Q. (2022) Theophylline Extracted from Fu Brick Tea Affects the Metabolism of Preadipocytes and Body Fat in Mice as a Pancreatic Lipase Inhibitor. International Journal of Molecular Sciences, 23, Article 2525. https://doi.org/10.3390/ijms23052525
|
[42]
|
Yoo, A., Jung Kim, M., Ahn, J., Hwa Jung, C., Deok Seo, H., Yung Ly, S., et al. (2022) Fuzhuan Brick Tea Extract Prevents Diet-Induced Obesity via Stimulation of Fat Browning in Mice. Food Chemistry, 377, Article 132006. https://doi.org/10.1016/j.foodchem.2021.132006
|
[43]
|
(1998) Effect of Intensive Blood-Glucose Control with Metformin on Complications in Overweight Patients with Type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. The Lancet, 352, 854-865.
|
[44]
|
Fang, Z.Y., Prins, J.B. and Marwick, T.H. (2004) Diabetic Cardiomyopathy: Evidence, Mechanisms, and Therapeutic Implications. Endocrine Reviews, 25, 543-567. https://doi.org/10.1210/er.2003-0012
|
[45]
|
Zhu, J., Yu, C., Zhou, H., Wei, X. and Wang, Y. (2021) Comparative Evaluation for Phytochemical Composition and Regulation of Blood Glucose, Hepatic Oxidative Stress and Insulin Resistance in Mice and HEPG2 Models of Four Typical Chinese Dark Teas. Journal of the Science of Food and Agriculture, 101, 6563-6577. https://doi.org/10.1002/jsfa.11328
|
[46]
|
Du, H., Wang, Q. and Yang, X. (2019) Fu Brick Tea Alleviates Chronic Kidney Disease of Rats with High Fat Diet Consumption through Attenuating Insulin Resistance in Skeletal Muscle. Journal of Agricultural and Food Chemistry, 67, 2839-2847. https://doi.org/10.1021/acs.jafc.8b06927
|
[47]
|
Huang, H., Chen, J., Hu, X., Chen, Y., Xie, J., Ao, T., et al. (2022) Elucidation of the Interaction Effect between Dietary Fiber and Bound Polyphenol Components on the Anti-Hyperglycemic Activity of Tea Residue Dietary Fiber. Food & Function, 13, 2710-2728. https://doi.org/10.1039/d1fo03682c
|
[48]
|
Liu, Q., Chen, L., Hu, L., Guo, Y. and Shen, X. (2010) Small Molecules from Natural Sources, Targeting Signaling Pathways in Diabetes. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1799, 854-865. https://doi.org/10.1016/j.bbagrm.2010.06.004
|
[49]
|
Lu, Y., He, Y., Zhu, S., Zhong, X., Chen, D. and Liu, Z. (2019) New Acylglycosides Flavones from Fuzhuan Brick Tea and Simulation Analysis of Their Bioactive Effects. International Journal of Molecular Sciences, 20, Article 494. https://doi.org/10.3390/ijms20030494
|
[50]
|
Hillis, L.D., Smith, P.K., Anderson, J.L., Bittl, J.A., Bridges, C.R., Byrne, J.G., et al. (2011) 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: Executive Summary. Circulation, 124, 2610-2642. https://doi.org/10.1161/cir.0b013e31823b5fee
|
[51]
|
Chen, G., Xie, M., Dai, Z., Wan, P., Ye, H., Zeng, X., et al. (2018) Kudingcha and Fuzhuan Brick Tea Prevent Obesity and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Molecular Nutrition & Food Research, 62, e1700145. https://doi.org/10.1002/mnfr.201700485
|
[52]
|
Liu, Z., Lin, Y., Zhang, S., Wang, D., Liang, Q. and Luo, G. (2015) Comparative Proteomic Analysis Using 2DE-LC-MS/MS Reveals the Mechanism of Fuzhuan Brick Tea Extract against Hepatic Fat Accumulation in Rats with Nonalcoholic Fatty Liver Disease. Electrophoresis, 36, 2002-2016. https://doi.org/10.1002/elps.201500076
|
[53]
|
Cave, M.C., Clair, H.B., Hardesty, J.E., Falkner, K.C., Feng, W., Clark, B.J., et al. (2016) Nuclear Receptors and Nonalcoholic Fatty Liver Disease. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1859, 1083-1099. https://doi.org/10.1016/j.bbagrm.2016.03.002
|
[54]
|
Satoh, H., Ide, N., Kagawa, Y. and Maeda, T. (2013) Hepatic Steatosis with Relation to Increased Expression of Peroxisome Proliferator-Activated Receptor-γ in Insulin Resistant Mice. Biological and Pharmaceutical Bulletin, 36, 616-623. https://doi.org/10.1248/bpb.b12-01000
|