颗粒物对慢性肾脏病的影响及机制研究进展
Impacts and Mechanisms of Particulate Matter on Chronic Kidney Disease
DOI: 10.12677/acm.2024.14123262, PDF, HTML, XML,    科研立项经费支持
作者: 马瑞坤, 张渝亭:承德医学院研究生学院,河北 承德;牛晓涛, 王俊芳:河北医科大学研究生学院,河北 石家庄;张 林, 宋晔宸:河北北方学院研究生学院,河北 张家口;刘艳玲, 王 晶, 鲁 华*:邢台市人民医院肾内科,河北 邢台
关键词: 大气颗粒物流行病学慢性肾脏病生物学机制Atmospheric Particulate Matter Epidemiology Chronic Kidney Disease Biological Mechanisms
摘要: 慢性肾脏病(CKD)是全球性公共卫生问题,其发病率高、知晓率低,且与多种因素相关。近年来,大气颗粒物(PM)作为环境因素之一,与CKD的关联性受到广泛关注。该综述旨在探讨不同粒径的大气PM (包括PM10、PM2.5和PM1)对CKD发病风险的影响,并分析其潜在的生物学机制。研究表明,长期暴露于大气PM与CKD的发病率和进展风险增加有关。PM可能通过氧化应激、炎症反应、免疫反应、细胞自噬与凋亡以及血流动力学改变等途径影响肾脏功能。此外,PM中特定化学组分对肾脏的损害作用亦不容忽视。因此,该综述强调了制定有效的PM干预政策对于预防和控制CKD的重要性,并为未来的研究方向提供了新的视角。
Abstract: Chronic kidney disease (CKD) is a prevalent global public health concern characterized by high incidence rates, low awareness levels, and a multitude of associated factors. Recently, the correlation between atmospheric particulate matter (PM), as one of the environmental factors, and CKD has garnered substantial attention. This review aims to investigate the impacts of atmospheric PM of varying particle sizes, including PM10, PM2.5, and PM1, on the susceptibility to CKD and delve into the potential biological mechanisms. Findings indicate that long-term exposure to atmospheric PM is linked to a heightened incidence and risk of progression of CKD. PM may affect renal function via pathways involving oxidative stress, inflammation, immune response, cellular autophagy and apoptosis, and hemodynamic changes. Furthermore, the detrimental effects of specific chemical components within PM on kidney health should be considered. Consequently, this review highlights the necessity of implementing effective PM intervention policies for the prevention and control of CKD, thereby offering novel research avenues for exploration in the future.
文章引用:马瑞坤, 牛晓涛, 张渝亭, 王俊芳, 张林, 宋晔宸, 刘艳玲, 王晶, 鲁华. 颗粒物对慢性肾脏病的影响及机制研究进展[J]. 临床医学进展, 2024, 14(12): 1629-1637. https://doi.org/10.12677/acm.2024.14123262

1. 引言

慢性肾脏病(Chronic Kidney Disease, CKD)是一种以高发病率、高致残率、高医疗花费、低知晓率等为主要特征的疾病,已成为全球范围内日益严重的公共卫生挑战[1] [2]。CKD发病过程通常较为隐匿,难以在病情显著进展前被及时发现,即估算的肾小球滤过率(estimated Glomerular Filtration Rate, eGFR)低于30 ml/min/1.73m2 [3]。患者病情的恶化速度与多种因素密切相关,包括病因和所采取的干预措施。由CKD进展为终末期肾脏病(End-Stage Renal Disease, ESRD)可能会经历数月至数十年的时间。而ESRD患者往往需要依赖透析或肾移植来维持生命,这给国家和社会带来沉重的经济负担。根据2021年全球疾病负担研究报告显示,CKD已导致约153万人死亡,造成4450万年的寿命损失,其致死率已上升至人类死因的第11位[4]。预计至2040年CKD将造成220~400万人死亡,成为全球第五大死亡原因[5]。据悉,目前中国成人CKD患者约8200万人,患病率高达8.2% [6]。因此,深入认识CKD的致病因素对于制定有效的防治措施具有重大意义。

人口老龄化、糖尿病、高血压和心脏病等是公认的CKD致病因素[7] [8]。近年来,环境因素,尤其是空气污染物,与CKD之间的关联性逐渐受到重视[9] [10]。大气颗粒物(Particulate Matter, PM)是空气污染物的主要成分之一,可根据其空气动力学直径大致分为PM10 (直径 ≤ 10 μm),PM2.5 (直径 ≤ 2.5 μm)和PM1 (直径 ≤ 1 μm)。既往研究多集中于探讨PM对人体呼吸系统和心血管系统的影响[11]-[14]。然而,随着对PM与人体作用机制的深入研究,PM与CKD发病风险之间的流行病学与机制研究逐渐成为行业热点。本文旨在对这一领域的新进展进行综述,以期为CKD的预防和治疗提供新的视角。

2. 大气PM

大气PM是对大气中各种固态和液态颗粒的总称,可根据其形成机制分为一次颗粒物与二次颗粒物。前者指直接排放到大气中的颗粒物,其成因包括自然源和人为源。自然源与地球的物理化学过程相关,包括风扬尘土、火山灰、生物花粉等。人为源则主要源自人类活动,如交通工具的尾气。一次颗粒物的化学组成与其来源密切相关,可能包含有机物、无机盐和微量重金属。而二次颗粒物是气态污染物经由化学反应形成的颗粒物,如氮氧化物(NOx)转化为硝酸盐。可见,二次颗粒物的化学组分主要为无机盐类[15] [16]

大气PM的含量和组分与其对人体健康的损害密切相关。根据《2024全球空气状况报告》,2021年空气污染导致了全球约810万人死亡,其中58%的死亡案例与PM2.5暴露直接相关[17]。该报告进一步指出,全球约99%的人口生活在PM2.5污染超标的地区。南亚、中东和非洲地区的污染情况尤为严峻。在这些地区,PM2.5的化学组分和来源有所不同。例如,PM2.5在南亚和南非地区的形成多归因于化石燃料的燃烧,因此硫酸盐、硝酸盐以及有机颗粒为其主要成分。要茂盛团队对中国31个主要城市的大气PM进行深入研究,发现不同城市大气PM的毒性存在显著差异。这可能与颗粒物中生化组分的相对含量相关,如真菌和水溶性硫酸根离子等成分[18]

3. 大气PM与CKD发病的相关性

CKD是一种进行性疾病,其特征是由各种原因引起的肾脏功能损伤或eGFR低于60 ml/min/1.73m2,且此状态持续时间不少于3个月[3]。CKD的常见危险因素包括年龄、糖尿病、高血压和遗传因素等。不同地区、环境和个体之间的差异均可能导致CKD的确切病因存在差异[19]-[21]。近些年来,大气PM被广泛认为是CKD的一个潜在风险因素。PM的直径大小是影响CKD发病的关键环境因素之一(见表1)。

3.1. PM10

PM10,又称可吸入颗粒物,是一类能够进入人体呼吸道的微小颗粒,其中大部分在通过鼻腔、咽喉等上呼吸道部位时被拦截。近期,Wang等[22]对英国生物银行的458,968名受试者进行随访调查(中位随访时间为11.7年)。研究发现,PM10浓度每增加1个四分位间距(interquartile range, IQR) (2.23 μg/m3),CKD发病风险相应增加8%。一项基于美国退伍军人的大型队列研究亦指出,PM10的长期暴露与eGFR下降、CKD发病风险增加之间存在正相关关系[23]。这些研究结果提示,PM10暴露可能会对老年群体的肾功能产生不利影响。Oh等[24]利用2016年至2018年韩国第七次国家健康和营养检查调查的数据,对15,983名20岁以上的成年人进行横断面研究。在亚组分析中发现,PM10暴露与年轻人、女性、非吸烟者和非饮酒者较高的CKD风险显著相关。该研究为PM10暴露对青年和中年群体肾功能的损害提供依据。值得注意的是,Yang等[25]在中国台湾地区成年人群中的研究表明,PM10暴露与CKD患病风险增加及eGFR下降有关,而PM2.5暴露与肾功能下降并无显著相关性。这一发现与当前对PM2.5影响的主流认知存在差异,可能与当地PM的化学组成、暴露评估的准确性以及人群的易感性等因素有关。因此,需要进一步的纵向队列研究来验证这些观点。

3.2. PM2.5

PM2.5能够进入肺泡,甚至有可能侵入人体更深层的呼吸系统[26]。Bowe等[27]开展了一项针对2,482,737名美国退伍军人的长期随访调查,随访时间中位数为8.52年。研究发现PM2.5浓度与CKD的发病以及进展为ESRD的风险存在正相关关系。值得注意的是,该研究中PM2.5的基线暴露浓度为11.8 μg/m3。这一数值表明当地空气污染水平较低,提示长期的低浓度PM2.5暴露可能是诱发CKD的一个风险因素。高浓度污染地区的调查研究也支持这一关联。Li等[28]通过分析中国的国家CKD调查数据,发现在PM2.5两年浓度均值高达57.4 μg/m3的高浓度暴露条件下,CKD患病率与PM2.5浓度呈现出正相关性。在其他高浓度PM2.5暴露地区的研究中也观察到相似的正相关趋势[24] [29] [30]。此外,一项覆盖中国282个城市中938家医院的流行病学调查指出,在PM2.5浓度高于70 μg/m3的重度污染地区,每当PM2.5浓度增加10 μg/m3,膜性肾病(Membranous Nephropathy, MN)的患病风险增加14%,而其他类型的肾小球疾病发病率则保持相对稳定[31]。这一发现提示,高浓度PM2.5暴露可能与特定类型肾小球疾病的发病之间存在相关性。

Table 1. Epidemiological studies on the correlation between PM exposure of different particle sizes and CKD incidence

1. 不同粒径的PM暴露与CKD发病相关性的流行病学研究

国家/地区

研究时间

样本量

研究设计

PM种类

结局

PM的平均值(μg/m3)

(SD or IQR)

参考文献

英国

2006~2010

458,968

前瞻性队列研究

PM10

PM2.5

CKD发病

PM2.5: 10.0 (1.28)

[22]

美国

2003~2012

2,010,398

前瞻性队列研究

PM10

eGFR < 60 mL/min/1.73m2的发病风险、慢性肾脏病的发病、eGFR下降30%或以上的发病风险、ESRD的发病

PM10: 20.45 (14.64~24.81)

[23]

韩国

2016~2018

15,983

横断面研究

PM10

PM2.5

CKD的患病率

PM10: 43.813 (4.107)

PM2.5: 24.693 (2.750)

[24]

美国

2003~2004

2,482,737

前瞻性队列研究

PM2.5

eGFR < 60 mL/min/1.73m2的发病风险、慢性肾脏病的发病、eGFR下降30%或以上的发病风险、ESRD的发病

PM2.5: 11.8 (10.1~13.7)

[27]

中国

2007~2010

47,204

横断面研究

PM2.5

CKD的患病率

PM2.5: 57.4 (15.6)

[28]

中国

2018~2019

199,635

横断面研究

PM10

PM2.5

PM1

CKD的患病率

PM10: 46.72 (5.29)

PM2.5: 28.21 (3.89)

PM1: 17.54 (3.62)

[30]

中国

2004~2014

71,151

肾活检病例研究

PM2.5

MN的发病

PM2.5: 52.6

[31]

中国

2012~2017

2,938,653

横断面研究

PM2.5

CKD的患病率

PM2.5: 78.67 (22.5)

[32]

中国

2018~2019

81,137

横断面研究

PM2.5

CKD的患病率

PM2.5: 35.33 (21.99)

[33]

中国

2009~2010

47,204

横断面研究

PM1

CKD的患病率

PM1: 45.8 (10.9)

[35]

中国

2018~2019

80,225

横断面研究

PM2.5

CKD的患病率

PM2.5: 40.7

[36]

中国

2014~2015

3622

横断面研究

PM10

PM2.5

CKD的患病率

PM10: 92.00

PM2.5: 61.22

[37]

PM2.5的高浓度与低浓度暴露均有可能诱发CKD,但其不同组分与CKD发病之间的具体关联尚不明确。近期,Zhang等[32]采用一种基于分位数的计算方法,评估了PM2.5中5种主要化学组分(黑碳、有机物、硝酸盐、硫酸盐和铵盐)对CKD患病率的联合效应。研究结果显示,硫酸根的指数权重值最高,为0.509 (95% CI: 0.477~0.541),表明其在CKD患病率增加的总体效应中贡献最大。然而,Dai等[33]基于逻辑回归模型的研究则发现,海盐和硝酸盐在增加CKD风险方面可能比其他组分具有更大的贡献。二者结论的不一致除了与研究方法有关,还可能受所用数据的影响。一方面是研究人群的不同。前者基于全国范围内的体检人群,样本量达到了2,938,653人。而后者则是基于中国多民族队列中的81,137名成年人数据。研究人群的地域、年龄和生活习惯等差异可能会对研究结果产生影响。另一方面则是PM2.5暴露数据的不同。二者所用数据集和估算方法存在差异,这可能导致所得暴露数据的分辨率和准确性不同,进而影响研究结论。

3.3. PM1

PM1有着较高的比表面积和沉积效率,因而具有较强的吸附和携带有害物质的能力,可能对人体产生严重影响[34]。近期,一项包含199,635名65岁以上老年人的横断面研究发现,PM1暴露量每增加10 μg/m3,eGFR水平下降0.9%,CKD患病率增加18%,蛋白尿发生率增加15% [30]。在另一项关于中国47,204名成年人的全国代表性横断面研究中,Chen等[35]结合多源环境空气污染反演数据,评估了PM1和CKD患病率之间的相关性。研究表明,在城市居民、老年人以及无糖尿病或高血压等共病的人群中,PM1与CKD之间的联系更为显著。此外,PM1与PM2.5的比值每上升1%,CKD患病率相应增加3%,提示PM1可能会在PM2.5与CKD的关系中起主导作用。

4. 大气PM致肾脏损伤的机制

大气PM通过呼吸系统进入人体后可直接作用于肺部,引发氧化应激等生物学行为。该过程中所产生的活性氧(Reactive Oxygen Species, ROS)等物质可进入血液循环。同时,超细颗粒物能够穿透肺泡上皮细胞,直接进入血液。而肾脏是一个供血丰富的器官,约20%的心脏血液输出会流经肾脏。因此,大气PM在诱发肾脏损伤方面所起到的作用不可忽视[38] [39]。深入探究其生物学机制,对降低CKD的发病率具有重要意义。

4.1. 氧化应激与炎症反应

ROS是一类具有高反应性的含氧化合物,在细胞内信号转导、代谢、免疫以及转录调控等过程中扮演着不可或缺的角色。然而,ROS的过量生成会引发氧化应激,促进慢性疾病的发生与发展。Huang等[40]采用2’,7’-二氯二氢荧光素二乙酸酯(2’,7’-Dichlorodi-hydrofluorescein Diacetate, DCFH-DA)作为细胞渗透性探针,对人肾近曲小管上皮细胞内ROS的产生进行测定。研究显示,随着PM2.5浓度的升高,DCFH-DA的荧光强度呈正相关增强,这表明PM2.5暴露导致ROS水平的剂量依赖性增加。此外,PM2.5还可削弱细胞的抗氧化系统,进而加剧氧化应激。Jin等[41]观察到在PM2.5暴露下的人类胚胎干细胞中,核转录因子红系2相关因子2 (nuclear factor erythroid-2-related factor 2, Nrf2)以及其下游基因的表达都受到了抑制,导致细胞的抗氧化能力降低。氧化应激还可激活炎症信号通路,导致内皮通透性增高和细胞结构破坏。Ge等[42]在PM2.5暴露的小鼠肾脏样本中观察到,炎症细胞因子的水平显著升高。这可能是通过激活肿瘤坏死因子-α (Tumor Necrosis Factor-α, TNF-α)转化酶/TNF-α受体和核因子κB (Nuclear Factor-kappa B, NF-κB)抑制蛋白α/NF-κB信号通路实现的。

4.2. 免疫反应

肾脏经常被针对肾脏自身抗原的致病性免疫反应所攻击,这可能与肾脏的过滤功能有关[43]。膜性肾病,作为自身免疫性肾脏疾病的典型代表,其病理特征主要表现为免疫复合物在肾小球基底膜上皮下的沉积。Xu等[31]指出,PM暴露与膜性肾病发病率的显著上升趋势存在关联。肾小球足细胞上的磷脂酶A2受体(Phospholipase A2 Receptor, PLA2R)是MN的主要自身抗原。近期,Zhang等[44]对PLA2R的T细胞表位展开研究,识别出半胱氨酸富含区1 (Cysteine-Rich 1, CysR1)等10条肽段为潜在T细胞抗原表位。Pfau等[45]在C57Bl/6小鼠中观察到PM暴露引发的肾脏病理变化,如免疫球蛋白G (Immunoglobulin G, IgG)免疫复合物在肾小球的沉积,提示免疫复合物的形成和沉积可能参与了肾脏损伤过程。

4.3. 细胞自噬与凋亡

细胞自噬是细胞内部的一种清理机制,有助于维持细胞内部环境的稳定。但自噬的过度激活可能引起细胞凋亡。Huang等[46]观察到PM2.5暴露导致大鼠肾小管上皮细胞严重水肿、毛细血管充血、肾小球尿腔缩小以及早期纤维化状态。研究者应用原位末端转移酶标记技术检测到较对照组更多的凋亡细胞,提示PM2.5暴露增加了肾脏细胞的凋亡率。而大鼠体内的微管相关蛋白1轻链3 (Microtubule-associated protein 1 light chain 3,简称LC3)-I到LC3-II的转化、P62蛋白和Beclin-1蛋白的激活,表明PM2.5暴露激活了细胞的自噬途径。此外,大气中PM的化学组分,如砷[47]、镉[48]、铅[49]、多环芳烃[50]等,也被证实能够诱导细胞自噬和凋亡的过程。

4.4. 血流动力学改变

PM2.5诱导的血流动力学改变,例如肾脏血流阻力的增加,可能会对肾脏的血液灌注产生不利影响。Aztatzi-Aguilar等[51]发现PM2.5暴露后小鼠体内出现血管紧张素/缓激肽系统失衡,这可能促进了血管收缩和血压升高,进而影响了肾脏的血流。现有研究表明,柴油排放颗粒的暴露对大鼠的肾脏血流量产生了显著影响[52]。这种暴露导致正常大鼠的肾脏血流量平均下降了约30%。而患有CKD大鼠的肾脏血流量受柴油颗粒暴露的影响更为严重,其肾脏血流量的下降幅度高达60%。值得注意的是,这种暴露对正常大鼠的血压并未产生明显影响,但可导致患有CKD大鼠的收缩压和舒张压显著升高。这些研究结果提示,血流量的减少和血压的升高可能在造成肾脏损伤的过程中发挥了协同作用。

5. 总结与展望

大量流行病学研究指出大气PM是CKD发生与发展的一个重要危险因素,尤其是在环境污染较为严重的发展中国家[20] [53]。本文对国内外近期的大型队列研究和横断面研究进行总结,介绍了大气PM暴露与CKD发病风险的相关性以及潜在的生物学机制。PM10、PM2.5和PM1均与CKD发病风险的增加有关,但它们在沉积部位、影响程度以及人群敏感性方面存在差异。PM1因其粒径较小,更易于穿透肺泡进入血液循环,对人体健康的潜在影响可能更为显著。现有研究对PM1和CKD相关性的讨论较少,仍需进一步关注。目前机制方面的研究主要集中于探讨PM中某些特定组分与氧化应激、炎症反应、免疫反应等基础生物学途径的关系,这些途径之间的协同效应值得进一步讨论。此外,关于PM中与CKD发病风险增加的具体成分及其作用机制的认识尚显不足,需要通过更深入的纵向研究和实验来阐明。综上所述,大气PM对肾脏的损伤不可忽视。制定合理的PM干预政策对于有效控制CKD的发病和进展具有重要意义。

基金项目

河北省卫生健康委医学科学研究课题计划(No. 20191706)。

NOTES

*通讯作者。

参考文献

[1] Bikbov, B., Purcell, C.A., Levey, A.S., Smith, M., Abdoli, A., Abebe, M., et al. (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
https://doi.org/10.1016/s0140-6736(20)30045-3
[2] Webster, A.C., Nagler, E.V., Morton, R.L. and Masson, P. (2017) Chronic Kidney Disease. The Lancet, 389, 1238-1252.
https://doi.org/10.1016/s0140-6736(16)32064-5
[3] Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L. and Perkovic, V. (2021) Chronic Kidney Disease. The Lancet, 398, 786-802.
https://doi.org/10.1016/s0140-6736(21)00519-5
[4] Naghavi, M., Ong, K.L., Aali, A., Ababneh, H.S., Abate, Y.H., Abbafati, C., et al. (2024) Global Burden of 288 Causes of Death and Life Expectancy Decomposition in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2100-2132.
https://doi.org/10.1016/s0140-6736(24)00367-2
[5] Foreman, K.J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., et al. (2018) Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016-40 for 195 Countries and Territories. The Lancet, 392, 2052-2090.
https://doi.org/10.1016/s0140-6736(18)31694-5
[6] Wang, L., Xu, X., Zhang, M., Hu, C., Zhang, X., Li, C., et al. (2023) Prevalence of Chronic Kidney Disease in China. JAMA Internal Medicine, 183, 298-310.
https://doi.org/10.1001/jamainternmed.2022.6817
[7] Aashima, Nanda, M., Sharma, R. and Jani, C. (2022) The Burden of Chronic Kidney Disease in Asia, 1990-2019: Examination of Estimates from Global Burden of Disease 2019 Study. Nephrology, 27, 610-620.
https://doi.org/10.1111/nep.14051
[8] Xie, Y., Bowe, B., Mokdad, A.H., Xian, H., Yan, Y., Li, T., et al. (2018) Analysis of the Global Burden of Disease Study Highlights the Global, Regional, and National Trends of Chronic Kidney Disease Epidemiology from 1990 to 2016. Kidney International, 94, 567-581.
https://doi.org/10.1016/j.kint.2018.04.011
[9] Bragg-Gresham, J., Morgenstern, H., McClellan, W., Saydah, S., Pavkov, M., Williams, D., et al. (2018) County-Level Air Quality and the Prevalence of Diagnosed Chronic Kidney Dis-ease in the US Medicare Population. PLOS ONE, 13, e0200612.
https://doi.org/10.1371/journal.pone.0200612
[10] Bowe, B., Artimovich, E., Xie, Y., Yan, Y., Cai, M. and Al-Aly, Z. (2020) The Global and National Burden of Chronic Kidney Disease Attributable to Ambient Fine Particulate Matter Air Pollution: A Modelling Study. BMJ Global Health, 5, e002063.
https://doi.org/10.1136/bmjgh-2019-002063
[11] Hoek, G., Krishnan, R.M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., et al. (2013) Long-Term Air Pollution Exposure and Cardio- Respiratory Mortality: A Review. Envi-ronmental Health, 12, Article No. 43.
https://doi.org/10.1186/1476-069x-12-43
[12] Hu, F. and Guo, Y. (2020) Health Impacts of Air Pollution in China. Frontiers of Environmental Science & Engineering, 15, Article No. 74.
https://doi.org/10.1007/s11783-020-1367-1
[13] Ye, Z., Li, X., Han, Y., Wu, Y. and Fang, Y. (2022) Association of Long-Term Exposure to PM2.5 with Hypertension and Diabetes among the Middle-Aged and Elderly People in Chi-nese Mainland: A Spatial Study. BMC Public Health, 22, Article No. 569.
https://doi.org/10.1186/s12889-022-12984-6
[14] 张文晓, 肖纯凌. PM2.5对呼吸系统的影响及其作用机制的研究[J]. 中国微生态学杂志, 2021, 33(11): 1340-1344, 1349.
[15] 赵宗慈, 罗勇, 黄建斌. 大气颗粒物与全球变暖[J]. 气候变化研究进展, 2022, 18(6): 791-794.
[16] 田元睿, 俞浩, 赵小兰, 等. 大气颗粒物(PM2.5和PM10)污染与泰州市居民死亡的关系分析[J]. 现代预防医学, 2023, 50(2): 245-249, 271.
[17] Health Effects Institute (2024) State of Global Air Report 2024.
[18] Zhang, L. and Yao, M. (2024) Ambient Particle Composition and Toxicity in 31 Major Cities in China. Fundamental Research, 4, 505-515.
https://doi.org/10.1016/j.fmre.2022.10.004
[19] Wathanavasin, W., Banjongjit, A., Phannajit, J., Eiam-Ong, S. and Susantitaphong, P. (2024) Association of Fine Particulate Matter (PM2.5) Exposure and Chronic Kidney Disease Outcomes: A Systematic Review and Meta-Analysis. Scientific Reports, 14, Article No. 1048.
https://doi.org/10.1038/s41598-024-51554-1
[20] Suriyong, P., Ruengorn, C., Shayakul, C., Anantachoti, P. and Kanjanarat, P. (2022) Prevalence of Chronic Kidney Disease Stages 3 - 5 in Low- and Mid-dle-Income Countries in Asia: A Systematic Review and Meta-Analysis. PLOS ONE, 17, e0264393.
https://doi.org/10.1371/journal.pone.0264393
[21] Chen, C., Warrington, J.A., Dominici, F., Peng, R.D., Esty, D.C., Bobb, J.F., et al. (2021) Temporal Variation in Association between Short-Term Exposure to Fine Particulate Mat-ter and Hospitalisations in Older Adults in the USA: A Long-Term Time-Series Analysis of the US Medicare Dataset. The Lancet Planetary Health, 5, e534-e541.
https://doi.org/10.1016/s2542-5196(21)00168-6
[22] Wang, J., Li, D., Sun, Y. and Tian, Y. (2022) Air Pollutants, Genetic Factors, and Risk of Chronic Kidney Disease: Findings from the UK Biobank. Ecotoxicology and Environmental Safety, 247, Article ID: 114219.
https://doi.org/10.1016/j.ecoenv.2022.114219
[23] Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H. and Al-Aly, Z. (2017) Associations of Ambient Coarse Particulate Matter, Nitrogen Dioxide, and Carbon Monoxide with the Risk of Kidney Disease: A Cohort Study. The Lancet Planetary Health, 1, e267-e276.
https://doi.org/10.1016/s2542-5196(17)30117-1
[24] Oh, J., Ye, S., Kang, D. and Ha, E. (2022) Association be-tween Exposure to Fine Particulate Matter and Kidney Function: Results from the Korea National Health and Nutrition Examination Survey. Environmental Research, 212, Article ID: 113080.
https://doi.org/10.1016/j.envres.2022.113080
[25] Yang, Y., Chen, Y., Chen, S. and Chan, C. (2017) Associations between Long-Term Particulate Matter Exposure and Adult Renal Function in the Taipei Metropolis. Environmental Health Perspectives, 125, 602-607.
https://doi.org/10.1289/ehp302
[26] Xing, Y.F., Xu, Y.H., Shi, M.H., et al. (2016) The Impact of PM2.5 on the Human Respiratory System. Journal of Thoracic Disease, 8, E69-E74.
[27] Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H. and Al-Aly, Z. (2017) Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. Journal of the American Society of Nephrology, 29, 218-230.
https://doi.org/10.1681/asn.2017030253
[28] Li, G., Huang, J., Wang, J., Zhao, M., Liu, Y., Guo, X., et al. (2020) Long-term Exposure to Ambient PM2.5 and Increased Risk of CKD Prevalence in China. Journal of the American Soci-ety of Nephrology, 32, 448-458.
https://doi.org/10.1681/asn.2020040517
[29] Chan, T., Zhang, Z., Lin, B., Lin, C., Deng, H., Chuang, Y.C., et al. (2018) Long-term Exposure to Ambient Fine Particulate Matter and Chronic Kidney Disease: A Cohort Study. Environ-mental Health Perspectives, 126, Article ID: 107002.
https://doi.org/10.1289/ehp3304
[30] Li, Y., Yuan, X., Wei, J., Sun, Y., Ni, W., Zhang, H., et al. (2023) Long-term Exposure to Ambient Particulate Matter and Kidney Function in Older Adults. Atmospheric Environment, 295, Article ID: 119535.
https://doi.org/10.1016/j.atmosenv.2022.119535
[31] Xu, X., Wang, G., Chen, N., Lu, T., Nie, S., Xu, G., et al. (2016) Long-term Exposure to Air Pollution and Increased Risk of Membranous Nephropathy in China. Journal of the American Society of Nephrology, 27, 3739-3746.
https://doi.org/10.1681/asn.2016010093
[32] Zhang, X., Tao, J., Lei, F., Sun, T., Lin, L., Huang, X., et al. (2023) Association of the Components of Ambient Fine Particulate Matter (PM2.5) and Chronic Kidney Disease Prevalence in China. Journal of Environmental Management, 339, Article 117885.
https://doi.org/10.1016/j.jenvman.2023.117885
[33] Dai, Y., Yin, J., Li, S., Li, J., Han, X., Deji, Q., et al. (2024) Long-Term Exposure to Fine Particulate Matter Constituents in Relation to Chronic Kidney Disease: Evidence from a Large Population-Based Study in China. Environmental Geochemistry and Health, 46, Article No. 174.
https://doi.org/10.1007/s10653-024-01949-w
[34] Jiang, J., Wei, Y., Wang, Y., Wang, X., Lin, X., Guo, T., et al. (2024) The Impact of Long-Term PM1 Exposure on All-Cause Mortality and Its Interaction with BMI: A Nationwide Prospective Cohort Study in China. Science of The Total Environment, 912, Article ID: 168997.
https://doi.org/10.1016/j.scitotenv.2023.168997
[35] Chen, R., Yang, C., Guo, Y., Chen, G., Li, S., Li, P., et al. (2024) Association between Ambient PM1 and the Prevalence of Chronic Kidney Disease in China: A Nationwide Study. Journal of Hazardous Materials, 468, Article ID: 133827.
https://doi.org/10.1016/j.jhazmat.2024.133827
[36] Li, S., Meng, Q., Laba, C., Guan, H., Wang, Z., Pan, Y., et al. (2022) Associations between Long-Term Exposure to Ambient Air Pollution and Renal Function in Southwest China: The China Multi-Ethnic Cohort (CMEC) Study. Ecotoxicology and Environmental Safety, 242, Article ID: 113851.
https://doi.org/10.1016/j.ecoenv.2022.113851
[37] Wang, W., Wu, C., Mu, Z., Gu, Y., Zheng, Y., Ren, L., et al. (2020) Effect of Ambient Air Pollution Exposure on Renal Dysfunction among Hospitalized Patients in Shanghai, China. Public Health, 181, 196-201.
https://doi.org/10.1016/j.puhe.2020.01.001
[38] 陈睿, 楚红, 李鹏飞, 等. 大气颗粒物对慢性肾脏病影响的研究进展[J]. 生物医学转化, 2022, 3(2): 2-8.
[39] 卢梦秋, 黄志军, 易斌. PM2.5对肾脏疾病发生发展的影响及其机制研究进展[J]. 环境与职业医学, 2023, 40(6): 711-715.
[40] Huang, X., Shi, X., Zhou, J., Li, S., Zhang, L., Zhao, H., et al. (2020) The Activation of Antioxidant and Apoptosis Pathways Involved in Damage of Human Proximal Tubule Epithelial Cells by PM2.5 Exposure. Environmental Sciences Europe, 32, Article No. 2.
https://doi.org/10.1186/s12302-019-0284-z
[41] Jin, L., Ni, J., Tao, Y., Weng, X., Zhu, Y., Yan, J., et al. (2019) N-Acetylcysteine Attenuates PM2.5-Induced Apoptosis by Ros-Mediated Nrf2 Pathway in Human Embryonic Stem Cells. Science of the Total Environment, 666, 713-720.
https://doi.org/10.1016/j.scitotenv.2019.02.307
[42] Chenxu, G., Minxuan, X., Yuting, Q., Tingting, G., Jinxiao, L., Mingxing, W., et al. (2018) iRhom2 Loss Alleviates Renal Injury in Long-Term PM2.5-Exposed Mice by Suppression of Inflammation and Oxidative Stress. Redox Biology, 19, 147-157.
https://doi.org/10.1016/j.redox.2018.08.009
[43] Kurts, C., Panzer, U., Anders, H. and Rees, A.J. (2013) The Im-mune System and Kidney Disease: Basic Concepts and Clinical Implications. Nature Reviews Immunology, 13, 738-753.
https://doi.org/10.1038/nri3523
[44] Zhang, X., Lin, C., Cui, Z., Gu, Q., Yan, B., Liu, L., et al. (2023) Mapping the T Cell Epitopes of the M-Type Transmembrane Phospholipase A2 Receptor in Primary Membranous Nephropathy. Kid-ney International, 103, 580-592.
https://doi.org/10.1016/j.kint.2022.11.021
[45] Pfau, J.C., Sentissi, J.J., Li, S., Calderon-Garcidueñas, L., Brown, J.M. and Blake, D.J. (2008) Asbestos-Induced Autoimmunity in C57Bl/6 Mice. Journal of Immunotoxicology, 5, 129-137.
https://doi.org/10.1080/15476910802085756
[46] Huang, X., Zhou, Z., Liu, X., Li, J. and Zhang, L. (2020) PM2.5 Exposure Induced Renal Injury via the Activation of the Autophagic Pathway in the Rat and HK-2 Cell. Environmental Sciences Europe, 32, Article No. 97.
https://doi.org/10.1186/s12302-020-00378-7
[47] Ji, P., Li, Z., Wang, H., Dong, J., Li, X. and Yi, H. (2019) Arse-nic and Sulfur Dioxide Co-Exposure Induce Renal Injury via Activation of the NF-κB and Caspase Signaling Pathway. Chemosphere, 224, 280-288.
https://doi.org/10.1016/j.chemosphere.2019.02.111
[48] Lee, W., Probst, S., Santoyo-Sánchez, M.P., Al-Hamdani, W., Diebels, I., von Sivers, J., et al. (2017) Initial Autophagic Protection Switches to Disruption of Autophagic Flux by Lysosomal Instability during Cadmium Stress Accrual in Renal NRK-52E Cells. Archives of Toxicology, 91, 3225-3245.
https://doi.org/10.1007/s00204-017-1942-9
[49] Jiang, N., Wen, H., Zhou, M., Lei, T., Shen, J., Zhang, D., et al. (2020) Low-Dose Combined Exposure of Carboxylated Black Carbon and Heavy Metal Lead Induced Potentiation of Oxidative Stress, DNA Damage, Inflammation, and Apoptosis in BEAS-2B Cells. Ecotoxicology and Environmental Safety, 206, Article ID: 111388.
https://doi.org/10.1016/j.ecoenv.2020.111388
[50] Zhang, Y., Liu, D. and Liu, Z. (2020) The Ben-zo[b]Fluoranthene in the Atmospheric Fine Particulate Matter Induces Mouse Glomerular Podocytes Injury via Inhibition of Autophagy. Ecotoxicology and Environmental Safety, 195, Article ID: 110403.
https://doi.org/10.1016/j.ecoenv.2020.110403
[51] Aztatzi-Aguilar, O.G., Pardo-Osorio, G.A., Uribe-Ramírez, M., Narváez-Morales, J., De Vizcaya-Ruiz, A. and Barbier, O.C. (2021) Acute Kidney Damage by PM2.5 Exposure in a Rat Model. Environmental Toxicology and Pharmacology, 83, Article ID: 103587.
https://doi.org/10.1016/j.etap.2021.103587
[52] Al Suleimani, Y.M., Al Mahruqi, A.S., Al Za’abi, M., Shalaby, A., Ashique, M., Nemmar, A., et al. (2016) Effect of Diesel Exhaust Particles on Renal Vascular Responses in Rats with Chronic Kidney Disease. Environmental Toxicology, 32, 541-549.
https://doi.org/10.1002/tox.22258
[53] Stanifer, J.W., Muiru, A., Jafar, T.H. and Patel, U.D. (2016) Chronic Kidney Disease in Low- and Middle-Income Countries. Nephrology Dialysis Transplantation, 31, 868-874.
https://doi.org/10.1093/ndt/gfv466