SGLT-2抑制剂在治疗糖尿病肾脏病中的研究进展
Advances in SGLT-2 Inhibitors in the Treatment of Diabetic Nephropathy
DOI: 10.12677/acm.2025.151119, PDF, HTML, XML,   
作者: 邹 维, 姜英松*:重庆医科大学,重庆;重庆市人民医院肾内科,重庆
关键词: 糖尿病肾病钠–葡萄糖协同转运蛋白2抑制剂Diabetic Nephropathy Sodium-Glucose Cotransporter Protein 2 Inhibitors
摘要: 糖尿病肾脏病是糖尿病患者常见的并发症之一,也是导致终末期肾病的主要原因。目前研究已发现多种糖尿病肾脏病的发病机制,包括血流动力学改变、炎症反应、氧化应激和线粒体功能障碍等。钠–葡萄糖协同转运蛋白2抑制剂(SGLT-2抑制剂)是一类新型降糖药,其作用机制是通过抑制肾脏近端小管细胞钠–葡萄糖协同转运蛋白2 (sodium-glucose transporter 2, SGLT-2)的表达,并选择性与其结合,从而减少葡萄糖的重吸收,促使尿糖排出,达到降血糖的效果。目前,SGLT-2抑制剂广泛用于2型糖尿病(T2DM)患者的治疗。随着研究的不断深入,SGLT-2抑制剂在治疗糖尿病肾脏病患者方面也显示出显著的临床效益,并已成为该类疾病治疗的一线用药。
Abstract: Diabetic nephropathy is one of the common complications in patients with diabetes mellitus and a major cause of end-stage renal disease. Current research has identified multiple pathogenic mechanisms of diabetic nephropathy, including hemodynamic alterations, inflammatory responses, oxidative stress, and mitochondrial dysfunction. Sodium-glucose transporter 2 inhibitors (SGLT-2 inhibitors) are a new class of antihyperglycemic drugs, whose mechanism of action is to inhibit the expression of sodium-glucose transporter 2 (SGLT-2) in renal proximal tubular cells and selectively bind to it, thereby reducing glucose reabsorption and inducing the excretion of urinary glucose to lower blood glucose. Currently, SGLT-2 inhibitors are widely used in the treatment of patients with type 2 diabetes mellitus (T2DM). With the deepening of research, SGLT-2 inhibitors have also shown significant clinical benefits in the treatment of patients with diabetic nephropathy and have become the first-line drug in the treatment of this type of disease.
文章引用:邹维, 姜英松. SGLT-2抑制剂在治疗糖尿病肾脏病中的研究进展[J]. 临床医学进展, 2025, 15(1): 886-893. https://doi.org/10.12677/acm.2025.151119

1. 引言

糖尿病肾脏病(diabetic kidney disease, DKD)是由长期慢性高血糖所致的肾脏损害,是糖尿病患者常见的终末期并发症之一。该病可累及整个肾脏(包括肾小球、肾小管、肾间质等),主要表现为尿白蛋白/肌酐比值(UACR) ≥ 30 mg/g和(或)估算(eGFR) < 60 mL·min·(1.73 m),且持续时间 > 3个月[1]。临床特征包括持续性蛋白尿和/或eGFR进行性下降,最终可进展为终末期肾病。其结构特征是肾小球基底膜增厚,进而引起足细胞、肾小球和肾小管损伤,最终导致肾小球硬化及肾小管间质纤维化[2]。根据最新数据,我国目前大约有1.25亿糖尿病患者,且糖尿病发病率呈逐年上升趋势[3]。流行病学研究表明,大约30%~40%的糖尿病患者会进展为糖尿病肾脏病,当前我国糖尿病肾病患者高达3000多万[4]。糖尿病肾脏病患者晚期通常需要依赖肾脏移植或透析治疗,且伴随心血管并发症的发生率和死亡率显著增加,给患者带来沉重的经济负担。钠–葡萄糖协同转运蛋白2 (sodium-glucose cotransporter 2, SGLT-2)是一种主要在肾脏近曲小管表达的蛋白质,参与肾小管对葡萄糖的重吸收[5]。SGLT-2抑制剂是一类用于治疗2型糖尿病患者的降糖药物,其主要作用是作用于肾小管上SGLT2受体,减少对葡萄糖及Na+的重吸收,从而降低血糖水平。临床研究表明,SGLT-2不仅对降血糖有显著作用,还对肾脏和心血管系统产生积极影响,目前已成为治疗糖尿病肾病的一线用药。目前上市的SGLT-2抑制剂包括达格列净、卡格列净、恩格列净等。为了延缓DKD的进展并提高治疗效果,进一步探讨DKD的发病机制至关重要。本文将回顾目前已知的发病机制,并探讨相关治疗策略,为未来临床治疗提供新的思路和方向。

2. 机制及治疗

2.1. 高血糖

高血糖引起的葡萄糖代谢紊乱是糖尿病患者发生肾脏病变的基础因素。机体长期慢性高血糖状态会激活多种细胞内信号通路和生物途径过程,包括多元醇途径、晚期糖基化终末产物(AGEs)的形成、蛋白激酶C途径激活等多种机制。多元醇途径是糖代谢途径之一,广泛存在心脏、肾脏、血管的组织中,醛糖还原酶是其限速酶。高糖环境下,醛糖还原酶活性增高,导致葡萄糖会大量转化为山梨醇,同时消耗大量的NADPH,过多的山梨醇在细胞内蓄积,增加了细胞内渗透压,进而引起细胞水肿、缺氧,最终加速肾小球硬化及肾小管纤维化进程[6]。糖基化终末产物(AGEs)是葡萄糖与大分子物质(如蛋白质、氨基酸)在高糖环境下发生不可逆结合所形成的产物。肾脏是清除AGEs的主要器官,因此这些产物会沉积在肾小球毛细血管表面,诱导肾小球细胞功能障碍。此外,AGEs还会与肾脏细胞表面的糖基化终末产物受体(receptor for advanced glycation end-products, RAGE)结合进一步加重肾损害[7]。蛋白激酶C系统(protein kinase C, PKC)在细胞的增殖、分化和凋亡过程中起着重要作用。高血糖状态下,二酯酰甘油(DAG)的生成增加,进而过度激活PKC通路,导致内皮功能障碍和内皮硬化[8]

肾脏对葡萄糖的重吸收与SGLT2密切相关,阻断SGLT2可以减少葡萄糖的重吸收从而降低血糖,且这一作用不依赖于胰岛素。SGLT2抑制剂通过直接作用SGLT2受体,抑制近端小管对尿糖的重吸收,增加尿糖排泄,进而有效降低血糖[9],且不易引起低血糖反应。此外,SGLT2抑制剂还可以持续降低糖化血红蛋白(HbA1c)水平[10],并改善肾脏组织的糖毒性。在一项对T2DM患者临床研究中发现,患者在应用恩格列净治疗后,空腹血糖、餐后血糖及糖化血红蛋白均有明显下降[11]

2.2. 血流动力学改变

长期高血糖可导致肾小球高灌注、高滤过和高血压,血流动力学的改变主要与入球小动脉扩张有关,这一过程是多种机制共同作用的结果。其中,多种血管活性介质在这一过程中发挥作用,包括一氧化氮(NO)、前列腺素E2 (PGE2)、前列环素I2 (PGI2)、胰高血糖素、胰岛素生长因子(IGF-I)、血管内皮生长因子(VEGF)、内皮素1 (ET-1)等,这些介质共同导致入球小动脉扩张,从而引起肾小球高滤过[12]。此外,肾素–血管紧张素–醛固酮系统(RAAS)激活也与肾脏血流动力学的改变密切有关。RASS系统的激活促进血管紧张素II (Ang II)的产生,Ang II与血管炎性介质共同作用,能够使入球小动脉扩张,出球小动脉收缩,从而降低两端的阻力比,导致肾小球毛细血管高灌注、高滤过、高血压,进而引起肾动脉硬化、蛋白尿增加,并最终导致肾功能不全[13]。还有研究发现,球管反馈失衡也与肾脏血流动力学的改变相关。当血糖控制不佳时,尿糖增加超过肾糖阈,肾小管重吸收葡萄糖增多,导致近端小管上皮细胞通过Na+–葡萄糖耦联机制增加Na+的重吸收,进而减少流经远端小管致密斑的Na+浓度,致密斑反馈引起入球小动脉扩张、出球小动脉收缩,与RASS系统共同作用,导致肾小球高灌注及高滤过[14]。近年来的研究还发现,近端小管中的钠氢交换蛋白(sodium-hydrogen exchanger isoform 3, NHE3)也可能与肾脏血流动力学的改变有关。NHE3在肾脏近端小管表达,参与Na+重吸收过程。在高糖状态下,NHE3表达增加,导致Na+的重吸收增加,这也可通过球管反馈机制改变肾血流[15]

高滤过是肾脏血流动力学改变的典型特征,其发生与Na+的重吸收密切有关。SGLT2抑制剂作用于近端小管表面的SGLT2受体,减少近端小管对Na+的重吸收,从而使流经远端小管致密斑的Na+浓度增加,致密斑通过球管反馈机制引发入球小动脉收缩、出球小动脉舒张,降低血管内压并减少滤过,进而减轻肾脏高灌注、高滤过状态[16]。研究表明,达格列净可舒张出球小动脉,改善肾脏高滤过[17]。另外,有临床研究表明,恩格列净能改善肾脏高灌注、高滤过状态[18]

2.3. 氧化应激、炎症

氧化应激会加剧线粒体损伤,特别是在长期高糖环境下,体内活性氧(reactive oxygen species, ROS)的生成增多。当超过机体代谢能力时,氧化系统与抗氧化系统之间的平衡被打破,从而引发组织和细胞损伤[19]。ROS主要来源于线粒体和内质网,并通过多种途径在体内产生,包括多元醇通路、ACEs产物介导的途径、PKC途径激活等。ROS的大量积累会导致足细胞损伤、血管通透性增加、细胞外基质降解减少等问题。此外,ROS还可损伤细胞内的多种大分子物质,如脂质、蛋白质和DNA等,这些生物损伤可加速肾小球硬化及肾小管纤维化的进程[20]。炎症是由多种机制引发的结果,涉及PKC途径、AGEs途径、多元醇途径和ROS途径等[21]。在这一过程中,除了巨噬细胞、肥大细胞、淋巴细胞外,还包括多种炎性因子,如C反应蛋白、白细胞介素1/6/8和肿瘤坏死因子等。炎性因子的释放可直接作用于肾脏毛细血管,导致血管损伤和通透性改变:同时,炎性因子也促使巨噬细胞浸润到肾脏组织中[22]。在炎症反应中,巨噬细胞起着核心作用,主要负责调节组织修复、再生和纤维化。巨噬细胞的积累与肾脏疾病的组织学严重程度密切相关[23]。巨噬细胞分为MI和MII两种,MI巨噬细胞主要参与炎性因子释放和组织损伤,而MII巨噬细胞主要参与抗炎及纤维化过程[24]。随着病情进展,MI巨噬细胞逐渐占主导地位,促进肾脏纤维化的进一步发展。巨噬细胞的浸润和活化会产生多种细胞因子,包括转化生长因子-β (TGF-β)、血管内皮生长因子(VEGF)、结缔组织生长因子(CTGF)、肿瘤坏死因子(TNF-α)、血小板源生长因子(PDGF)等。多种细胞因子的释放可激活多种炎症通路直接导致肾损伤,表现为血管内皮细胞损伤、基膜增厚、肾间质纤维化,最终引发肾脏功能进行性损害[25]

炎症和氧化应激是DKD进展的关键因素之一。研究表明,使用SGLT2抑制剂可以减少体内的循环炎症标志物,并激活MII型巨噬细胞,从而发挥抗炎作用。此外,SGLT2抑制剂还可以通过促进原纤维化标志物和TGF-β表达,改善小管及间质纤维化进程[26]。此外,还能通过减少ROS的生成,改善线粒体应激损伤,从而减轻氧化应激对肾血管和细胞的损伤。

2.4. 缺氧

肾内缺氧是糖尿病肾病(DKD)发展和进展的机制之一。研究表明,缺氧可发生在糖尿病早期,甚至在肾脏损伤和蛋白尿出现之前[27]。在高糖状态下,肾脏由于肾小管重吸收钠离子增多,导致氧耗量增加,从而引发肾脏缺氧。肾缺氧状态会激活多种缺氧适应机制,其中缺氧诱导因子(hypoxia inducible factor, HIF)在这一过程中发挥着重要作用。HIF是一种转录因子,主要作用是维持细胞的氧稳态。HIF由αβ两种亚基构成,其中的HIF-1α和HIF-2α亚型在缺氧机制中起主要作用。HIF-1α在缺氧下会促进毛细血管生成,同时还会促使炎症反应发生和肾脏纤维化的进展[28]。而HIF-2α的主要作用促进促红细胞生成素的合成[29]。糖尿病肾病的特点是,HIF-1α的激活增加,而HIF-2α的激活则受到抑制。HIF-1α和HIF-2α的激活失衡,进一步促进了糖尿病肾损伤的炎症和纤维化反应[30]。肾缺氧在联合氧化和内质网应激的联合作用下,会导致肾小球和肾小管功能障碍,并可引起促红细胞生成素水平的下降。

缺氧是DKD进展的一个重要因素之一,随着肾小管对Na+的重吸收的增加,氧气的消耗量也会随之增多,从而导致肾脏缺氧。SGLT2抑制剂通过直接作用于SGLT2受体,减少Na+重吸收,从而降低氧耗,缓解肾脏缺氧。此外,SGLT2抑制剂可可以抑制HIF-1的活性,并激活HIF-2,从而改善HIF因子之间失衡,进一步缓解缺氧状态。同时,SGLT2抑制剂还可以促进促红细胞生成素(EPO)的分泌,增加红细胞数量改善缺氧[31]。研究显示,经恩格列净治疗后,观察组EPO水平显著升高[32]。另外,达格列净亦被证明可增加T2DM患者EPO水平[33]

2.5. 脂代谢紊乱

糖尿病患者通常伴有脂代谢异常。在长期高糖环境下,机体会出现胰岛素抵抗(IR)。在胰岛素抵抗状态下,脂肪组织的脂肪动员增强,导致大量的游离脂肪酸(FFAs)产生,最终导致甘油三酯(TG)、极低密度脂蛋白胆固醇(VLDL-C)和低密度脂蛋白胆固醇(LDL-C)水平升高,同时高密度脂蛋白胆固醇(HDL-C)水平降低[34]。过多的游离脂肪酸及脂质会沉积在足细胞、肾小球系膜细胞和近端小管上皮细胞等非脂肪细胞中,从而加重胰岛素抵抗,导致足细胞损伤、系膜细胞增殖和小管间质损害,进而损害肾功能。足细胞对脂肪毒素十分敏感,足细胞损伤会出现脂质空泡化、足细胞密度降低及足突消失等表现,这些表现是糖尿病肾病特征性表现,这些变化促进了尿蛋白的增加[35]。此外,过多的脂质还可通过刺激活性氧(ROS)和细胞因子的产生,进一步加重肾脏纤维化。

SGLT2抑制剂可改善胰岛素抵抗,并可通过增加总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)水平,减少甘油三酯(TG)含量来改善脂肪代谢异常[36]。研究表明,达格列净能明显升高T2DM患者的高密度脂蛋白胆固醇水平,轻微升高胆固醇和低密度脂蛋白胆固醇水平,并降低甘油三酯水平[37]。另外,SGLT2抑制剂还可以减缓肾脏脂质沉积,减轻内质网应激,从而改善肾脏纤维化进程。

2.6. 自噬

自噬是一种广泛存在体内各种细胞中的损伤修复机制,通过溶酶体降解细胞器、蛋白质等细胞成分,从而维持内环境稳定[38]。研究认为,自噬机制与mTOR/AMPK途径、SIRT1-FOXO1通路、mTOR/PI3K通路、AKT磷酸化、SIRT1途径等的激活密切相关,并且肾脏周围血管的自噬水平在糖尿病肾病进展起着重要作用[39]。在血糖正常情况下,自噬机制可以保护足细胞和系膜细胞的完整性。然而,当体内处于高糖状态时,自噬机制会失调,导致自噬活性受到抑制,清除受损细胞成分的功能减弱,从而引起足细胞凋亡增多、系膜细胞异常增生和肥大、肾小管内皮细胞损伤,最终出现蛋白尿[40]

DKD的进展与足细胞、系膜细胞、肾小管细胞等肾脏细胞的自噬机制失衡密切相关。高糖状态下,自噬机制受到抑制。应用SGLT2抑制剂后,可通过改善AMPK途径、SIRT1途径,增强mTOR活性等方式,促进细胞自噬活动,进而修复及清除受损细胞[41]

3. SGLT-2抑制剂其他治疗作用

3.1. 减少尿蛋白

蛋白尿是肾脏损伤的典型表现,蛋白尿的程度可以反映肾脏纤维化和肾小管硬化的严重程度。研究表明,SGLT2抑制剂在减少尿蛋白上具有显著作用。SGLT2抑制剂可抑制RASS系统,恢复肾小球-肾小管反馈功能,从而减轻肾小球超滤状态,进而减少尿蛋白的排泄[42]。另外,一些研究还发现,SGLT2抑制剂通过减轻足细胞损伤和肾小管硬化,进一步减少尿蛋白[43]。研究观察到,经达格列净治疗2型糖尿病伴肾损伤的患者,与观察组相比,蛋白尿水平降至轻度的患者比例更高,而发展成大量蛋白尿的患者比例更低[44]

3.2. 降低血压

高血压是糖尿病常见的合并症,同时也是糖尿病肾病(DKD)进展的危险因素。目前主流观点认为,SGLT2抑制剂降低血压的机制与减少Na+与葡萄糖的重吸收有关,通过葡萄糖渗透性利尿和利钠的作用,减少血容量,从而降低血压。同时,SGLT2抑制剂的降压作用可能还与RASS系统相关[45]。此外,也有学者认为降压作用也与抑制交感神经活性有关,但目前研究较少[46]

3.3. 降尿酸

高尿酸血症是糖尿病肾病(DKD)的危险因素之一,也是反映肾脏损伤的一个重要指标。SGLT2抑制剂可通过作用肾小管细胞上的尿酸-葡萄糖转运蛋白,减少葡萄糖的重吸收,同时减少尿酸的重吸收,从而促进尿酸的排泄,最终降低血尿酸水平。Meta分析表明,任何SGLT2抑制剂都能显著降低血清尿酸水平,其中恩格列净降低血清尿酸的效果更显著[47]

3.4. 心血管保护

心血管事件是糖尿病常见且严重的并发症之一,也是糖尿病患者死亡的主要原因之一。国外研究表明,2型糖尿病患者应用SGLT2抑制剂后可降低心血管风险,目前认为其主要机制可能与以下因素相关:利尿/利钠作用、降压、改善心脏能量代谢、抑制交感神经系统、预防不良心脏重塑、减少缺血/再灌注损伤、抑制SGLT 1等[48]。DAPA- HF试验结果显示,标准治疗联合使用达格列净可有效降低射血分数降低的心力衰竭患者的心血管死亡风险和心力衰竭恶化风险[49]

4. 小结

SGLT2抑制剂作为一种口服降糖药,在糖尿病肾脏病的管理和治疗中显示出良好的疗效。除了显著降低血糖外,还具有显著的肾脏保护作用,可改善糖尿病肾病患者的预后。随着近期研究的不断深入,发现SGLT2抑制剂对心血管系统的保护作用也非常显著,且能降低心血管并发症的风险。因此,SGLT2抑制剂的应用为糖尿病肾病患者带来更多的获益。但SGLT2抑制剂治疗糖尿病肾病的机制复杂,潜在机制和相关研究仍需进一步开展。相信随着对其研究的持续进展,未来能为更多的DKD患者带来治疗选择和潜在获益。

NOTES

*通讯作者。

参考文献

[1] ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2022) Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care, 46, S191-S202.
https://doi.org/10.2337/dc23-s011
[2] 中华医学会糖尿病学分会, 国家基本公共卫生服务项目基层糖尿病防治管理办公室. 国家基层糖尿病肾脏病防治技术指南(2023) [J]. 中华内科杂志, 2023, 62(12): 1394-1405.
[3] 中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521.
[4] Pan, X., Lin, X., Huang, X., Xu, J., Ye, L., Zhang, T., et al. (2022) The Burden of Diabetes-Related Chronic Kidney Disease in China from 1990 to 2019. Frontiers in Endocrinology, 13, Article 892860.
https://doi.org/10.3389/fendo.2022.892860
[5] Alicic, R.Z., Neumiller, J.J., Johnson, E.J., Dieter, B. and Tuttle, K.R. (2019) Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes, 68, 248-257.
https://doi.org/10.2337/dbi18-0007
[6] Tiwari, A., Kumar, D., Sweeya, P.R., Chauhan, H., Lavanya, V., Sireesha, K., et al. (2014) Vegetables’ Juice Influences Polyol Pathway by Multiple Mechanisms in Favour of Reducing Development of Oxidative Stress and Resultant Diabetic Complications. Pharmacognosy Magazine, 10, 383-391.
https://doi.org/10.4103/0973-1296.133290
[7] Yamagishi, S., Matsui, T. and Fukami, K. (2015) Role of Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Cancer Risk. Rejuvenation Research, 18, 48-56.
https://doi.org/10.1089/rej.2014.1625
[8] Yin, W., Jiang, Y., Xu, S., Wang, Z., Peng, L., Fang, Q., et al. (2018) Protein Kinase C and Protein Kinase a Are Involved in the Protection of Recombinant Human Glucagon-Like Peptide-1 on Glomeruli and Tubules in Diabetic Rats. Journal of Diabetes Investigation, 10, 613-625.
https://doi.org/10.1111/jdi.12956
[9] DeFronzo, R.A., Hompesch, M., Kasichayanula, S., Liu, X., Hong, Y., Pfister, M., et al. (2013) Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects with Type 2 Diabetes. Diabetes Care, 36, 3169-3176.
https://doi.org/10.2337/dc13-0387
[10] Del Prato, S., Nauck, M., Durán-Garcia, S., Maffei, L., Rohwedder, K., Theuerkauf, A., et al. (2015) Long-Term Glycaemic Response and Tolerability of Dapagliflozin versus a Sulphonylurea as Add-On Therapy to Metformin in Patients with Type 2 Diabetes: 4-Year Data. Diabetes, Obesity and Metabolism, 17, 581-590.
https://doi.org/10.1111/dom.12459
[11] Abdul-Ghani, M.A., Norton, L. and DeFronzo, R.A. (2015) Renal Sodium-Glucose Cotransporter Inhibition in the Management of Type 2 Diabetes Mellitus. American Journal of Physiology-Renal Physiology, 309, F889-F900.
https://doi.org/10.1152/ajprenal.00267.2015
[12] Lin, Y., Chang, Y., Yang, S., Wu, K. and Chu, T. (2018) Update of Pathophysiology and Management of Diabetic Kidney Disease. Journal of the Formosan Medical Association, 117, 662-675.
https://doi.org/10.1016/j.jfma.2018.02.007
[13] Reudelhuber, T.L. (2010) Prorenin, Renin, and Their Receptor. Hypertension, 55, 1071-1074.
https://doi.org/10.1161/hypertensionaha.108.120279
[14] Tuttle, K.R. (2016) Back to the Future: Glomerular Hyperfiltration and the Diabetic Kidney. Diabetes, 66, 14-16.
https://doi.org/10.2337/dbi16-0056
[15] Beloto-Silva, O., Machado, U.F. and Oliveira-Souza, M. (2010) Glucose-Induced Regulation of NHEs Activity and SGLTs Expression Involves the PKA Signaling Pathway. The Journal of Membrane Biology, 239, 157-165.
https://doi.org/10.1007/s00232-010-9334-6
[16] Hallow, K.M., Greasley, P.J., Helmlinger, G., Chu, L., Heerspink, H.J. and Boulton, D.W. (2018) Evaluation of Renal and Cardiovascular Protection Mechanisms of SGLT2 Inhibitors: Model-Based Analysis of Clinical Data. American Journal of Physiology-Renal Physiology, 315, F1295-F1306.
https://doi.org/10.1152/ajprenal.00202.2018
[17] Rajasekeran, H., Lytvyn, Y., Hladunewich, M., Cattran, D., Bozovic, A., Perkins, B., et al. (2016) The Effect of SGLT2 Inhibition on Urinary Adenosine Excretion in Patients with Type 1 Diabetes. Canadian Journal of Diabetes, 40, S64.
https://doi.org/10.1016/j.jcjd.2016.08.182
[18] Lytvyn, Y., Kimura, K., Peter, N., Lai, V., Tse, J., Cham, L., et al. (2022) Renal and Vascular Effects of Combined SGLT2 and Angiotensin-Converting Enzyme Inhibition. Circulation, 146, 450-462.
https://doi.org/10.1161/circulationaha.122.059150
[19] Singh, D.K., Winocour, P. and Farrington, K. (2010) Oxidative Stress in Early Diabetic Nephropathy: Fueling the Fire. Nature Reviews Endocrinology, 7, 176-184.
https://doi.org/10.1038/nrendo.2010.212
[20] Pavlov, T.S., Palygin, O., Isaeva, E., Levchenko, V., Khedr, S., Blass, G., et al. (2020) NOX4-Dependent Regulation of ENaC in Hypertension and Diabetic Kidney Disease. The FASEB Journal, 34, 13396-13408.
https://doi.org/10.1096/fj.202000966rr
[21] Wada, J. and Makino, H. (2012) Inflammation and the Pathogenesis of Diabetic Nephropathy. Clinical Science, 124, 139-152.
https://doi.org/10.1042/cs20120198
[22] Pickup, J.C., Chusney, G.D., Thomas, S.M., et al. (2000) Plasma Interleukin-6, Tumour Necrosis Factor A and Blood Cytokine Production in Type 2 Diabetes. Life Sciences, 67, 291-300.
[23] Li, K. and Li, Q. (2021) LINC00323 Mediates the Role of M1 Macrophage Polarization in Diabetic Nephropathy through PI3K/AKT Signaling Pathway. Human Immunology, 82, 960-967.
https://doi.org/10.1016/j.humimm.2021.08.010
[24] Landis, R.C., Quimby, K.R. and Greenidge, A.R. (2018) M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets. Current Pharmaceutical Design, 24, 2241-2249.
https://doi.org/10.2174/1381612824666180716163845
[25] A/L B Vasanth Rao, V.R., Tan, S.H., Candasamy, M. and Bhattamisra, S.K. (2019) Diabetic Nephropathy: An Update on Pathogenesis and Drug Development. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 754-762.
https://doi.org/10.1016/j.dsx.2018.11.054
[26] Gallo, L.A., Ward, M.S., Fotheringham, A.K., Zhuang, A., Borg, D.J., Flemming, N.B., et al. (2016) Erratum: Once Daily Administration of the SGLT2 Inhibitor, Empagliflozin, Attenuates Markers of Renal Fibrosis without Improving Albuminuria in Diabetic db/db Mice. Scientific Reports, 6, Article No. 28124.
https://doi.org/10.1038/srep28124
[27] Franzén, S., Pihl, L., Khan, N., Gustafsson, H. and Palm, F. (2016) Pronounced Kidney Hypoxia Precedes Albuminuria in Type 1 Diabetic Mice. American Journal of Physiology-Renal Physiology, 310, F807-F809.
https://doi.org/10.1152/ajprenal.00049.2016
[28] Schönenberger, M.J. (2015) Hypoxia Signaling Pathways: Modulators of Oxygen-Related Organelles. Frontiers in Cell and Developmental Biology, 3, Article 42.
https://doi.org/10.3389/fcell.2015.00042
[29] Walter, K.M., Schönenberger, M.J., Trötzmüller, M., Horn, M., Elsässer, H., Moser, A.B., et al. (2014) Hif-2α Promotes Degradation of Mammalian Peroxisomes by Selective Autophagy. Cell Metabolism, 20, 882-897.
https://doi.org/10.1016/j.cmet.2014.09.017
[30] Nayak, B.K., Shanmugasundaram, K., Friedrichs, W.E., Cavaglierii, R.C., Patel, M., Barnes, J., et al. (2016) HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice. Diabetes, 65, 1387-1397.
https://doi.org/10.2337/db15-0519
[31] Bessho, R., Takiyama, Y., Takiyama, T., Kitsunai, H., Takeda, Y., Sakagami, H., et al. (2019) Hypoxia-Inducible Factor-1α Is the Therapeutic Target of the SGLT2 Inhibitor for Diabetic Nephropathy. Scientific Reports, 9, Article No. 14754.
https://doi.org/10.1038/s41598-019-51343-1
[32] Ghanim, H., Abuaysheh, S., Hejna, J., Green, K., Batra, M., Makdissi, A., et al. (2020) Dapagliflozin Suppresses Hepcidin and Increases Erythropoiesis. The Journal of Clinical Endocrinology & Metabolism, 105, e1056-e1063.
https://doi.org/10.1210/clinem/dgaa057
[33] Li, J. (2020) Association of Plasma Trimethylamine N-Oxide Level with Healed Culprit Plaques Examined by Optical Coherence Tomography in Patients with St-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 75, 57.
https://doi.org/10.1016/s0735-1097(20)30684-7
[34] Kawanami, D., Matoba, K. and Utsunomiya, K. (2016) Dyslipidemia in Diabetic Nephropathy. Renal Replacement Therapy, 2, Article No. 16.
https://doi.org/10.1186/s41100-016-0028-0
[35] Sun, Y.B.Y., Qu, X., Howard, V., Dai, L., Jiang, X., Ren, Y., et al. (2015) Smad3 Deficiency Protects Mice from Obesity-Induced Podocyte Injury That Precedes Insulin Resistance. Kidney International, 88, 286-298.
https://doi.org/10.1038/ki.2015.121
[36] Liu, J., Li, L., Li, S., Wang, Y., Qin, X., Deng, K., et al. (2020) Sodium-Glucose Co-Transporter-2 Inhibitors and the Risk of Diabetic Ketoacidosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes, Obesity and Metabolism, 22, 1619-1627.
https://doi.org/10.1111/dom.14075
[37] Matthaei, S., Bowering, K., Rohwedder, K., Sugg, J., Parikh, S. and Johnsson, E. (2015) Durability and Tolerability of Dapagliflozin over 52 Weeks as Add-On to Metformin and Sulphonylurea in Type 2 Diabetes. Diabetes, Obesity and Metabolism, 17, 1075-1084.
https://doi.org/10.1111/dom.12543
[38] Li, X., Zhu, Q., Zheng, R., Yan, J., Wei, M., Fan, Y., et al. (2020) Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Frontiers in Physiology, 11, Article 73.
https://doi.org/10.3389/fphys.2020.00073
[39] 魏海军, 张铖, 杨舒涵, 等. 自噬参与糖尿病血管病变的研究进展[J]. 中国比较医学杂志, 2021, 31(11): 132-140.
[40] Koch, E.A.T., Nakhoul, R., Nakhoul, F. and Nakhoul, N. (2020) Autophagy in Diabetic Nephropathy: A Review. International Urology and Nephrology, 52, 1705-1712.
https://doi.org/10.1007/s11255-020-02545-4
[41] 张宜洁, 刘向春, 王英惠, 等. 达格列净促进糖尿病肾脏病足细胞自噬的机制[J]. 山东第一医科大学(山东省医学科学院)学报, 2023, 44(11): 856-863.
[42] Yale, J.-F., Bakris, G., Cariou, B., Yue, D., David-Neto, E., Xi, L., et al. (2013) Efficacy and Safety of Canagliflozin in Subjects with Type 2 Diabetes and Chronic Kidney Disease. Diabetes, Obesity and Metabolism, 15, 463-473.
https://doi.org/10.1111/dom.12090
[43] Cassis, P., Locatelli, M., Cerullo, D., Corna, D., Buelli, S., Zanchi, C., et al. (2018) SGLT2 Inhibitor Dapagliflozin Limits Podocyte Damage in Proteinuric Nondiabetic Nephropathy. JCI Insight, 3, e98720.
https://doi.org/10.1172/jci.insight.98720
[44] Kohan, D.E., Fioretto, P., Tang, W. and List, J.F. (2014) Long-Term Study of Patients with Type 2 Diabetes and Moderate Renal Impairment Shows That Dapagliflozin Reduces Weight and Blood Pressure but Does Not Improve Glycemic Control. Kidney International, 85, 962-971.
https://doi.org/10.1038/ki.2013.356
[45] Kawasoe, S., Maruguchi, Y., Kajiya, S., Uenomachi, H., Miyata, M., Kawasoe, M., et al. (2017) Mechanism of the Blood Pressure-Lowering Effect of Sodium-Glucose Cotransporter 2 Inhibitors in Obese Patients with Type 2 Diabetes. BMC Pharmacology and Toxicology, 18, Article No. 23.
https://doi.org/10.1186/s40360-017-0125-x
[46] Kawanami, D., Matoba, K., Takeda, Y., Nagai, Y., Akamine, T., Yokota, T., et al. (2017) SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. International Journal of Molecular Sciences, 18, Article 1083.
https://doi.org/10.3390/ijms18051083
[47] Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404.
https://doi.org/10.1002/bdd.1909
[48] Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC: Basic to Translational Science, 5, 632-644.
https://doi.org/10.1016/j.jacbts.2020.02.004
[49] McMurray, J.J.V., DeMets, D.L., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Langkilde, A.M., et al. (2019) The Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure (DAPA-HF) Trial: Baseline Characteristics. European Journal of Heart Failure, 21, 1402-1411.
https://doi.org/10.1002/ejhf.1548