[1]
|
ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2022) Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care, 46, S191-S202. https://doi.org/10.2337/dc23-s011
|
[2]
|
中华医学会糖尿病学分会, 国家基本公共卫生服务项目基层糖尿病防治管理办公室. 国家基层糖尿病肾脏病防治技术指南(2023) [J]. 中华内科杂志, 2023, 62(12): 1394-1405.
|
[3]
|
中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521.
|
[4]
|
Pan, X., Lin, X., Huang, X., Xu, J., Ye, L., Zhang, T., et al. (2022) The Burden of Diabetes-Related Chronic Kidney Disease in China from 1990 to 2019. Frontiers in Endocrinology, 13, Article 892860. https://doi.org/10.3389/fendo.2022.892860
|
[5]
|
Alicic, R.Z., Neumiller, J.J., Johnson, E.J., Dieter, B. and Tuttle, K.R. (2019) Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes, 68, 248-257. https://doi.org/10.2337/dbi18-0007
|
[6]
|
Tiwari, A., Kumar, D., Sweeya, P.R., Chauhan, H., Lavanya, V., Sireesha, K., et al. (2014) Vegetables’ Juice Influences Polyol Pathway by Multiple Mechanisms in Favour of Reducing Development of Oxidative Stress and Resultant Diabetic Complications. Pharmacognosy Magazine, 10, 383-391. https://doi.org/10.4103/0973-1296.133290
|
[7]
|
Yamagishi, S., Matsui, T. and Fukami, K. (2015) Role of Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Cancer Risk. Rejuvenation Research, 18, 48-56. https://doi.org/10.1089/rej.2014.1625
|
[8]
|
Yin, W., Jiang, Y., Xu, S., Wang, Z., Peng, L., Fang, Q., et al. (2018) Protein Kinase C and Protein Kinase a Are Involved in the Protection of Recombinant Human Glucagon-Like Peptide-1 on Glomeruli and Tubules in Diabetic Rats. Journal of Diabetes Investigation, 10, 613-625. https://doi.org/10.1111/jdi.12956
|
[9]
|
DeFronzo, R.A., Hompesch, M., Kasichayanula, S., Liu, X., Hong, Y., Pfister, M., et al. (2013) Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects with Type 2 Diabetes. Diabetes Care, 36, 3169-3176. https://doi.org/10.2337/dc13-0387
|
[10]
|
Del Prato, S., Nauck, M., Durán-Garcia, S., Maffei, L., Rohwedder, K., Theuerkauf, A., et al. (2015) Long-Term Glycaemic Response and Tolerability of Dapagliflozin versus a Sulphonylurea as Add-On Therapy to Metformin in Patients with Type 2 Diabetes: 4-Year Data. Diabetes, Obesity and Metabolism, 17, 581-590. https://doi.org/10.1111/dom.12459
|
[11]
|
Abdul-Ghani, M.A., Norton, L. and DeFronzo, R.A. (2015) Renal Sodium-Glucose Cotransporter Inhibition in the Management of Type 2 Diabetes Mellitus. American Journal of Physiology-Renal Physiology, 309, F889-F900. https://doi.org/10.1152/ajprenal.00267.2015
|
[12]
|
Lin, Y., Chang, Y., Yang, S., Wu, K. and Chu, T. (2018) Update of Pathophysiology and Management of Diabetic Kidney Disease. Journal of the Formosan Medical Association, 117, 662-675. https://doi.org/10.1016/j.jfma.2018.02.007
|
[13]
|
Reudelhuber, T.L. (2010) Prorenin, Renin, and Their Receptor. Hypertension, 55, 1071-1074. https://doi.org/10.1161/hypertensionaha.108.120279
|
[14]
|
Tuttle, K.R. (2016) Back to the Future: Glomerular Hyperfiltration and the Diabetic Kidney. Diabetes, 66, 14-16. https://doi.org/10.2337/dbi16-0056
|
[15]
|
Beloto-Silva, O., Machado, U.F. and Oliveira-Souza, M. (2010) Glucose-Induced Regulation of NHEs Activity and SGLTs Expression Involves the PKA Signaling Pathway. The Journal of Membrane Biology, 239, 157-165. https://doi.org/10.1007/s00232-010-9334-6
|
[16]
|
Hallow, K.M., Greasley, P.J., Helmlinger, G., Chu, L., Heerspink, H.J. and Boulton, D.W. (2018) Evaluation of Renal and Cardiovascular Protection Mechanisms of SGLT2 Inhibitors: Model-Based Analysis of Clinical Data. American Journal of Physiology-Renal Physiology, 315, F1295-F1306. https://doi.org/10.1152/ajprenal.00202.2018
|
[17]
|
Rajasekeran, H., Lytvyn, Y., Hladunewich, M., Cattran, D., Bozovic, A., Perkins, B., et al. (2016) The Effect of SGLT2 Inhibition on Urinary Adenosine Excretion in Patients with Type 1 Diabetes. Canadian Journal of Diabetes, 40, S64. https://doi.org/10.1016/j.jcjd.2016.08.182
|
[18]
|
Lytvyn, Y., Kimura, K., Peter, N., Lai, V., Tse, J., Cham, L., et al. (2022) Renal and Vascular Effects of Combined SGLT2 and Angiotensin-Converting Enzyme Inhibition. Circulation, 146, 450-462. https://doi.org/10.1161/circulationaha.122.059150
|
[19]
|
Singh, D.K., Winocour, P. and Farrington, K. (2010) Oxidative Stress in Early Diabetic Nephropathy: Fueling the Fire. Nature Reviews Endocrinology, 7, 176-184. https://doi.org/10.1038/nrendo.2010.212
|
[20]
|
Pavlov, T.S., Palygin, O., Isaeva, E., Levchenko, V., Khedr, S., Blass, G., et al. (2020) NOX4-Dependent Regulation of ENaC in Hypertension and Diabetic Kidney Disease. The FASEB Journal, 34, 13396-13408. https://doi.org/10.1096/fj.202000966rr
|
[21]
|
Wada, J. and Makino, H. (2012) Inflammation and the Pathogenesis of Diabetic Nephropathy. Clinical Science, 124, 139-152. https://doi.org/10.1042/cs20120198
|
[22]
|
Pickup, J.C., Chusney, G.D., Thomas, S.M., et al. (2000) Plasma Interleukin-6, Tumour Necrosis Factor A and Blood Cytokine Production in Type 2 Diabetes. Life Sciences, 67, 291-300.
|
[23]
|
Li, K. and Li, Q. (2021) LINC00323 Mediates the Role of M1 Macrophage Polarization in Diabetic Nephropathy through PI3K/AKT Signaling Pathway. Human Immunology, 82, 960-967. https://doi.org/10.1016/j.humimm.2021.08.010
|
[24]
|
Landis, R.C., Quimby, K.R. and Greenidge, A.R. (2018) M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets. Current Pharmaceutical Design, 24, 2241-2249. https://doi.org/10.2174/1381612824666180716163845
|
[25]
|
A/L B Vasanth Rao, V.R., Tan, S.H., Candasamy, M. and Bhattamisra, S.K. (2019) Diabetic Nephropathy: An Update on Pathogenesis and Drug Development. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 754-762. https://doi.org/10.1016/j.dsx.2018.11.054
|
[26]
|
Gallo, L.A., Ward, M.S., Fotheringham, A.K., Zhuang, A., Borg, D.J., Flemming, N.B., et al. (2016) Erratum: Once Daily Administration of the SGLT2 Inhibitor, Empagliflozin, Attenuates Markers of Renal Fibrosis without Improving Albuminuria in Diabetic db/db Mice. Scientific Reports, 6, Article No. 28124. https://doi.org/10.1038/srep28124
|
[27]
|
Franzén, S., Pihl, L., Khan, N., Gustafsson, H. and Palm, F. (2016) Pronounced Kidney Hypoxia Precedes Albuminuria in Type 1 Diabetic Mice. American Journal of Physiology-Renal Physiology, 310, F807-F809. https://doi.org/10.1152/ajprenal.00049.2016
|
[28]
|
Schönenberger, M.J. (2015) Hypoxia Signaling Pathways: Modulators of Oxygen-Related Organelles. Frontiers in Cell and Developmental Biology, 3, Article 42. https://doi.org/10.3389/fcell.2015.00042
|
[29]
|
Walter, K.M., Schönenberger, M.J., Trötzmüller, M., Horn, M., Elsässer, H., Moser, A.B., et al. (2014) Hif-2α Promotes Degradation of Mammalian Peroxisomes by Selective Autophagy. Cell Metabolism, 20, 882-897. https://doi.org/10.1016/j.cmet.2014.09.017
|
[30]
|
Nayak, B.K., Shanmugasundaram, K., Friedrichs, W.E., Cavaglierii, R.C., Patel, M., Barnes, J., et al. (2016) HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice. Diabetes, 65, 1387-1397. https://doi.org/10.2337/db15-0519
|
[31]
|
Bessho, R., Takiyama, Y., Takiyama, T., Kitsunai, H., Takeda, Y., Sakagami, H., et al. (2019) Hypoxia-Inducible Factor-1α Is the Therapeutic Target of the SGLT2 Inhibitor for Diabetic Nephropathy. Scientific Reports, 9, Article No. 14754. https://doi.org/10.1038/s41598-019-51343-1
|
[32]
|
Ghanim, H., Abuaysheh, S., Hejna, J., Green, K., Batra, M., Makdissi, A., et al. (2020) Dapagliflozin Suppresses Hepcidin and Increases Erythropoiesis. The Journal of Clinical Endocrinology & Metabolism, 105, e1056-e1063. https://doi.org/10.1210/clinem/dgaa057
|
[33]
|
Li, J. (2020) Association of Plasma Trimethylamine N-Oxide Level with Healed Culprit Plaques Examined by Optical Coherence Tomography in Patients with St-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 75, 57. https://doi.org/10.1016/s0735-1097(20)30684-7
|
[34]
|
Kawanami, D., Matoba, K. and Utsunomiya, K. (2016) Dyslipidemia in Diabetic Nephropathy. Renal Replacement Therapy, 2, Article No. 16. https://doi.org/10.1186/s41100-016-0028-0
|
[35]
|
Sun, Y.B.Y., Qu, X., Howard, V., Dai, L., Jiang, X., Ren, Y., et al. (2015) Smad3 Deficiency Protects Mice from Obesity-Induced Podocyte Injury That Precedes Insulin Resistance. Kidney International, 88, 286-298. https://doi.org/10.1038/ki.2015.121
|
[36]
|
Liu, J., Li, L., Li, S., Wang, Y., Qin, X., Deng, K., et al. (2020) Sodium-Glucose Co-Transporter-2 Inhibitors and the Risk of Diabetic Ketoacidosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes, Obesity and Metabolism, 22, 1619-1627. https://doi.org/10.1111/dom.14075
|
[37]
|
Matthaei, S., Bowering, K., Rohwedder, K., Sugg, J., Parikh, S. and Johnsson, E. (2015) Durability and Tolerability of Dapagliflozin over 52 Weeks as Add-On to Metformin and Sulphonylurea in Type 2 Diabetes. Diabetes, Obesity and Metabolism, 17, 1075-1084. https://doi.org/10.1111/dom.12543
|
[38]
|
Li, X., Zhu, Q., Zheng, R., Yan, J., Wei, M., Fan, Y., et al. (2020) Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Frontiers in Physiology, 11, Article 73. https://doi.org/10.3389/fphys.2020.00073
|
[39]
|
魏海军, 张铖, 杨舒涵, 等. 自噬参与糖尿病血管病变的研究进展[J]. 中国比较医学杂志, 2021, 31(11): 132-140.
|
[40]
|
Koch, E.A.T., Nakhoul, R., Nakhoul, F. and Nakhoul, N. (2020) Autophagy in Diabetic Nephropathy: A Review. International Urology and Nephrology, 52, 1705-1712. https://doi.org/10.1007/s11255-020-02545-4
|
[41]
|
张宜洁, 刘向春, 王英惠, 等. 达格列净促进糖尿病肾脏病足细胞自噬的机制[J]. 山东第一医科大学(山东省医学科学院)学报, 2023, 44(11): 856-863.
|
[42]
|
Yale, J.-F., Bakris, G., Cariou, B., Yue, D., David-Neto, E., Xi, L., et al. (2013) Efficacy and Safety of Canagliflozin in Subjects with Type 2 Diabetes and Chronic Kidney Disease. Diabetes, Obesity and Metabolism, 15, 463-473. https://doi.org/10.1111/dom.12090
|
[43]
|
Cassis, P., Locatelli, M., Cerullo, D., Corna, D., Buelli, S., Zanchi, C., et al. (2018) SGLT2 Inhibitor Dapagliflozin Limits Podocyte Damage in Proteinuric Nondiabetic Nephropathy. JCI Insight, 3, e98720. https://doi.org/10.1172/jci.insight.98720
|
[44]
|
Kohan, D.E., Fioretto, P., Tang, W. and List, J.F. (2014) Long-Term Study of Patients with Type 2 Diabetes and Moderate Renal Impairment Shows That Dapagliflozin Reduces Weight and Blood Pressure but Does Not Improve Glycemic Control. Kidney International, 85, 962-971. https://doi.org/10.1038/ki.2013.356
|
[45]
|
Kawasoe, S., Maruguchi, Y., Kajiya, S., Uenomachi, H., Miyata, M., Kawasoe, M., et al. (2017) Mechanism of the Blood Pressure-Lowering Effect of Sodium-Glucose Cotransporter 2 Inhibitors in Obese Patients with Type 2 Diabetes. BMC Pharmacology and Toxicology, 18, Article No. 23. https://doi.org/10.1186/s40360-017-0125-x
|
[46]
|
Kawanami, D., Matoba, K., Takeda, Y., Nagai, Y., Akamine, T., Yokota, T., et al. (2017) SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. International Journal of Molecular Sciences, 18, Article 1083. https://doi.org/10.3390/ijms18051083
|
[47]
|
Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404. https://doi.org/10.1002/bdd.1909
|
[48]
|
Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC: Basic to Translational Science, 5, 632-644. https://doi.org/10.1016/j.jacbts.2020.02.004
|
[49]
|
McMurray, J.J.V., DeMets, D.L., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Langkilde, A.M., et al. (2019) The Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure (DAPA-HF) Trial: Baseline Characteristics. European Journal of Heart Failure, 21, 1402-1411. https://doi.org/10.1002/ejhf.1548
|