[1]
|
Claassen, J. and Park, S. (2022) Spontaneous Subarachnoid Haemorrhage. The Lancet, 400, 846-862. https://doi.org/10.1016/s0140-6736(22)00938-2
|
[2]
|
van Gijn, J., Kerr, R.S. and Rinkel, G.J. (2007) Subarachnoid Haemorrhage. The Lancet, 369, 306-318. https://doi.org/10.1016/s0140-6736(07)60153-6
|
[3]
|
Hop, J.W., Rinkel, G.J.E., Algra, A. and van Gijn, J. (1997) Case-Fatality Rates and Functional Outcome after Subarachnoid Hemorrhage: A Systematic Review. Stroke, 28, 660-664. https://doi.org/10.1161/01.str.28.3.660
|
[4]
|
Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L. and Parag, V. (2009) Worldwide Stroke Incidence and Early Case Fatality Reported in 56 Population-Based Studies: A Systematic Review. The Lancet Neurology, 8, 355-369. https://doi.org/10.1016/s1474-4422(09)70025-0
|
[5]
|
Korja, M., Lehto, H., Juvela, S. and Kaprio, J. (2016) Incidence of Subarachnoid Hemorrhage Is Decreasing Together with Decreasing Smoking Rates. Neurology, 87, 1118-1123. https://doi.org/10.1212/wnl.0000000000003091
|
[6]
|
Korja, M., Silventoinen, K., Laatikainen, T., Jousilahti, P., Salomaa, V. and Kaprio, J. (2013) Cause-Specific Mortality of 1-Year Survivors of Subarachnoid Hemorrhage. Neurology, 80, 481-486. https://doi.org/10.1212/wnl.0b013e31827f0fb5
|
[7]
|
Raimondi, A.J. and Torres, H. (1973) Acute Hydrocephalus as a Complication of Subarachnoid Hemorrhage. Surgical Neurology, 1, 23-26.
|
[8]
|
Kusske, J.A., Turner, P.T., Ojemann, G.A. and Harris, A.B. (1973) Ventriculostomy for the Treatment of Acute Hydrocephalus Following Subarachnoid Hemorrhage. Journal of Neurosurgery, 38, 591-595. https://doi.org/10.3171/jns.1973.38.5.0591
|
[9]
|
Vale, F.L., Bradley, E.L. and Fisher, W.S. (1997) The Relationship of Subarachnoid Hemorrhage and the Need for Postoperative Shunting. Journal of Neurosurgery, 86, 462-466. https://doi.org/10.3171/jns.1997.86.3.0462
|
[10]
|
Rajshekhar, V. and Harbaugh, R.E. (1992) Results of Routine Ventriculostomy with External Ventricular Drainage for Acute Hydrocephalus Following Subarachnoid Haemorrhage. Acta Neurochirurgica, 115, 8-14. https://doi.org/10.1007/bf01400584
|
[11]
|
Zaidi, H.A., Montoure, A., Elhadi, A., Nakaji, P., McDougall, C.G., Albuquerque, F.C., et al. (2015) Long-Term Functional Outcomes and Predictors of Shunt-Dependent Hydrocephalus after Treatment of Ruptured Intracranial Aneurysms in the BRAT Trial. Neurosurgery, 76, 608-615. https://doi.org/10.1227/neu.0000000000000677
|
[12]
|
Suarez-Rivera, O. (1998) Acute Hydrocephalus after Subarachnoid Hemorrhage. Surgical Neurology, 49, 563-565. https://doi.org/10.1016/s0090-3019(97)00342-x
|
[13]
|
de Oliveira, J.G., Beck, J., Setzer, M., Gerlach, R., Vatter, H., Seifert, V., et al. (2007) Risk of Shunt-Dependent Hydrocephalus after Occlusion of Ruptured Intracranial Aneurysms by Surgical Clipping or Endovascular Coiling. Neurosurgery, 61, 924-934. https://doi.org/10.1227/01.neu.0000303188.72425.24
|
[14]
|
Paisan, G.M., Ding, D., Starke, R.M., Crowley, R.W. and Liu, K.C. (2017) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage: Predictors and Long-Term Functional Outcomes. Neurosurgery, 83, 393-402. https://doi.org/10.1093/neuros/nyx393
|
[15]
|
Hoh, B.L., Ko, N.U., Amin-Hanjani, S., Chou, S.H., Cruz-Flores, S., Dangayach, N.S., et al. (2023) 2023 Guideline for the Management of Patients with Aneurysmal Subarachnoid Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. Stroke, 54, e314-e370. https://doi.org/10.1161/str.0000000000000436
|
[16]
|
Hua, C. and Zhao, G. (2017) Biomarkers in Adult Posthemorrhagic Hydrocephalus. International Journal of Stroke, 12, 574-579. https://doi.org/10.1177/1747493017706187
|
[17]
|
Fang, Y., Liu, Y., Chen, L., Wang, J., Zhang, J., Zhang, H., et al. (2024) Cerebrospinal Fluid Markers of Neuroinflammation and Coagulation in Severe Cerebral Edema and Chronic Hydrocephalus after Subarachnoid Hemorrhage: A Prospective Study. Journal of Neuroinflammation, 21, Article No. 237. https://doi.org/10.1186/s12974-024-03236-y
|
[18]
|
Dandy, W.E. (1919) Experimental Hydrocephalus. Annals of Surgery, 70, 129-142. https://doi.org/10.1097/00000658-191908000-00001
|
[19]
|
Andeweg, J. (1991) Concepts of Cerebral Venous Drainage and the Aetiology of Hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry, 54, 830-831. https://doi.org/10.1136/jnnp.54.9.830
|
[20]
|
Orešković, D., Klarica, M. and Vukić, M. (2002) The Formation and Circulation of Cerebrospinal Fluid Inside the Cat Brain Ventricles: A Fact or an Illusion? Neuroscience Letters, 327, 103-106. https://doi.org/10.1016/s0304-3940(02)00395-6
|
[21]
|
Bulat, M. and Klarica, M. (2011) Recent Insights into a New Hydrodynamics of the Cerebrospinal Fluid. Brain Research Reviews, 65, 99-112. https://doi.org/10.1016/j.brainresrev.2010.08.002
|
[22]
|
Sakka, L., Coll, G. and Chazal, J. (2011) Anatomy and Physiology of Cerebrospinal Fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases, 128, 309-316. https://doi.org/10.1016/j.anorl.2011.03.002
|
[23]
|
Thompson, D., Brissette, C.A. and Watt, J.A. (2022) The Choroid Plexus and Its Role in the Pathogenesis of Neurological Infections. Fluids and Barriers of the CNS, 19, Article No. 75. https://doi.org/10.1186/s12987-022-00372-6
|
[24]
|
Chen, Y., Luo, Z., Sun, Y., Li, F., Han, Z., Qi, B., et al. (2022) Exercise Improves Choroid Plexus Epithelial Cells Metabolism to Prevent Glial Cell-Associated Neurodegeneration. Frontiers in Pharmacology, 13, Article 1010785. https://doi.org/10.3389/fphar.2022.1010785
|
[25]
|
Faure, G.C. (2003) Choroid Plexus Ageing of the Brain and Alzheimer S Disease. Frontiers in Bioscience, 8, s515-s521. https://doi.org/10.2741/1085
|
[26]
|
Redzic, Z.B., Preston, J.E., Duncan, J.A., Chodobski, A. and Szmydynger‐Chodobska, J. (2005) The Choroid Plexus‐cerebrospinal Fluid System: From Development to Aging. Current Topics in Developmental Biology, 71, 1-52. https://doi.org/10.1016/s0070-2153(05)71001-2
|
[27]
|
Preston, J.E. (2001) Ageing Choroid Plexus‐cerebrospinal Fluid System. Microscopy Research and Technique, 52, 31-37. https://doi.org/10.1002/1097-0029(20010101)52:1<31::aid-jemt5>3.3.co;2-k
|
[28]
|
Jartti, P., Karttunen, A., Jartti, A., Ukkola, V., Sajanti, J. and Pyhtinen, J. (2004) Factors Related to Acute Hydrocephalus after Subarachnoid Hemorrhage. Acta Radiologica, 45, 333-339. https://doi.org/10.1080/02841850410004274
|
[29]
|
Strahle, J., Garton, H.J.L., Maher, C.O., Muraszko, K.M., Keep, R.F. and Xi, G. (2012) Mechanisms of Hydrocephalus after Neonatal and Adult Intraventricular Hemorrhage. Translational Stroke Research, 3, 25-38. https://doi.org/10.1007/s12975-012-0182-9
|
[30]
|
Klarica, M., Orešković, D., Božić, B., Vukić, M., Butković, V. and Bulat, M. (2009) New Experimental Model of Acute Aqueductal Blockage in Cats: Effects on Cerebrospinal Fluid Pressure and the Size of Brain Ventricles. Neuroscience, 158, 1397-1405. https://doi.org/10.1016/j.neuroscience.2008.11.041
|
[31]
|
Karimy, J.K., Zhang, J., Kurland, D.B., Theriault, B.C., Duran, D., Stokum, J.A., et al. (2017) Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nature Medicine, 23, 997-1003. https://doi.org/10.1038/nm.4361
|
[32]
|
Miller, B.A., Turan, N., Chau, M. and Pradilla, G. (2014) Inflammation, Vasospasm, and Brain Injury after Subarachnoid Hemorrhage. BioMed Research International, 2014, 1-16. https://doi.org/10.1155/2014/384342
|
[33]
|
Lauzier, D.C., Jayaraman, K., Yuan, J.Y., Diwan, D., Vellimana, A.K., Osbun, J.W., et al. (2023) Early Brain Injury after Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke, 54, 1426-1440. https://doi.org/10.1161/strokeaha.122.040072
|
[34]
|
Ostrowski, R.P., Colohan, A.R. and Zhang, J.H. (2006) Molecular Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. Neurological Research, 28, 399-414. https://doi.org/10.1179/016164106x115008
|
[35]
|
Sehba, F.A., Schwartz, A.Y., Chereshnev, I. and Bederson, J.B. (2000) Acute Decrease in Cerebral Nitric Oxide Levels after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 20, 604-611. https://doi.org/10.1097/00004647-200003000-00018
|
[36]
|
Li, Y., Wu, P., Bihl, J.C. and Shi, H. (2020) Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Current Neuropharmacology, 18, 1168-1179. https://doi.org/10.2174/1570159x18666200106154203
|
[37]
|
Hayman, E.G., Wessell, A., Gerzanich, V., Sheth, K.N. and Simard, J.M. (2016) Mechanisms of Global Cerebral Edema Formation in Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 26, 301-310. https://doi.org/10.1007/s12028-016-0354-7
|
[38]
|
Macdonald, R.L. and Schweizer, T.A. (2017) Spontaneous Subarachnoid Haemorrhage. The Lancet, 389, 655-666. https://doi.org/10.1016/s0140-6736(16)30668-7
|
[39]
|
Shishido, H., Zhang, H., Okubo, S., Hua, Y., Keep, R.F. and Xi, G. (2016) The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. In: Applegate, R., Chen, G., Feng, H. and Zhang, J., Eds., Brain Edema XVI, Springer, 335-339. https://doi.org/10.1007/978-3-319-18497-5_58
|
[40]
|
Demirgil, B.T., Tugcu, B., Postalci, L., Guclu, G., Dalgic, A. and Oral, Z. (2003) Factors Leading to Hydrocephalus after Aneurysmal Sub-Arachnoid Hemorrhage. Minimally Invasive Neurosurgery, 46, 344-348.
|
[41]
|
Rincon, F., Gordon, E., Starke, R.M., Buitrago, M.M., Fernandez, A., Schmidt, J.M., et al. (2010) Predictors of Long-Term Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 113, 774-780. https://doi.org/10.3171/2010.2.jns09376
|