自发性蛛网膜下腔出血并发急性脑积水的相关因素分析
Analysis of the Related Factors of Acute Hydrocephalus Complicated with Spontaneous Subarachnoid Hemorrhage
摘要: 目的:探讨自发性蛛网膜下腔出血后并发急性脑积水的相关危险因素。方法:选取西安市中心医院神经外科收治的162例蛛网膜下腔出血的患者作为研究对象,统计患者的年龄、性别、饮酒史、吸烟史、高血压病史、糖尿病史、入院时是否昏迷、入院时是否呕吐、GCS评分、脑室出血、早期腰大池引流术、早期锥颅置管引流术、颅内动脉瘤等相关资料,本研究采用二元Logistic回归模型,深入剖析自发性蛛网膜下腔出血(SAH)患者并发急性脑积水(AHC)的相关危险因素。P < 0.05为差异有统计学意义。结果:发生急性脑积水的患者平均年龄大于未患急性脑积水患者平均年龄;女性患急性脑积水的比例大于男性;无饮酒史的患者患急性脑积水的比率大于有饮酒史的患者;不吸烟的患者患急性脑积水的比例大于吸烟患者;有高血压病史的患者患急性脑积水的比例大于无高血压病史的患者;有糖尿病病史的患者患急性脑积水的比例大于无糖尿病病史的患者;入院时昏迷的患者发生急性脑积水的概率高;入院时呕吐的患者发生急性脑积水的概率高;GCS评分 ≥ 8分的患者患急性脑积水的概率更高;早期脑室积血的患者患急性脑积水的概率更高;早期未接受锥颅置管引流术治疗的患者患急性脑积水的比例更高。早期腰大池引流术、糖尿病史无统计学意义,P > 0.05。是否有动脉瘤与急性脑积水的发生无统计学意义,P = 0.663。Hunt-Hess分级更高的患者发生急性脑积水的比例Hunt-Hess分级低的患者;患急性脑积水的患者动脉瘤直径大于未患急性脑积水的患者;动脉瘤位置、是否接受动脉瘤栓塞术无统计学意义,P > 0.05。多因素Logistic回归分析显示,年龄、GCS < 8分、脑室积血、入院时呕吐、入院时昏迷是自发性蛛网膜下腔出血患者并发急性脑积水的危险因素。讨论:自发性蛛网膜下腔出血患者并发急性脑积水的相关因素为年龄、GCS < 8分、脑室积血、入院时呕吐、入院时昏迷,动脉瘤性蛛网膜下腔出血患者并发急性脑积水的相关因素为动脉瘤的大小、Hunt-Hess分级。
Abstract: Objective: To explore the associated risk factors for the development of acute hydrocephalus following spontaneous subarachnoid hemorrhage. Methods: A total of 162 patients with spontaneous subarachnoid hemorrhage admitted to the Department of Neurosurgery at Xi’an Central Hospital were selected as the subjects of this study. Data including patient age, gender, drinking history, smoking history, history of hypertension, history of diabetes, coma on admission, vomiting on admission, GCS score, intracerebral hemorrhage, early ventricular hemorrhage, early lumbar puncture, early placement of external ventricular drainage, intracranial aneurysm, and other relevant information were collected. Multifactor Logistic regression analysis was used to assess the associated risk factors for the development of acute hydrocephalus in patients with spontaneous subarachnoid hemorrhage. A P-value of less than 0.05 was considered to indicate statistical significance. Results: Patients who developed acute hydrocephalus had a higher average age than those who did not; the proportion of females with acute hydrocephalus was greater than that of males; the rate of acute hydrocephalus in patients without a history of alcohol consumption was higher than those with a history of alcohol consumption; the proportion of patients who did not smoke and developed acute hydrocephalus was greater than those who smoked; patients with a history of hypertension had a higher proportion of acute hydrocephalus than those without a history of hypertension; the proportion of patients with a history of diabetes developing acute hydrocephalus was greater than those without a history of diabetes; patients who were comatose on admission had a higher probability of developing acute hydrocephalus; patients who vomited on admission had a higher likelihood of developing acute hydrocephalus; patients with a GCS score of 8 or higher had a higher probability of developing acute hydrocephalus; patients with early ventricular hemorrhage had a higher probability of developing acute hydrocephalus; the proportion of patients who did not receive early placement of external ventricular drainage and developed acute hydrocephalus was higher. Early lumbar puncture, a history of diabetes, did not show statistical significance, P > 0.05. The presence of an aneurysm was not statistically significant in relation to the occurrence of acute hydrocephalus, P = 0.663. Patients with a higher Hunt-Hess grade had a higher proportion of acute hydrocephalus; patients with acute hydrocephalus had a larger aneurysm diameter than those without acute hydrocephalus; the location of the aneurysm, and whether they received aneurysm occlusion surgery did not show statistical significance, P > 0.05. Multivariate Logistic regression analysis showed that age, GCS score less than 8, ventricular hemorrhage, vomiting on admission, and coma on admission were risk factors for the development of acute hydrocephalus in patients with spontaneous subarachnoid hemorrhage. Discussion: The associated risk factors for the development of acute hydrocephalus in patients with spontaneous subarachnoid hemorrhage include age, GCS score less than 1, ventricular hemorrhage, vomiting on admission, and coma on admission. For aneurysmal subarachnoid hemorrhage patients, the associated risk factors for the development of acute hydrocephalus include the size and Hunt-Hess grade.
文章引用:邓力芝, 张国来. 自发性蛛网膜下腔出血并发急性脑积水的相关因素分析[J]. 临床医学进展, 2025, 15(2): 1218-1227. https://doi.org/10.12677/acm.2025.152465

1. 引言

sSAH是一种颅内或椎管内血管突然破裂引起的脑血管疾病,通常表现为剧烈头痛、呕吐,当血液进入脑实质,引起局部血管痉挛、收缩,以致局灶性缺血时,可发生局灶性神经功能受损[1] [2]。sSAH死亡率高,预后差,部分患者在未到达医院或在急诊室时就突然死亡,在脑卒中患者的死亡病例中位居前三,占比25%~30% [3]-[6]。HH是sSAH的常见并发症,其发生率在6%至30%之间[7]-[10],且并发HH的患者死亡率可高达48% [10],有幸存活的部分患者也不太可能实现功能独立并重返工作岗位[11]。20%的sSAH患者会出现AH,AH与再出血、脑梗死或脑室引流后感染继发的额外发病率和更高死亡率有关[12]。AH也是非依赖性脑积水的独立、重要危险因素,Paisan等在对888例SAH的病例分析中发现,分流依赖性脑积水患者出现功能依赖或死亡的发生率为44% [13] [14]。了解AH的发病因素并提前采取预防措施,可以减少sSAH患者的其他并发症(非依赖性脑积水、再出血、脑梗死等)和降低其死亡率。因此我们的研究目的是探讨sSAH后并发AH的相关因素。

2. 资料与方法

2.1. 一般资料

选取2018.10.01~2023.10.01西安市中心医院神经外科收治的162例蛛网膜下腔出血的患者。(1) 纳入标准:① 符合蛛网膜下腔出血的相关诊断标准,经头颅CT确诊;② 自愿签署知情同意书并接受治疗的患者。(2) 排除标准:① 入院前有脑积水发病史;② 入院前有开颅手术史;③ 脑卒中:有脑出血、脑梗死病史;④ 凝血功能障碍。

2.2. 方法

2.2.1. 蛛网膜下腔出血诊断方法

头颅高分辨CT平扫(3.0)结果确诊[15]

2.2.2. 急性脑积水诊断方法

脑积水可分为急性期(在三天内发展)、亚急性期(第4至13天)或慢性期(持续14天以上) [16],文中的急性脑积水即为三天内发展的脑积水,其头颅CT表现为:1) 颅脑CT表现为脑室扩张,早期包括颞角、额角椭圆形扩张;后期侧脑室对称扩张;2) 两侧侧脑室角的宽度大于等于2 mm;3) Evans指数 > 0.33 (Evans指数:侧脑室之间的距离与颅腔宽度之间的比) [17];符合以上任意一项即可诊断脑积水。

2.2.3. 基本资料收集

设计基本资料收集调查表,内容包括:年龄、性别、饮酒史、吸烟史、高血压病史、糖尿病病史、入院时是否昏迷、入院时是否呕吐、GCS评分、脑室出血、早期腰大池引流术、早期锥颅置管引流术、颅内动脉瘤。有颅内动脉瘤的患者,进一步统计动脉瘤的大小、动脉瘤的位置、Hunt-Hess分级、是否接受动脉瘤栓塞术,动脉瘤位置分为大脑前动脉瘤、大脑中动脉瘤、大脑后动脉瘤、前交通动脉瘤、后交通动脉瘤、颈内动脉瘤、基底动脉瘤。

2.2.4. 统计学方法

采用SPSS26.0统计软件进行数据处理。符合正态分布的计量资料以均数 ± 标准差 X ¯ ±S ,采用t检验比较;计数资料以频数(n)和百分比(%)表示,采用X2检验比较,采用二元Logistic回归模型,深入剖析自发性蛛网膜下腔出血(SAH)患者并发急性脑积水(AHC)的相关危险因素。P < 0.05为差异有统计学意义。

3. 结果

3.1. 急性脑积水发生情况

对162例蛛网膜下腔出血患者进行分析,其中创伤性蛛网膜下腔出血37例,自发性蛛网膜下腔出血共计125例。自发性蛛网膜下腔出血患者中,有29人病危,放弃治疗,占比23.2%。自发性蛛网膜下腔出血患者中,有29例患急性脑积水,占比23.2%,其中12人病危,放弃治疗,占比41.4%,96例患者未患急性脑积水,占比76.8%。

3.2. 自发性蛛网膜下腔出血患者发生急性脑积水组与未发生急性脑积水组资料比较

年龄、GCS评分、性别、饮酒史、吸烟史、高血压病史、脑室积血、早期锥颅置管引流术、昏迷、呕吐有统计学意义,P < 0.05 (表1表2)。发生AH的患者平均年龄(67.280 ± 10.113)大于未患AH患者平均年龄(54.640 ± 14.228);女性患AH (19人患AH,占女性人数的31.10%)的比例大于男性(10人患AH,占男性人数的15.60%);无吸烟史的患者患AH (27人患AH,占吸烟患者的29.30%)的比率大于有吸烟史的患者(2人患AH,占不吸烟患者的6.10%);不饮酒的患者患AH (27人患AH,占不饮酒患者的27.00%)的比例大于饮酒患者(2人患AH,占不饮酒患者的8.00%);有高血压病的患者患AH (20人患AH,占有高血压患者的34.50%)的比例大于无高血压病的患者(9人患AH,占无高血压病史患者的13.40%);有脑室积血的患者患AH (21人患AH,占脑室积血患者的47.70%)的比例大于无脑室积血患者(8人患AH,占脑室积血患者的9.90%);早期未接受锥颅置管引流术的患者患AH (16人患AH,占早期锥颅置管引流术的16.7%)的比例高于未接受锥颅置管引流术的患者(13人患AH,占锥颅置管引流术的44.80%);入院时昏迷的患者患AH (16人患AH,占昏迷患者的53.3%)的比例大于入院时未昏迷的患者(13人患AH,占未昏迷患者的13.7%);入院时呕吐的患者患AH (22人患AH,占呕吐患者的33.3%)的比例高于入院时未呕吐的患者(7人患AH,占未呕吐患者的11.90%);GCS评分 < 8分的患者患AH (9人患AH,占GCS评分 < 8分患者的42.9%)的比例高于GCS评分 ≥ 8分的患者(20人患AH,占GCS评分 ≥ 8分患者的19.2%)。既往患糖尿病和早期接受腰大池引流术均无统计学意义(P > 0.05)。

Table 1. The relationship between risk factors of spontaneous subarachnoid hemorrhage and hydrocephalus

1. 自发性蛛网膜下腔出血危险因素与脑积水的关系

因素

发生脑积水

未发生脑积水

卡方值

P

例数

百分比

例数

百分比

性别

10

15.60%

54

84.40%

4.224

0.040

19

31.10%

42

68.90%

吸烟

2

6.10%

31

93.90%

7.392

0.007

27

29.30%

65

70.70%

饮酒

2

8.00%

23

92.00%

4.052

0.044

27

27.00%

73

73.00%

高血压

20

34.50%

38

65.50%

7.731

0.005

9

13.40%

58

86.60%

糖尿病

4

30.80%

9

69.20%

0.467

0.495

25

22.30%

87

77.70%

脑室积血

21

47.70%

23

52.30%

22.926

0.000

8

9.90%

73

90.10%

腰大池

14

21.90%

50

78.10%

0.129

0.719

15

24.60%

46

75.40%

锥颅置管引流

13

44.80%

16

55.20%

9.913

0.002

16

16.70%

80

88.30%

昏迷

16

53.30%

14

46.70%

20.117

0.000

13

13.70%

82

86.30%

呕吐

22

33.30%

44

66.70%

8.059

0.050

7

11.90%

52

88.10%

GCS评分

<8分

9

42.90%

12

57.10%

5.474

0.019

≥8分

20

19.20%

84

80.80%

Table 2. Relationship between risk factors of spontaneous subarachnoid hemorrhage and hydrocephalus

2. 自发性蛛网膜下腔出血危险因素与脑积水的关系

因素

发生脑积水

未发生脑积水

t

P

X ¯

S

X ¯

S

年龄

67.280

10.113

54.640

14.228

4.447

0.000

3.3. 动脉瘤性蛛网膜下腔出血患者发生急性脑积水组与未发生急性脑积水组(表3)

125名患者中,有85名患者接受了颅内血管造影检查,其中47名患者发现有动脉瘤,38名患者未发现动脉瘤,是否有动脉瘤与AH的发生无统计学意义,P = 0.663。对47名动脉瘤患者进一步分析(表3),Hunt-Hess分级更高的患者发生AH的比例高于Hunt-Hess分级低的患者(P = 0.022),Hunt-Hess1级、Hunt-Hess2级、Hunt-Hess3级、Hunt-Hess4级、Hunt-Hess5级患者发生AH的概率分别为0.0%、7.7%、8.3%、33.3%、66.7%;患AH的患者动脉瘤直径(6.37 ± 3.844)大于未患AH的患者(4.59 ± 1.679),P = 0.003;动脉瘤位置、是否接受动脉瘤栓塞术无统计学意义,P > 0.05。

Table 3. The relationship between risk factors of aneurysmal subarachnoid hemorrhage and hydrocephalus

3. 动脉瘤性蛛网膜下腔出血危险因素与脑积水的关系

因素

发生脑积水

未发生脑积水

X2

P

n

%

n

%

动脉瘤

7

14.89%

40

85.11%

0.19

0.663

7

18.42%

31

81.58%

动脉瘤位置

大脑前动脉

1

50.00%

1

50.00%

8.818

0.184

大脑中动脉

0

0.00%

11

100.00%

大脑后动脉

1

33.30%

2

66.70%

前交通动脉

3

25.00%

9

75.00%

后交通动脉

1

7.70%

12

92.30%

基底动脉

0

0.00%

4

100.00%

颈内动脉

1

50.00%

1

50.00%

Hunt-Hess分级

Hunt-Hess 1级

0

0.00%

10

100.00%

11.448

0.022

Hunt-Hess 2级

1

7.70%

12

92.30%

Hunt-Hess 3级

1

8.30%

11

91.70%

Hunt-Hess 4级

3

33.30%

6

66.70%

Hunt-Hess 5级

2

66.70%

1

33.30%

动脉瘤栓塞术

接受治疗

6

15.00%

34

85.00%

0.002

0.961

拒绝治疗

1

14.90%

6

85.10%

3.4. 对相关因素进行多因素Logistic回归分析(图1)

对年龄、GCS评分、性别、吸烟史、高血压病史、糖尿病史、脑室积血、接受腰大池治疗、接受锥颅置管引流术治疗、入院时是否昏迷、入院时是否呕吐进行多因素Logistic回归分析,结果显示年龄、GCS评分、脑室积血、入院时呕吐、入院时昏迷是sSAH患者并发AH的危险或保护因素,P < 0.05。其中,GCS评分(OR, 0.073 [95% CI, 0.007~0.726])大于8分是患AH的保护因素;高龄(OR, 1.089 [95% CI, 1.022~1.160])、脑室积血(OR, 4.219 [95% CI, 1.139~15.631])、入院时呕吐(OR, 7.174 [95%, 1.611~31.947])、入院时昏迷(OR, 18.239 [95% CI, 1.952~170.369])是患AH的危险因素。

Figure 1. OR

1. OR

4. 讨论

基于CSF水动力学的经典假设[18],脑积水可由CSF循环路径的阻塞、CSF吸收能力降低或CSF产生过多而形成。多项研究也认同[19]-[21] ISF (组织液)-CSF(脑脊液)体积的变化受CNS (中枢神经系统)微血管中的流体静力和渗透力的影响,因此当脑脊液压力相较组织液低、或者渗透压相较组织液高时,会促进脑室系统液体增多,从而形成脑积水。如今普遍认为脑脊液由脉络丛产生,依次从侧脑室延室间孔流至第三脑室,与第三脑室产生的部分脑脊液通过中央导水管流至第四脑室,再汇合第四脑室产生的脑脊液流至小脑延髓池,并迅速扩散至整个蛛网膜下隙,最终流向大脑背面,由蛛网膜颗粒吸收,进入上矢状窦,汇入整个循环系统,整个脑脊液循环中,其中任意环节循环受阻,均有一定几率产生脑积水。脑脊液的源头脉络丛,由单层极化分泌上皮细胞组成,其主要作用是产生和分泌60%~75%的总脑脊液[22],上皮细胞表面是脑室室管膜的延续,高度折叠并在其整个结构中形成绒毛,其核心是结缔组织基质和高度开窗的毛细血管,允许液体和小分子扩散到基质中[23],当脉络膜上皮细胞受损时,会影响脑脊液的流动,从而导致脑积水、脑出血、脑膜炎甚至死亡。有学者研究表明[24],脉络丛上皮细胞中存在Ldhb、Echs1、Hsd17b10、Gstt1和Ldha五中年龄相关基因,年轻小鼠中这些基因下调,这些基因随着年龄的增长而上调,从而表达相应蛋白,控制脉络丛上皮细胞衰老,以达到脉络丛上皮细胞衰老的目的。脉络丛在衰老过程中,上皮细胞萎缩,基底膜增厚[25],在中年和老年健康人群中由于蛛网膜脉络丛钙化、蛛网膜增厚,以及中枢血管高血压的综合作用,导致脑脊液排出阻力增加[26],有研究表明CSF周转在年轻成人中估计每天发生6次,而在老年对象中每天发生1.7次[27],因此随着年龄的增大,脉络丛衰老,导致脑脊液分泌减少,且整个循环通路速度减慢,再加上老年人群脑萎缩使得脑室系统扩大,我们有理由猜测随着年龄的增大,正常情况下脑脊液压力有下降趋势,当在遇到病理性改变时(如自发性蛛网膜下腔出血),更容易因为压力梯度而产生AH。这与我们的研究结果,年龄是sSAH并发AH的危险因素,可以相互佐证。

在我们的这项研究中,脑室积血是sSAH并发AH的危险因素,Rajshekhar,Jartti等人的研究结果也表明脑室积血的患者更容易出现脑积水[10] [28]。当脑室积血后血凝块产物与软脑膜和蛛网膜颗粒的纤维化可能会减少CSF的循环,并抑制CSF的吸收,最终导致脑积水的发展[29],且脑室内被血块完全阻塞时更容易发生急性脑室扩张[30],一项180例蛛网膜下腔出血的病例分析显示,几乎所有(92.3%)大出血(超过30 ml体积)的患者都有脑积水[28],一方面更大的血凝块所致的阻塞效应越明显,更容易产生脑积水,另一方面,血液中含有大量蛋白质,且红细胞破裂也会释放血红蛋白,病理状态下血液破入脑室,使得脑脊液的渗透压升高,进一步让部分组织液被吸入脑室,脑室系统的液体进一步增多。在一个脑积水大鼠模型中,研究人员证明了脑室内出血可以引起脉络丛上皮中依赖于Toll受体4 (TLR4)和TLR4-NF-κB的炎症反应,脑室内出血诱导的脑脊液过度分泌是通过TLR4依赖的激活STE20型应激激酶SPAK介导的,SPAK结合、磷酸化并刺激CPE顶端膜上的NKCC1共转运体。遗传性删除TLR4或SPAK可以正常化过度活跃的脑脊液分泌速率并减轻PHH症状,药物阻断TLR4-NF-kB信号或SPAK-NKCC1共转运蛋白复合体也能实现同样效果[31]。综上所述,脑室积血诱导急性脑积水机制我们认为有以下几个方面:首先,脑室积血会在一定程度上阻碍已产生的脑脊液的正常循环;其次,血液中的蛋白成分进入脑脊液,会提高脑脊液的渗透压,其渗透梯度的变化促进AH的形成;最后,血液通过激发炎症反应而促进脑脊液的过量分泌,进一步加剧AH的发生。对于这种脑室积血的sSAH患者,尽早进行脑室外引流,改善这种由血液引起的脑室系统的病理环境,或许可以降低AH的发病率,但我们的多因素分析结果却不能支持这一观点。

在严重的SAH中,全脑缺血可能导致意识丧失和完全的灌注停止[32]。NO和Ca2+作为微血管功能障碍的主要介质,其在蛛网膜下腔出血的早期发挥着重要作用[33]。有研究表明,蛛网膜下腔出血后15分钟内皮细胞和平滑肌细胞Ca2+水平可增加[34],而维持微血管稳定性和张力的内皮NO合酶(eNOS)可在SAH后1小时内被破坏,随后是NO水平的快速下降[35]。NO和Ca2+的这种早期变化促使脑血管痉挛,这会导致严重脑缺血及缺氧,缺血导致内皮细胞和平滑肌细胞的快速凋亡,导致血脑屏障结构恶化[36];出血后的血液产物可以通过启动炎症细胞因子和降解血脑屏障的酶的合成进一步破坏血脑屏障[33]。脑水肿在蛛网膜下腔出血后迅速发展,这与血脑屏障被破坏密切相关,具体来说,由于内皮细胞功能障碍、紧密连接的破坏和基底膜的降解,发生了血管源性水肿[37]。另一方面,由于缺血能量衰竭后细胞膜泵功能障碍引起的渗透转移,产生了细胞毒性水肿[37]。可以看出血管源性水肿和细胞毒性水肿在蛛网膜下腔出血的早期可迅速进展,导致颅内压升高。颅内压的上升,加上急性血管收缩和微血栓形成,进一步破坏了脑灌注压和脑血流量,引发全脑缺血[38]。可以推测,蛛网膜下腔出血早期颅内压迅速升高,随后全脑血供不足,进一步出现意识改变,颅内压的高低可以大致反映全脑缺血的程度,严重的脑缺血可使患者表现为早期昏迷。颅内压的增高也会影响正常的脑脊液循环,诱发AH。结合我们的多因素分析结果,患者早期意识昏迷可以作为AH的危险因素,而GCS评分作为患者昏迷程度的量化指标,我们也可以说GCS评分是AH的危险因素。颅内压升高也是患者早期呕吐的一个重要原因,我们可以推测早期出现呕吐的患者,颅内压更高,更容易发生AH。

综上所述,我们认为年龄、脑室积血、早期呕吐、早期昏迷是sSAH后并发AH的危险因素。Shishido等[39]在实验性大鼠蛛网膜下腔出血中发现,AH在雌性大鼠中发生得更频繁,但对雌激素是否在AH的发展中起作用尚不清楚。Demirgil等人[40]证明,糖尿病病史是脑积水发展的独立预测因素。但在另一个研究中[41]进行单变量分析时,糖尿病病史与脑积水无关,但他们发现脑积水组入院血糖水平 ≥ 126 mg/dl的患者比例显著较高。或许血糖可以通过改变血液渗透压而影响脑积水,但这仍然需要更多实验数据支持。

5. 结论

根据我们的研究结果,我们认为年龄较大的自发性蛛网膜下腔出血(sSAH)患者、有脑室积血、早期出现呕吐、早期昏迷以及格拉斯哥昏迷评分(GCS)较低的患者更有可能发展成急性脑积水。对于动脉瘤性蛛网膜下腔出血患者,急性脑积水发展的相关风险因素包括动脉瘤大小和Hunt-Hess分级。

附 录

自发性蛛网膜下腔出血:Spontaneous subarachnoid hemorrhage, sSAH;

急性脑积水:acute hydrocephalus, AH;

脑积水:Hydrocephalus, HH。

NOTES

*通讯作者。

参考文献

[1] Claassen, J. and Park, S. (2022) Spontaneous Subarachnoid Haemorrhage. The Lancet, 400, 846-862.
https://doi.org/10.1016/s0140-6736(22)00938-2
[2] van Gijn, J., Kerr, R.S. and Rinkel, G.J. (2007) Subarachnoid Haemorrhage. The Lancet, 369, 306-318.
https://doi.org/10.1016/s0140-6736(07)60153-6
[3] Hop, J.W., Rinkel, G.J.E., Algra, A. and van Gijn, J. (1997) Case-Fatality Rates and Functional Outcome after Subarachnoid Hemorrhage: A Systematic Review. Stroke, 28, 660-664.
https://doi.org/10.1161/01.str.28.3.660
[4] Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L. and Parag, V. (2009) Worldwide Stroke Incidence and Early Case Fatality Reported in 56 Population-Based Studies: A Systematic Review. The Lancet Neurology, 8, 355-369.
https://doi.org/10.1016/s1474-4422(09)70025-0
[5] Korja, M., Lehto, H., Juvela, S. and Kaprio, J. (2016) Incidence of Subarachnoid Hemorrhage Is Decreasing Together with Decreasing Smoking Rates. Neurology, 87, 1118-1123.
https://doi.org/10.1212/wnl.0000000000003091
[6] Korja, M., Silventoinen, K., Laatikainen, T., Jousilahti, P., Salomaa, V. and Kaprio, J. (2013) Cause-Specific Mortality of 1-Year Survivors of Subarachnoid Hemorrhage. Neurology, 80, 481-486.
https://doi.org/10.1212/wnl.0b013e31827f0fb5
[7] Raimondi, A.J. and Torres, H. (1973) Acute Hydrocephalus as a Complication of Subarachnoid Hemorrhage. Surgical Neurology, 1, 23-26.
[8] Kusske, J.A., Turner, P.T., Ojemann, G.A. and Harris, A.B. (1973) Ventriculostomy for the Treatment of Acute Hydrocephalus Following Subarachnoid Hemorrhage. Journal of Neurosurgery, 38, 591-595.
https://doi.org/10.3171/jns.1973.38.5.0591
[9] Vale, F.L., Bradley, E.L. and Fisher, W.S. (1997) The Relationship of Subarachnoid Hemorrhage and the Need for Postoperative Shunting. Journal of Neurosurgery, 86, 462-466.
https://doi.org/10.3171/jns.1997.86.3.0462
[10] Rajshekhar, V. and Harbaugh, R.E. (1992) Results of Routine Ventriculostomy with External Ventricular Drainage for Acute Hydrocephalus Following Subarachnoid Haemorrhage. Acta Neurochirurgica, 115, 8-14.
https://doi.org/10.1007/bf01400584
[11] Zaidi, H.A., Montoure, A., Elhadi, A., Nakaji, P., McDougall, C.G., Albuquerque, F.C., et al. (2015) Long-Term Functional Outcomes and Predictors of Shunt-Dependent Hydrocephalus after Treatment of Ruptured Intracranial Aneurysms in the BRAT Trial. Neurosurgery, 76, 608-615.
https://doi.org/10.1227/neu.0000000000000677
[12] Suarez-Rivera, O. (1998) Acute Hydrocephalus after Subarachnoid Hemorrhage. Surgical Neurology, 49, 563-565.
https://doi.org/10.1016/s0090-3019(97)00342-x
[13] de Oliveira, J.G., Beck, J., Setzer, M., Gerlach, R., Vatter, H., Seifert, V., et al. (2007) Risk of Shunt-Dependent Hydrocephalus after Occlusion of Ruptured Intracranial Aneurysms by Surgical Clipping or Endovascular Coiling. Neurosurgery, 61, 924-934.
https://doi.org/10.1227/01.neu.0000303188.72425.24
[14] Paisan, G.M., Ding, D., Starke, R.M., Crowley, R.W. and Liu, K.C. (2017) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage: Predictors and Long-Term Functional Outcomes. Neurosurgery, 83, 393-402.
https://doi.org/10.1093/neuros/nyx393
[15] Hoh, B.L., Ko, N.U., Amin-Hanjani, S., Chou, S.H., Cruz-Flores, S., Dangayach, N.S., et al. (2023) 2023 Guideline for the Management of Patients with Aneurysmal Subarachnoid Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. Stroke, 54, e314-e370.
https://doi.org/10.1161/str.0000000000000436
[16] Hua, C. and Zhao, G. (2017) Biomarkers in Adult Posthemorrhagic Hydrocephalus. International Journal of Stroke, 12, 574-579.
https://doi.org/10.1177/1747493017706187
[17] Fang, Y., Liu, Y., Chen, L., Wang, J., Zhang, J., Zhang, H., et al. (2024) Cerebrospinal Fluid Markers of Neuroinflammation and Coagulation in Severe Cerebral Edema and Chronic Hydrocephalus after Subarachnoid Hemorrhage: A Prospective Study. Journal of Neuroinflammation, 21, Article No. 237.
https://doi.org/10.1186/s12974-024-03236-y
[18] Dandy, W.E. (1919) Experimental Hydrocephalus. Annals of Surgery, 70, 129-142.
https://doi.org/10.1097/00000658-191908000-00001
[19] Andeweg, J. (1991) Concepts of Cerebral Venous Drainage and the Aetiology of Hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry, 54, 830-831.
https://doi.org/10.1136/jnnp.54.9.830
[20] Orešković, D., Klarica, M. and Vukić, M. (2002) The Formation and Circulation of Cerebrospinal Fluid Inside the Cat Brain Ventricles: A Fact or an Illusion? Neuroscience Letters, 327, 103-106.
https://doi.org/10.1016/s0304-3940(02)00395-6
[21] Bulat, M. and Klarica, M. (2011) Recent Insights into a New Hydrodynamics of the Cerebrospinal Fluid. Brain Research Reviews, 65, 99-112.
https://doi.org/10.1016/j.brainresrev.2010.08.002
[22] Sakka, L., Coll, G. and Chazal, J. (2011) Anatomy and Physiology of Cerebrospinal Fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases, 128, 309-316.
https://doi.org/10.1016/j.anorl.2011.03.002
[23] Thompson, D., Brissette, C.A. and Watt, J.A. (2022) The Choroid Plexus and Its Role in the Pathogenesis of Neurological Infections. Fluids and Barriers of the CNS, 19, Article No. 75.
https://doi.org/10.1186/s12987-022-00372-6
[24] Chen, Y., Luo, Z., Sun, Y., Li, F., Han, Z., Qi, B., et al. (2022) Exercise Improves Choroid Plexus Epithelial Cells Metabolism to Prevent Glial Cell-Associated Neurodegeneration. Frontiers in Pharmacology, 13, Article 1010785.
https://doi.org/10.3389/fphar.2022.1010785
[25] Faure, G.C. (2003) Choroid Plexus Ageing of the Brain and Alzheimer S Disease. Frontiers in Bioscience, 8, s515-s521.
https://doi.org/10.2741/1085
[26] Redzic, Z.B., Preston, J.E., Duncan, J.A., Chodobski, A. and Szmydynger‐Chodobska, J. (2005) The Choroid Plexus‐cerebrospinal Fluid System: From Development to Aging. Current Topics in Developmental Biology, 71, 1-52.
https://doi.org/10.1016/s0070-2153(05)71001-2
[27] Preston, J.E. (2001) Ageing Choroid Plexus‐cerebrospinal Fluid System. Microscopy Research and Technique, 52, 31-37.
https://doi.org/10.1002/1097-0029(20010101)52:1<31::aid-jemt5>3.3.co;2-k
[28] Jartti, P., Karttunen, A., Jartti, A., Ukkola, V., Sajanti, J. and Pyhtinen, J. (2004) Factors Related to Acute Hydrocephalus after Subarachnoid Hemorrhage. Acta Radiologica, 45, 333-339.
https://doi.org/10.1080/02841850410004274
[29] Strahle, J., Garton, H.J.L., Maher, C.O., Muraszko, K.M., Keep, R.F. and Xi, G. (2012) Mechanisms of Hydrocephalus after Neonatal and Adult Intraventricular Hemorrhage. Translational Stroke Research, 3, 25-38.
https://doi.org/10.1007/s12975-012-0182-9
[30] Klarica, M., Orešković, D., Božić, B., Vukić, M., Butković, V. and Bulat, M. (2009) New Experimental Model of Acute Aqueductal Blockage in Cats: Effects on Cerebrospinal Fluid Pressure and the Size of Brain Ventricles. Neuroscience, 158, 1397-1405.
https://doi.org/10.1016/j.neuroscience.2008.11.041
[31] Karimy, J.K., Zhang, J., Kurland, D.B., Theriault, B.C., Duran, D., Stokum, J.A., et al. (2017) Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nature Medicine, 23, 997-1003.
https://doi.org/10.1038/nm.4361
[32] Miller, B.A., Turan, N., Chau, M. and Pradilla, G. (2014) Inflammation, Vasospasm, and Brain Injury after Subarachnoid Hemorrhage. BioMed Research International, 2014, 1-16.
https://doi.org/10.1155/2014/384342
[33] Lauzier, D.C., Jayaraman, K., Yuan, J.Y., Diwan, D., Vellimana, A.K., Osbun, J.W., et al. (2023) Early Brain Injury after Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke, 54, 1426-1440.
https://doi.org/10.1161/strokeaha.122.040072
[34] Ostrowski, R.P., Colohan, A.R. and Zhang, J.H. (2006) Molecular Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. Neurological Research, 28, 399-414.
https://doi.org/10.1179/016164106x115008
[35] Sehba, F.A., Schwartz, A.Y., Chereshnev, I. and Bederson, J.B. (2000) Acute Decrease in Cerebral Nitric Oxide Levels after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 20, 604-611.
https://doi.org/10.1097/00004647-200003000-00018
[36] Li, Y., Wu, P., Bihl, J.C. and Shi, H. (2020) Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Current Neuropharmacology, 18, 1168-1179.
https://doi.org/10.2174/1570159x18666200106154203
[37] Hayman, E.G., Wessell, A., Gerzanich, V., Sheth, K.N. and Simard, J.M. (2016) Mechanisms of Global Cerebral Edema Formation in Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 26, 301-310.
https://doi.org/10.1007/s12028-016-0354-7
[38] Macdonald, R.L. and Schweizer, T.A. (2017) Spontaneous Subarachnoid Haemorrhage. The Lancet, 389, 655-666.
https://doi.org/10.1016/s0140-6736(16)30668-7
[39] Shishido, H., Zhang, H., Okubo, S., Hua, Y., Keep, R.F. and Xi, G. (2016) The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. In: Applegate, R., Chen, G., Feng, H. and Zhang, J., Eds., Brain Edema XVI, Springer, 335-339.
https://doi.org/10.1007/978-3-319-18497-5_58
[40] Demirgil, B.T., Tugcu, B., Postalci, L., Guclu, G., Dalgic, A. and Oral, Z. (2003) Factors Leading to Hydrocephalus after Aneurysmal Sub-Arachnoid Hemorrhage. Minimally Invasive Neurosurgery, 46, 344-348.
[41] Rincon, F., Gordon, E., Starke, R.M., Buitrago, M.M., Fernandez, A., Schmidt, J.M., et al. (2010) Predictors of Long-Term Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 113, 774-780.
https://doi.org/10.3171/2010.2.jns09376