[1]
|
Bass, A.J., Thorsson, V., Shmulevich, I., et al. (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480
|
[2]
|
刘晓梅, 白光辉, 郭云娣. SHH与胃癌、EBV(+)胃癌患者临床病理特征和预后的相关性[J]. 中国老年学杂志, 2023, 43(21): 5184-5187.
|
[3]
|
Salnikov, M.Y., MacNeil, K.M. and Mymryk, J.S. (2024) The Viral Etiology of EBV-Associated Gastric Cancers Contributes to Their Unique Pathology, Clinical Outcomes, Treatment Responses and Immune Landscape. Frontiers in Immunology, 15, Article ID: 1358511. https://doi.org/10.3389/fimmu.2024.1358511
|
[4]
|
Kim, J., Kim, N., Song, D.H., Choi, Y., Jeon, E., Kim, S., et al. (2024) Sex-Dependent Different Clinicopathological Characterization of Epstein-Barr Virus-Associated Gastric Carcinoma: A Large-Scale Study. Gastric Cancer, 27, 221-234. https://doi.org/10.1007/s10120-023-01460-8
|
[5]
|
Khan, G., Fitzmaurice, C., Naghavi, M. and Ahmed, L.A. (2020) Global and Regional Incidence, Mortality and Disability-Adjusted Life-Years for Epstein-Barr Virus-Attributable Malignancies, 1990-2017. BMJ Open, 10, e037505. https://doi.org/10.1136/bmjopen-2020-037505
|
[6]
|
Wong, Y., Meehan, M.T., Burrows, S.R., Doolan, D.L. and Miles, J.J. (2021) Estimating the Global Burden of Epstein-Barr Virus-Related Cancers. Journal of Cancer Research and Clinical Oncology, 148, 31-46. https://doi.org/10.1007/s00432-021-03824-y
|
[7]
|
闫超, 陕飞, 李子禹. 2020年全球胃癌负担分析: 聚焦中国流行现状[J]. 中国肿瘤, 2023, 32(3): 161-170.
|
[8]
|
Ucaryilmaz Metin, C. and Ozcan, G. (2022) Comprehensive Bioinformatic Analysis Reveals a Cancer-Associated Fibroblast Gene Signature as a Poor Prognostic Factor and Potential Therapeutic Target in Gastric Cancer. BMC Cancer, 22, Article No. 692. https://doi.org/10.1186/s12885-022-09736-5
|
[9]
|
熊德君, 丁晓凌, 周晓荣. 免疫治疗在胃癌中的应用研究进展[J]. 中国肿瘤临床, 2024, 51(7): 359-365.
|
[10]
|
许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249.
|
[11]
|
吴世英, 徐平龙, 张飞. 靶向肿瘤驱动基因的胃癌治疗研究进展[J]. 浙江大学学报(医学版), 2024, 53(1): 73-83.
|
[12]
|
胃癌高通量测序临床应用中国专家共识[J]. 中国肿瘤临床, 2023, 50(6): 309-318.
|
[13]
|
Duan, Y., Li, J., Zhou, S. and Bi, F. (2024) Effectiveness of PD-1 Inhibitor-Based First-Line Therapy in Chinese Patients with Metastatic Gastric Cancer: A Retrospective Real-World Study. Frontiers in Immunology, 15, Article ID: 1370860. https://doi.org/10.3389/fimmu.2024.1370860
|
[14]
|
陈小兵, 刘勇, 薛卫成, 等. 基于PD-L1蛋白表达水平的胃癌免疫治疗专家共识(2023年版) [J]. 中国肿瘤临床, 2024, 51(2): 55-63.
|
[15]
|
Pociupany, M., Snoeck, R., Dierickx, D. and Andrei, G. (2024) Treatment of Epstein-Barr Virus Infection in Immunocompromised Patients. Biochemical Pharmacology, 225, Article ID: 116270. https://doi.org/10.1016/j.bcp.2024.116270
|
[16]
|
Chen, Y., Sun, Z., Yin, J., et al. (2024) Digital Assessment of Tertiary Lymphoid Structures and Therapeutic Responses in Gastric Cancer: A Multi-Centric Retrospective Study. International Journal of Surgery, 110, 6732-6747.
|
[17]
|
Kim, E.J., Chae, H., Park, Y., Ryu, M., Kim, H., Shin, J., et al. (2023) Clinical Outcomes of Epstein-Barr Virus (EBV)-Associated Metastatic and Locally Advanced Unresectable Gastric Cancers (GCs) in Patients Receiving First-Line Fluoropyrimidine and Platinum (FP) Doublet Chemotherapy. Gastric Cancer, 27, 146-154. https://doi.org/10.1007/s10120-023-01445-7
|
[18]
|
Maestri, D., Napoletani, G., Kossenkov, A., Preston-Alp, S., Caruso, L.B. and Tempera, I. (2023) The Three-Dimensional Structure of the EBV Genome Plays a Crucial Role in Regulating Viral Gene Expression in EBVaGC. Nucleic Acids Research, 51, 12092-12110. https://doi.org/10.1093/nar/gkad936
|
[19]
|
Bos, J., Groen-van Schooten, T.S., Brugman, C.P., Jamaludin, F.S., van Laarhoven, H.W.M. and Derks, S. (2024) The Tumor Immune Composition of Mismatch Repair Deficient and Epstein-Barr Virus-Positive Gastric Cancer: A Systematic Review. Cancer Treatment Reviews, 127, Article ID: 102737. https://doi.org/10.1016/j.ctrv.2024.102737
|
[20]
|
Angerilli, V., Vanoli, A., Celin, G., Ceccon, C., Gasparello, J., Sabbadin, M., et al. (2024) Gastric Carcinoma in Autoimmune Gastritis: A Histopathologic and Molecular Study. Modern Pathology, 37, Article ID: 100491. https://doi.org/10.1016/j.modpat.2024.100491
|
[21]
|
Volesky-Avellaneda, K.D., Morais, S., Walter, S.D., O’Brien, T.R., Hildesheim, A., Engels, E.A., et al. (2023) Cancers Attributable to Infections in the US in 2017. JAMA Oncology, 9, 1678-1687. https://doi.org/10.1001/jamaoncol.2023.4273
|
[22]
|
高雅楠, 刘彩霞. PI3K/AKT/mTOR通路促进胃癌发生发展及化疗耐药的研究进展[J]. 中国当代医药, 2023, 30(11): 33-37.
|
[23]
|
李俊. EBV相关胃癌中SNAIL生物学作用及调控机制的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021
|
[24]
|
Piper, A., Penney, C., Holliday, J., Tincknell, G., Ma, Y., Napaki, S., et al. (2024) EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. International Journal of Molecular Sciences, 25, Article No. 5565. https://doi.org/10.3390/ijms25105565
|
[25]
|
Morgos, D., Stefani, C., Miricescu, D., Greabu, M., Stanciu, S., Nica, S., et al. (2024) Targeting PI3K/Akt/Mtor and MAPK Signaling Pathways in Gastric Cancer. International Journal of Molecular Sciences, 25, Article No. 1848. https://doi.org/10.3390/ijms25031848
|
[26]
|
Dayyani, F., Chao, J., Lee, F., Taylor, T.H., Neumann, K. and Cho, M.T. (2024) A Phase II Study of Cabozantinib and Pembrolizumab in Advanced Gastric/Gastroesophageal Adenocarcinomas Resistant or Refractory to Immune Checkpoint Inhibitors. The Oncologist, 29, oyae117. https://doi.org/10.1093/oncolo/oyae117
|
[27]
|
Jia, J., Zhao, H., Li, F., Zheng, Q., Wang, G., Li, D., et al. (2024) Research on Drug Treatment and the Novel Signaling Pathway of Chronic Atrophic Gastritis. Biomedicine & Pharmacotherapy, 176, Article ID: 116912. https://doi.org/10.1016/j.biopha.2024.116912
|
[28]
|
Wang, Y., Ma, L., Kuang, Z., Li, D., Yang, J., Liu, Y., et al. (2024) Preparation of Radiolabeled Zolbetuximab Targeting CLDN18.2 and Its Preliminary Evaluation for Potential Clinical Applications. Molecular Pharmaceutics, 21, 3838-3847. https://doi.org/10.1021/acs.molpharmaceut.4c00122
|
[29]
|
Wu, J., Chen, J., Zhao, Y., Yuan, M., Chen, X., He, X., et al. (2024) Molecular SPECT/CT Profiling of Claudin18.2 Expression in Vivo: Implication for Patients with Gastric Cancer. Molecular Pharmaceutics, 21, 3447-3458. https://doi.org/10.1021/acs.molpharmaceut.4c00155
|
[30]
|
Qi, C., Liu, C., Gong, J., Liu, D., Wang, X., Zhang, P., et al. (2024) Claudin18.2-Specific CAR T Cells in Gastrointestinal Cancers: Phase 1 Trial Final Results. Nature Medicine, 30, 2224-2234. https://doi.org/10.1038/s41591-024-03037-z
|
[31]
|
Qi, C., Chong, X., Zhou, T., Ma, M., Gong, J., Zhang, M., et al. (2024) Clinicopathological Significance and Immunotherapeutic Outcome of Claudin 18.2 Expression in Advanced Gastric Cancer: A Retrospective Study. Chinese Journal of Cancer Research, 36, 78-89. https://doi.org/10.21147/j.issn.1000-9604.2024.01.08
|
[32]
|
Botta, G.P., Chao, J., Ma, H., Hahn, M., Sierra, G., Jia, J., et al. (2024) Metastatic Gastric Cancer Target Lesion Complete Response with Claudin18.2-Car T Cells. Journal for ImmunoTherapy of Cancer, 12, e007927. https://doi.org/10.1136/jitc-2023-007927
|
[33]
|
陶道玉. TFF2及Claudin18. 2表达失调在胃癌中的临床意义[D]: [硕士学位论文]. 济南: 山东大学, 2023
|
[34]
|
Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279. https://doi.org/10.3322/caac.21657
|
[35]
|
Wang, Z., Lv, Z., Xu, Q., Sun, L. and Yuan, Y. (2021) Identification of Differential Proteomics in Epstein-Barr Virus-Associated Gastric Cancer and Related Functional Analysis. Cancer Cell International, 21, Article No. 368. https://doi.org/10.1186/s12935-021-02077-6
|
[36]
|
王泽洋. EBV相关性胃癌多维度表型特征识别及其关联蛋白GBP5的作用机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2021
|
[37]
|
Su, C., Yu, R., Hong, X., Zhang, P., Guo, Y., Cai, J., et al. (2023) CXCR4 Expressed by Tumor-Infiltrating B Cells in Gastric Cancer Related to Survival in the Tumor Microenvironment: An Analysis Combining Single-Cell RNA Sequencing with Bulk RNA Sequencing. International Journal of Molecular Sciences, 24, Article No. 12890. https://doi.org/10.3390/ijms241612890
|
[38]
|
Qin, N., Zhang, Y., Xu, L., Liu, W. and Luo, B. (2022) Maintenance of Epstein-Barr Virus Latency through Interaction of LMP2A with Cxcr4. Archives of Virology, 167, 1947-1959. https://doi.org/10.1007/s00705-022-05511-w
|
[39]
|
韩超, 胡晓云, 刘畅, 等. 延胡索通过靶向CXCL17激活AMPK信号通路下调PD-L1抑制EB病毒感染诱导的胃癌免疫逃逸[J]. 中国医科大学学报, 2024, 53(5): 414-420.
|
[40]
|
张宏佳, 陆佩东, 孔令薇, 等. 免疫趋化因子CXCR4通过IL-6/STAT3信号通路调控胃癌炎症因子分泌和凋亡[J]. 免疫学杂志, 2023, 39(12): 1075-1082.
|
[41]
|
Sun, Y., Shi, D., Sun, J., Zhang, Y., Liu, W. and Luo, B. (2024) Regulation Mechanism of EBV-Encoded EBER1 and LMP2A on YAP1 and the Impact of YAP1 on the EBV Infection Status in EBV-Associated Gastric Carcinoma. Virus Research, 343, Article ID: 199352. https://doi.org/10.1016/j.virusres.2024.199352
|
[42]
|
Baral, B., Kandpal, M., Ray, A., Jana, A., Yadav, D.S., Sachin, K., et al. (2023) Helicobacter pylori and Epstein-Barr Virus Infection in Cell Polarity Alterations. Folia Microbiologica, 69, 41-57. https://doi.org/10.1007/s12223-023-01091-7
|
[43]
|
Du, Y., Zhang, J., Gong, L., Feng, Z., Wang, D., Pan, Y., et al. (2022) Hypoxia-Induced EBV-circLMP2A Promotes Angiogenesis in EBV-Associated Gastric Carcinoma through the KHSRP/VHL/HIF1α/VEGFA Pathway. Cancer Letters, 526, 259-272. https://doi.org/10.1016/j.canlet.2021.11.031
|
[44]
|
Duan, X., Chen, H., Zhou, X., Liu, P., Zhang, X., Zhu, Q., et al. (2022) EBV Infection in Epithelial Malignancies Induces Resistance to Antitumor Natural Killer Cells via F3-Mediated Platelet Aggregation. Cancer Research, 82, 1070-1083. https://doi.org/10.1158/0008-5472.can-21-2292
|
[45]
|
Li, P., Zhang, H., Chen, T., et al. (2024) Cancer-Associated Fibroblasts Promote Proliferation, Angiogenesis, Metastasis and Immuno-Suppression in Gastric Cancer. Matrix Biology.
|
[46]
|
Fang, K., Hung, H., Lau, N.Y.S., Chi, J., Wu, D. and Cheng, K. (2023) Development of a Genetically Engineered Mouse Model Recapitulating LKB1 and PTEN Deficiency in Gastric Cancer Pathogenesis. Cancers, 15, Article No. 5893. https://doi.org/10.3390/cancers15245893
|
[47]
|
Wang, X., Xu, W., Zhu, C., Cheng, Y. and Qi, J. (2023) PRMT7 Inhibits the Proliferation and Migration of Gastric Cancer Cells by Suppressing the PI3K/AKT Pathway via PTEN. Journal of Cancer, 14, 2833-2844. https://doi.org/10.7150/jca.88102
|
[48]
|
van Ree, J.H., Jeganathan, K.B., Fierro Velasco, R.O., Zhang, C., Can, I., Hamada, M., et al. (2023) Hyperphosphorylated PTEN Exerts Oncogenic Properties. Nature Communications, 14, Article No. 2983. https://doi.org/10.1038/s41467-023-38740-x
|
[49]
|
Vidotto, T., Melo, C.M., Lautert-Dutra, W., Chaves, L.P., Reis, R.B. and Squire, J.A. (2023) Pan-Cancer Genomic Analysis Shows Hemizygous PTEN Loss Tumors Are Associated with Immune Evasion and Poor Outcome. Scientific Reports, 13, Article No. 5049. https://doi.org/10.1038/s41598-023-31759-6
|
[50]
|
Xu, J., Liu, D., Niu, H., Zhu, G., Xu, Y., Ye, D., et al. (2023) Correction: Resveratrol Reverses Doxorubicin Resistance by Inhibiting Epithelial-Mesenchymal Transition (EMT) through Modulating PTEN/Akt Signaling Pathway in Gastric Cancer. Journal of Experimental & Clinical Cancer Research, 42, Article No. 23. https://doi.org/10.1186/s13046-023-02593-5
|
[51]
|
Lin, X., Li, G., Yan, X., Fu, W., Ruan, J., Ding, H., et al. (2023) Long Non-Coding RNA BC002811 Promotes Gastric Cancer Metastasis by Regulating SOX2 Binding to the pten Promoter. International Journal of Biological Sciences, 19, 967-980. https://doi.org/10.7150/ijbs.76407
|
[52]
|
Park, H., Imoto, S. and Miyano, S. (2022) Predictivenetwork: Predictive Gene Network Estimation with Application to Gastric Cancer Drug Response-Predictive Network Analysis. BMC Bioinformatics, 23, Article No. 342. https://doi.org/10.1186/s12859-022-04871-z
|
[53]
|
Deng, H., Gao, J., Cao, B., Qiu, Z., Li, T., Zhao, R., et al. (2023) LncRNA CCAT2 Promotes Malignant Progression of Metastatic Gastric Cancer through Regulating CD44 Alternative Splicing. Cellular Oncology, 46, 1675-1690. https://doi.org/10.1007/s13402-023-00835-4
|
[54]
|
Hui, D., Chen, J., Jiang, Y., Pan, Y., Zhang, Z., Dong, M., et al. (2020) Cd44+cd24-/Low Sphere-Forming Cells of EBV-Associated Gastric Carcinomas Show Immunosuppressive Effects and Induce Tregs Partially through Production of Pge2. Experimental Cell Research, 390, Article ID: 111968. https://doi.org/10.1016/j.yexcr.2020.111968
|
[55]
|
Nie, P., Zhang, W., Meng, Y., Lin, M., Guo, F., Zhang, H., et al. (2022) A YAP/TAZ-CD54 Axis Is Required for CXCR2-CD44-Tumor-Specific Neutrophils to Suppress Gastric Cancer. Protein & Cell, 14, 513-531. https://doi.org/10.1093/procel/pwac045
|
[56]
|
Giraud, J., Seeneevassen, L., Rousseau, B., Bouriez, D., Sifré, E., Giese, A., et al. (2022) Cd44v3 Is a Marker of Invasive Cancer Stem Cells Driving Metastasis in Gastric Carcinoma. Gastric Cancer, 26, 234-249. https://doi.org/10.1007/s10120-022-01357-y
|
[57]
|
Gómez-Gallegos, A.A., Ramírez-Vidal, L., Becerril-Rico, J., Pérez-Islas, E., Hernandez-Peralta, Z.J., Toledo-Guzmán, M.E., et al. (2023) CD24+CD44+CD54+EpCAM+ Gastric Cancer Stem Cells Predict Tumor Progression and Metastasis: Clinical and Experimental Evidence. Stem Cell Research & Therapy, 14, Article No. 16. https://doi.org/10.1186/s13287-023-03241-7
|
[58]
|
Xie, W., Cheng, J., Hong, Z., Cai, W., Zhuo, H., Hou, J., et al. (2022) Multi-Transcriptomic Analysis Reveals the Heterogeneity and Tumor-Promoting Role of Spp1/cd44-Mediated Intratumoral Crosstalk in Gastric Cancer. Cancers, 15, Article No. 164. https://doi.org/10.3390/cancers15010164
|
[59]
|
Zhang, J., Wang, H., Wu, J., Yuan, C., Chen, S., Liu, S., et al. (2022) GALNT1 Enhances Malignant Phenotype of Gastric Cancer via Modulating CD44 Glycosylation to Activate the Wnt/β-Catenin Signaling Pathway. International Journal of Biological Sciences, 18, 6068-6083. https://doi.org/10.7150/ijbs.73431
|
[60]
|
Hou, W., Kong, L., Hou, Z. and Ji, H. (2022) CD44 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Gastric Cancer. BMC Medical Genomics, 15, Article No. 225. https://doi.org/10.1186/s12920-022-01383-w
|
[61]
|
Sohel, M. (2023) Comprehensive Exploration of Biochanin A as an Oncotherapeutics Potential in the Treatment of Multivarious Cancers with Molecular Insights. Phytotherapy Research, 38, 489-506. https://doi.org/10.1002/ptr.8050
|
[62]
|
Jin, G., Zhang, J., Cao, T., Chen, B., Tian, Y. and Shi, Y. (2022) Exosome-Mediated lncRNA SND1-IT1 from Gastric Cancer Cells Enhances Malignant Transformation of Gastric Mucosa Cells via Up-Regulating SNAIL1. Journal of Translational Medicine, 20, Article No. 284. https://doi.org/10.1186/s12967-022-03306-w
|
[63]
|
Yu, T., Ran, L., Zhao, H., Yin, P., Li, W., Lin, J., et al. (2021) Circular RNA circ-TNPO3 Suppresses Metastasis of GC by Acting as a Protein Decoy for IGF2BP3 to Regulate the Expression of MYC and SNAIL. Molecular Therapy—Nucleic Acids, 26, 649-664. https://doi.org/10.1016/j.omtn.2021.08.029
|
[64]
|
Wang, Z., Peng, Z., Liu, Q., Guo, Z., Menatola, M., Su, J., et al. (2021) Co-Expression with Membrane CMTM6/4 on Tumor Epithelium Enhances the Prediction Value of PD-L1 on Anti-Pd-1/l1 Therapeutic Efficacy in Gastric Adenocarcinoma. Cancers, 13, Article No. 5175. https://doi.org/10.3390/cancers13205175
|
[65]
|
Zhang, C., Zhao, S. and Wang, X. (2021) Co-Expression of CMTM6 and PD-L1: A Novel Prognostic Indicator of Gastric Cancer. Cancer Cell International, 21, Article No. 78. https://doi.org/10.1186/s12935-020-01734-6
|
[66]
|
Wang, S., Shi, J., Wang, X., Mu, H., Wang, X., Xu, K., et al. (2023) 1h-Indazoles Derivatives Targeting PI3K/AKT/mTOR Pathway: Synthesis, Anti-Tumor Effect and Molecular Mechanism. Bioorganic Chemistry, 133, Article ID: 106412. https://doi.org/10.1016/j.bioorg.2023.106412
|
[67]
|
Roy, G., Yang, T., Liu, S., Luo, Y., Liu, Y. and Zhong, Q. (2023) Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. International Journal of Molecular Sciences, 24, Article No. 1964. https://doi.org/10.3390/ijms24031964
|
[68]
|
孙菁阳, 肖华, 潘晓雯, 等. MAP9对EB病毒阳性胃癌细胞生物学行为影响[J]. 青岛大学学报(医学版), 2020, 56(4): 432-436.
|
[69]
|
Zhao, X., Huang, X., Dang, C., Wang, X., Qi, Y. and Li, H. (2024) The Epstein-Barr Virus-miRNA-BART6-5p Regulates TGF-β/SMAD4 Pathway to Induce Glycolysis and Enhance Proliferation and Metastasis of Gastric Cancer Cells. Oncology Research, 32, 999-1009. https://doi.org/10.32604/or.2024.046679
|