EBV相关性胃癌的研究进展
Research Progress of EBV-Associated Gastric Carcinoma
DOI: 10.12677/jcpm.2024.34244, PDF, HTML, XML,   
作者: 马榆哲, 赵 红*:延安大学附属医院肿瘤科,陕西 延安
关键词: EBV胃癌分子特征治疗靶点Epstein-Barr Virus Gastric Carcinoma Molecular Features Therapeutic Target
摘要: EBV相关胃癌(EBV-associated gastric carcinoma, EBVaGC)是常见的 EBV相关肿瘤之一,是胃癌(Gastric carcinoma, GC)独特亚型之一,约占GC的10%。EBVaGC的分子特征主要为DNA高甲基化、PIK3CA基因突变、PD-L1高表达及其他分子特征,这些分子特征不仅有助于EBVaGC的诊断和分类,而且为针对性的治疗提供了重要信息。由于这些分子特征,越来越多的研究开始关注靶向治疗在EBVaGC中的作用。本文就EBVaGC潜在治疗靶点的研究进展进行综述。
Abstract: EBV-associated gastric carcinoma (EBVaGC) is one of the common EBV-associated tumours and is one of the unique subtypes of gastric carcinoma (GC), accounting for about 10% of GC. The molecular features of EBVaGC are mainly DNA hypermethylation, PIK3CA gene mutation, high PD-L1 expression and other molecular features, which not only help to diagnose and classify EBVaGC, but also provide important information for targeted treatment. Due to these molecular features, more and more studies have begun to focus on the role of targeted therapy in EBVaGC. In this article, we review the research progress on potential therapeutic targets of EBVaGC.
文章引用:马榆哲, 赵红. EBV相关性胃癌的研究进展[J]. 临床个性化医学, 2024, 3(4): 1697-1706. https://doi.org/10.12677/jcpm.2024.34244

1. 引言

基于TCGA数据库的多组测序结果,胃癌可分为四个亚型,包括微卫星不稳定(MSI)、EBV阳性、基因组稳定(GS)和染色体不稳定(CIN) [1]。EBVaGC的临床特点为:更常见于男性患者,且患者平均年龄较小,倾向于发生在胃的中部和上部,特别是胃体及贲门部,胃窦发病占比较小,残胃癌发生率较高[2]。病灶通常呈现为溃疡型或凹陷型,局部神经更易受侵犯[3]。它们可以细分为不同的组织学亚型,包括淋巴上皮癌样癌(LELC)、类克罗恩病样淋巴样反应(CLR)和常规型腺癌(CA)。通常较少出现淋巴结转移。预后与淋巴结转移,TNM分期,肿瘤病灶直径大小有关,其预后较EBV阴性胃癌(EBV-negative gastric carcinoma, EBVnGC)更佳,预测平均生存期明显延长,EBV阳性的胃癌患者中位生存时间为8.5年,而阴性患者仅为5.3年[4]。其HER2(+)表达率低,PD-L1表达率高,分子学特征与分化程度、浸润深度相关[2] [4]

全球疾病负担(Global Burden of Disease, GBD)研究中数据显示EB病毒导致的胃癌病例的新发数量近20内年逐渐增加至113,205例,其中男性EBVaGC患者新发病例数(87,924)约为女性患者(25,281)的3.5倍[5] [6]。大量学者从癌症数据库中检索到的各区域发病率和死亡率进行计算,并对已发表的与EBV相关的病例比例或荟萃分析的结果进行统计,结果显示2020年各地区EBVaGC病例约占所有GC病例的7.7%~10.42% [6] [7]

目前普遍治疗方法是早期手术、化疗、靶向治疗、免疫治疗、新辅助化疗、生物标志物指导治疗、基于高通量测序技术(Next-generation Sequencing, NGS)的EBV检测指导治疗、联合治疗等[8]-[11]。其中,基于NGS对胃癌的应用,在国内逐渐形成共识:推荐对所有诊断为胃癌的患者,优先通过IHC/FISH判读HER2状态,可使用NGS检测ERBB2基因扩增作为补充,有助于抗HER2靶向治疗,或者联合ICIs治疗晚期胃癌患者(推荐等级:II级);基于NGS检测全面评估晚期胃癌患者的ERBB2扩增状态,以及RTK-RAS-PI3K等通路耐药基因突变,有助于抗HER2靶向治疗及其他治疗方案的制定(推荐等级:III级);对无法取得活检组织的患者,可通过NGS ctDNA进行基因分型,检测ERBB2扩增作为参考(推荐等级:II级) [12]。针对目前对EBVaGC的流行病学、病理特征及预后相关性,总结其目前已知和未来潜在的治疗靶点,突出了该研究的必要性。

2. 当前成熟的治疗靶点

2.1. 细胞程序性死亡配体1 (PD-L1)

PD-L1的过度表达已被报道为EBVaGC的特征之一。大量报道也表明PD-L1在EBVaGC肿瘤中表达,PD-L1蛋白表达与肿瘤的Lauren分型的弥漫性组织学类型和肿瘤浸润黏膜下层以上(Pt1b以上)显著相关,而免疫细胞PD-L1蛋白表达与EBVaGC的弥漫性组织学、肿瘤侵犯静脉、淋巴浸润显著相关[13]。高表达的PD-L1,具有抑制T细胞增殖的作用,PD-L1表达在癌细胞上,并与免疫细胞表面的受体PD-1结合,抑制肿瘤间质中肿瘤特异性T细胞的活性,帮助肿瘤细胞逃避宿主的免疫监视与杀伤[13]。目前,许多研究表明:EBV阳性/MSI-H的胃癌对PD-1/PD-L1抑制剂的疗效明显优于EBV阴性/微卫星稳定的胃癌[14]。目前主要用于治疗胃癌的PD-1/PD-L1抑制剂包括PD-1抑制剂纳武利尤单抗、派姆单抗和卡瑞利珠单抗,以及PD-L1抑制剂阿维鲁单抗[14]-[20]。已有多项研究结果表明,派姆单抗在胃癌的一线、二线、三线治疗中均显示出较好的疗效和较高的安全性,并且客观缓解率(ORR)随着综合阳性评分(CPS)增高而升高,说明派姆单抗对PD-L1高表达患者有一定的疗效[3]。针对该特征,目前的几项研究结果为:一项研究对61例接受帕博利珠单抗治疗的转移性胃癌患者的分子特征进行了分析,其中6例EBV阳性患者的PD-L1表达均为阳性,其ORR达到了100% [3];还有一项研究通过免疫组织化学染色分析了159例诊断为EBV阳性胃癌患者PD-L1表达与临床病理学特征的相关性,在接受抗PD-1抗体单药治疗的EBV阳性胃癌患者中,PD-L1阳性患者的ORR明显优于PD-L1阴性患者(63.3%比0.0%,P = 0.001) [20];一项韩国的Ⅱ期临床试验中,也发现6例EBVaGC患者对pembrolizumab的治疗反应良好,ORR高达100%,中位缓解持续时间达8.5个月[3]。然而,在另一项研究中,55例晚期胃癌患者接受toripalimab治疗,其中有4例EBV阳性,仅观察到1例患者达到部分缓解(25%) [21]。虽然当前的这些研究中,PD-1/PD-L1抑制剂治疗EBVaGC的效果并未达到理想预期,但是随着对机制进一步的认知和不断增多的临床试验,PD-1/PD-L1抑制剂治疗EBVaGC效果的前景十分乐观。

2.2. 磷脂酰肌醇3激酶(PIK3CA-AKT通路)

PIK3CA基因是一种在多种癌症中常见的癌基因,其编码的蛋白是磷脂酰肌醇3激酶(PI3K)的催化亚基,参与细胞增殖、分化和存活等生理功能[22]。在胃癌中,PIK3CA基因的突变与肿瘤的发生发展密切相关[22]。利用MassARRAY分子量阵列分析系统检测胃癌组织中PIK3CA基因突变,发现PIK3CA_E542K (1624G > A)和PIK3CA_E545K (1633G > A)突变在中国西北地区的汉族人群中具有较高的携带率[23]。研究表明PIK3CA基因的高表达与胃癌细胞的侵袭力正相关,并且可以作为预测胃癌转移的一个重要指标[22] [24]。带有PIK3CA突变的胃癌通常伴随着肿瘤周围基质中的肿瘤浸润淋巴细胞(TILs),这些高TIL胃癌对免疫治疗反应良好,并表现出良好的预后。PIK3CA基因的突变亚型可能会影响肿瘤免疫微环境的多样性,从而影响对AKT抑制剂治疗的反应[24]

PI3K (磷脂酰肌醇-3羟基激酶)是一种具有双重激酶活性的酶,它包括三种亚型,其中I型与肿瘤的发生发展密切相关[24]。AKT是一种丝/苏氨酸蛋白激酶,是PI3K通路下游的关键效应蛋白。AKT被彻底激活,并能够激活其下游的多种效应因子,参与细胞存活、增殖和代谢等过程[24]。PI3K/AKT/mTOR通路在胃癌中的作用:该通路在多种恶性肿瘤中过度激活,包括胃癌。过度激活的PI3K/AKT/mTOR通路促进细胞存活和增殖,抑制细胞凋亡,参与血管生成,辅助肿瘤生长,并促进肿瘤的侵袭和转移[24] [25]

EBV可通过PI3K/AKT途径在核内上调SNAIL蛋白的表达,促EMT (上皮–间质转化,Epithelial-Mesenchymal Transition)进程,从而促进胃癌发展[25]

PI3K是PI3K/AKT信号通路的起始点,其抑制剂代表药物主要为LY294002和MLN1117两种。哌立福辛(Perifosine)是AKT抑制剂的代表性药物,它在抑制胃癌细胞增殖的同时又可诱导胃癌细胞发生凋亡[26]。mTOR的特异性抑制剂依维莫司(RAD001)和西罗莫司脂化物(CCL-779)已被确定为有效的抗肿瘤药物,可抑制mTOR的活化,从而改变下游蛋白的活化水平,从而抑制胃癌的发展[26]。因此,使用当前成熟的治疗方案,靶向这一信号通路,对于EBVaGC治疗具有重要意义。

2.3. CLDN18.2

Claudin家族蛋白是紧密连接复合体的主要成分之一。Claudin蛋白的异常组织表达导致功能障碍紧密连接,影响各种细胞信号通路,并可能促进一些上皮癌的致瘤性进展[27]。CLDN18.2是claudin家族的一员,主要存在于胃粘膜,由于紧密连接被破坏,它可能在恶性组织中变得更加暴露和容易接近。据报道,30%~33%的G/GEJ癌患者存在CLDN18.2阳性,并与弥漫性组织学相关[28]。然而,Claudin18.2阳性G/GEJ癌的临床病理特征及其对当前标准化疗和抗pd-1治疗结果的影响尚不清楚。在G/GEJ癌患者中,有24.0%的患者检测到CLDN18.2阳性(定义为CLDN18.2在 ≥ 75%的肿瘤细胞中中至强表达),并且CLDN18.2阳性肿瘤与Borrmann4型、KRAS扩增、低CD16和高CD68表达相关[29]。同时,dMMR、ebv阳性、her2阳性、全阴性、CPS亚组等各分子亚型的分布几乎相同[29]。这表明无论分子亚型如何,CLDN18.2都可能是靶向的,并且在考虑CLDN18.2阳性G/GEJ癌的治疗策略时可能是有用的。Zolbetuximab:是一种嵌合IgG1单克隆抗体,与肿瘤细胞表面的CLDN18.2结合,刺激细胞和可溶性免疫效应物,激活ADCC和补体依赖性细胞毒性[30]。单臂MONO临床试验显示了可管理的安全性,9%的局部晚期/转移性胃癌(CLDN18.2表达)患者通过唑贝昔单抗单药治疗获得了令人满意的疗效[31]。同时,学者们研发了另一种针对CLDN18.2靶点的治疗方法——嵌合抗原受体T细胞(CAR-T)疗法[30]。嵌合抗原受体(CAR)是细胞表面抗原的重组受体,学者们应用基因工程技术将T细胞激活并改造成CAR-T细胞,利用改造后的T细胞靶向识别并杀死肿瘤细胞,此即CAR-T疗法。CAR-T疗法在血液系统肿瘤治疗中已显示出较好的疗效,在胃肠道实体肿瘤中的疗效值得期待[32] [33]。因此,靶向CLDN18.2的药物开发对于胃癌治疗具有重要意义。

3. 潜在的治疗靶点

3.1. EBVaGC高度相关的蛋白(GBP5)

GBP5原位表达与胃癌不良临床病理参数正相关,尤其是与浸润深度、脉管癌栓以及结外肿瘤种植显著相关[34]。GBP5可促进EBV阳性胃癌细胞增殖活性,在EBVaGC中,GBP5与23个免疫相关基因存在显著的相关性,其中CXCL17、IL-17、IL-8已经血清学表达实验证实[35]。在EBVaGC中,GBP5表达调控通路生信分析结果提示,GBP5可与FCGR1B、TRIM22、GBP2、IRF1、OAS2、OASL互作。GBP5可能通过影响寡聚化域样受体信号通路活性从而促进肿瘤进展[34] [36]。因此,GBP5在EBVaGC的发展中具有重要意义,是潜在的治疗靶点。

3.2. 趋化因子受体4 (CXCR4)

CXC趋化因子受体4 (ChemokineC-X-C-motifreceptor4, CXCR4)是由352个氨基酸组成的视紫质样G蛋白偶联受体(Gprotein-coupledreceptor, GPCR),首先证实其为与乳腺癌转移到肺组织相关的趋化因子受体[37]。CXCR4是在超过23种人类肿瘤组织中表达最广泛的趋化因子受体,包括乳腺癌、卵巢癌、黑色素瘤等,参与肿瘤的生长、血管生成、转移等生物学过程[37]。有研究显示,CXCR4可参与到胃癌的增殖和转移,并与胃癌的临床预后密切相关。EBV潜伏膜蛋白LMP2A可通过激活NF-κB信号通路,上调EBV阳性胃癌细胞中CXCR4的表达;CXCR4可通过激活MAPK/ERK信号通路,上调EBV阳性胃癌细胞中LMP2A和EBNA1的表达,两者间存在正向反馈调控作用[38]。CXCR4可促进EBV阳性胃癌细胞的增殖、迁移和平板克隆形成能力,但对细胞周期和细胞凋亡无明显影响。CXCR4可降低即刻早期蛋白BZLF1的表达,有助于维持EBV潜伏感染状态。CXCR4在EBVaGC组织和细胞系中被诱导表达[38]-[40]。此外,LMP2A通过PI3K/AKT-NRF1通路促进CXCR4的转录,CXCR4通过调节ZEB1-ATG7转录激活自噬体的形成。最终,CXCR4抑制BZLF1的表达,增强潜在基因的表达[41] [42]。LMP2A诱导的CXCR4表达不仅能促进细胞生长,还能持续诱导EBV潜伏感染EBVaGC [43]。因此,CXCR4在EBVaGC的发展中具有重要意义,可用于针对自噬和EBV再激活的新治疗策略。

3.3. 磷酸酶及张力蛋白同源物(PTEN)

磷酸酶及张力蛋白同源物(Phosphatase and Tensin Homolog, PTEN),即PTEN基因,是继p53以后被发现的具有双重特异性磷酸酶活性的抑癌基因,其表达水平的降低或缺失与多种恶性肿瘤的发生有关[44]-[46]。PTEN基因失活与胃癌的发生发展密切相关,具体机制包括:基因突变、杂合性缺失、启动子超甲基化、miRNA调控和翻译后磷酸化等[46]。Zheng等对113例胃癌组织和癌旁组织的PTEN表达进行了分析,发现胃癌组织中PTEN的表达率(54.9%)明显低于癌旁组织(89.4%) [47]。随着胃癌的进展,PTEN的表达逐渐降低,PTEN在淋巴结转移阳性和进展期胃癌中的表达明显低于无淋巴结转移和早期胃癌,弥漫型明显低于肠型胃癌,在印戒细胞癌中表达最低,远低于中分化胃癌组织[45] [48]。这些研究表明,PTEN表达的降低或缺失是胃癌发生发展过程中的一个动态过程,PTEN水平可作为诊断胃癌病理状态的指标[49]。PTEN在多数胃癌患者中表达降低或缺失,并与肿瘤组织学分级、神经束膜浸润、肿瘤浸润深度、淋巴结转移和TNM分期显著相关,但PTEN蛋白表达与胃癌患者的术后生存无相关性。PTEN的表达与PD-L1呈正相关,其可能成为胃癌患者免疫治疗的检测指标之一[50]。PTEN在胃癌患者中甲基化水平升高,并与肿瘤大小、神经浸润、浸润深度和TNM分期显著相关,PTEN在胃癌中的表达可能受DNA甲基化调控[51]。因此,根据EBVaGC的特性[3],PTEN在其发展中可能具有重要意义,将来可用于针对自噬和EBV再激活的新治疗策略。

3.4. 多功能I类跨膜糖蛋白CD44

CD44是一种多功能I类跨膜糖蛋白,与许多细胞外基质蛋白或酸性粘多糖结合,其中透明质酸是最常见的。它参与正常细胞和几乎所有癌细胞中的细胞迁移以及细胞–细胞和细胞–基质的粘附相互作用[52]。它与骨桥蛋白、表皮生长因子(EGF)或成纤维细胞生长因子(FGF)的相互作用可导致CSC自我更新并促进肿瘤细胞侵袭和转移[53] [54]。CD44在胃癌组织中的表达高于正常组织[54]。UALCAN数据库显示,CD44在胃癌中与性别无关,但与肿瘤分期和淋巴结转移相关[55]。Kaplan-MeierPlotter在线分析显示,CD44低表达组的OS、PFS和PPS均延长[56]。GO和KEGG分析以及GSEA结果显示,CD44主要位于内质网和含胶原的细胞外基质中,主要参与蛋白质的消化和吸收[56]。CD44与浸润性免疫细胞相关,从而影响生存预后[54] [56]

有实验研究表明,CD44+CD24−/低与EBVaGC的侵袭行为密切相关,与患者的无病生存率呈负相关。CD44+CD24−/低在乳腺癌、胰腺癌、卵巢癌和其他实体癌中也被认为是有价值的预后生物标志物组合,预后潜力与CD44和CD24的分子功能有关。此外,EBVaGC中的癌症干细胞(CSC)样球形形成细胞(SFCs)通过抑制外周血单核细胞(PBMCs)的增殖和T细胞活化,以及诱导Tregs的产生,表现出更强的免疫抑制活性[57]。在EBV阴性胃癌细胞系中也发现了几种潜在的CSC标志物,这些标志物包括CD24/CD44、CD54/CD44、CXCR4、上皮细胞粘附分子(EpCAM)/CD44、ALDH1、CD90、CD133、CD166等[58] [59]。在EBVaGC干细胞诱导Treg的过程中,COX2-PGE2信号通路的激活发挥了作用:抑制T细胞、NK细胞和DC细胞的功能,促进Tregs的分化。许多肿瘤,如乳腺癌、结直肠癌、肺癌,都具有COX2-PGE2的高表达,可有效促进肿瘤免疫逃逸[60]

综上所述,虽然CD44与免疫微环境中各种免疫细胞、炎症因子和细胞因子相互作用的具体机制有待进一步研究,但针对其特性及EBVaGC使用免疫治疗的效果优于EBVnGC。因此CD44可以作为EBVaGC潜在的治疗靶点,具有重要的研究价值和广阔的应用前景。

3.5. EBV-miR-BART12

SNAIL是上皮间质转化(EMT)的重要标志物,通过调控细胞迁移、增殖及凋亡等多种生物学过程来影响肿瘤的发生与发展。SNAIL过表达可通过抑制宿主的免疫监视能力促进肿瘤的转移、复发[61] [62]。EBV阳性胃癌胞系中SNAIL蛋白表达水平显著低于EBV阴性胃癌细胞系,EBV-miR-BART12参与这种差异表达的调控。EBV-miR-BART12通过靶向SNAIL编码基因的3'-UTR区域抑制SNAIL蛋白表达,进而抑制胃癌细胞的迁移与增殖[63]。EBV-miR-BART12可以引起细胞G2/M期阻滞,抑制NF-κB信号通路和EMT进程。EBV-miR-BART12促进SNAIL蛋白降解,且这种降解作用不依赖于SNAIL蛋白的泛素化[63]。因此,EBV-miR-BART12可能成为治疗EBVaGC的新靶点。

3.6. 上皮区CMTM6

胃癌中CMTM6表达具有以下特征:上皮区CMTM6显著高于癌旁正常组织;存在较强的个体异质性和组织类型异质性;CMTM6与PD-L1表达呈正相关且存在二者共定位于肿瘤细胞膜的现象[64]。CMTM6对胃癌细胞系PD-L1的细胞膜表达起正向调控作用。肿瘤组织上皮区CMTM6高表达与肿瘤负荷、增殖指数Ki-67、转移灶数目等提示不良预后的临床病理特征呈正相关,是独立预后危险因素,双阳提示生存期短,比单因子能更好预测预后风险[64]。CMTM6具有促进胃癌细胞增殖、克隆形成、上皮间质转化、迁移、上调PD-L1等恶性表型的作用[65]。正因为它对PD-L1的细胞膜表达起正向调控作用,因此可以成为EBVaGC潜在的治疗靶点,而且相关的靶向治疗效果预期良好。

3.7. 丝裂原活化蛋白激酶8 (MAP3K8)

RAS/丝裂原活化蛋白激酶(MAPK)途径是癌症中最常见的突变致癌途径之一。MAPK通路在多种肿瘤中被过度激活,并在人类癌症发展中发挥关键作用。由于MAPK通路分子是癌症药物敏感性和耐药性的重要调节因子,因此它是治疗干预的一个有吸引力的靶点。丝裂原活化蛋白激酶8 (MAP3K8)是MAPK通路的重要组成部分,与各种癌症的发生和进展有关[66]。MAP3K8可通过TNFα介导的ERK活化促进骨髓瘤进展。ZNF507介导的MAP3K8转录调控加速了前列腺癌向高度转移和侵袭状态的进展。MAP3K8还可作为多种癌症的预后生物标志物,包括肾透明细胞癌、胶质瘤和高级别浆液性卵巢癌[67]。此外,MAP3K8的表达也与甲状腺癌和黑色素瘤对化疗药物的耐药性有关。MAP3K8通过灭活Notch信号通路和上皮向间充质转化(EMT)抑制EBVaGC进展。通过灭活notch通路和EMT来调节EBVaGC的进展[67]。对TCGA和GSE51575数据库中MAP3K8表达数据的分析显示,与邻近对照组织相比,MAP3K8在癌组织中的表达更多,MAP3K8的表达与GC的无病进展成反比[68]。可能会为EBVaGC的新治疗策略提供潜在的靶点。

3.8. EBV-miR-BART

EBV-miR-BART8对胃癌细胞的增殖能力和对化疗药物顺铂、阿霉素和阿帕替尼以及铁死亡诱导剂RSL3的敏感性无明显影响[68]。EBV-miR-BART8可显著提高胃癌细胞的迁移和侵袭能力。在AGS.EBV和HGC27,EBV细胞中敲低EBV-miR。BART85p或3p可显著抑制细胞的迁移和侵袭能力[67] [69]。EBV-miR-BART8可能部分通过β-catenin调控胃癌细胞的迁移和侵袭。EBV-miR-BART8可能通过直接靶向下调NDRGl的表达促进胃癌细胞的迁移和侵袭[68]

EBV-miRNA-BART6-5p能够在EBV相关的胃癌(EBVaGC)组织中显著上调,通过靶向SMAD4,调节TGF-β/SMAD4信号通路,从而有效增加胃癌细胞的糖酵解,增强胃癌细胞的增殖和转移能力[67] [69]。这些发现为理解EBV相关胃癌的代谢特性提供了新的视角,并可能为开发针对EBVaGC的新治疗策略提供潜在的靶点。

4. 小结与展望

在当前已有的EBV相关性胃癌的治疗靶点的基础上,EBVaGC高度相关的蛋白(GBP5)、趋化因子受体4 (CXCR4)、磷酸酶及张力蛋白同源物(Phosphatase and Tensin Homolog, PTEN)、多功能I类跨膜糖蛋白(CD44)、EBV-miR-BART12、EBV-miR-BART8、EBV-miRNA-BART6-5p、上皮区CMTM6、丝裂原活化蛋白激酶8 (MAP3K8)等一系列潜在的治疗靶点的特征逐步被人们所发现,它们的一系列特征直接或间接都与EBV相关性胃癌有关,且与诊断和治疗有益。因此,应进一步研究这些治疗靶点与EBVaGC的免疫、靶向相关治疗特征。针对这些患者进行特异性的病理、基因检测,同时研发更多高效、毒性小的药物,为EBV相关性胃癌患者带来更加精确的个体化治疗方案,提高这些患者的生存质量。

NOTES

*通讯作者。

参考文献

[1] Bass, A.J., Thorsson, V., Shmulevich, I., et al. (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209.
https://doi.org/10.1038/nature13480
[2] 刘晓梅, 白光辉, 郭云娣. SHH与胃癌、EBV(+)胃癌患者临床病理特征和预后的相关性[J]. 中国老年学杂志, 2023, 43(21): 5184-5187.
[3] Salnikov, M.Y., MacNeil, K.M. and Mymryk, J.S. (2024) The Viral Etiology of EBV-Associated Gastric Cancers Contributes to Their Unique Pathology, Clinical Outcomes, Treatment Responses and Immune Landscape. Frontiers in Immunology, 15, Article ID: 1358511.
https://doi.org/10.3389/fimmu.2024.1358511
[4] Kim, J., Kim, N., Song, D.H., Choi, Y., Jeon, E., Kim, S., et al. (2024) Sex-Dependent Different Clinicopathological Characterization of Epstein-Barr Virus-Associated Gastric Carcinoma: A Large-Scale Study. Gastric Cancer, 27, 221-234.
https://doi.org/10.1007/s10120-023-01460-8
[5] Khan, G., Fitzmaurice, C., Naghavi, M. and Ahmed, L.A. (2020) Global and Regional Incidence, Mortality and Disability-Adjusted Life-Years for Epstein-Barr Virus-Attributable Malignancies, 1990-2017. BMJ Open, 10, e037505.
https://doi.org/10.1136/bmjopen-2020-037505
[6] Wong, Y., Meehan, M.T., Burrows, S.R., Doolan, D.L. and Miles, J.J. (2021) Estimating the Global Burden of Epstein-Barr Virus-Related Cancers. Journal of Cancer Research and Clinical Oncology, 148, 31-46.
https://doi.org/10.1007/s00432-021-03824-y
[7] 闫超, 陕飞, 李子禹. 2020年全球胃癌负担分析: 聚焦中国流行现状[J]. 中国肿瘤, 2023, 32(3): 161-170.
[8] Ucaryilmaz Metin, C. and Ozcan, G. (2022) Comprehensive Bioinformatic Analysis Reveals a Cancer-Associated Fibroblast Gene Signature as a Poor Prognostic Factor and Potential Therapeutic Target in Gastric Cancer. BMC Cancer, 22, Article No. 692.
https://doi.org/10.1186/s12885-022-09736-5
[9] 熊德君, 丁晓凌, 周晓荣. 免疫治疗在胃癌中的应用研究进展[J]. 中国肿瘤临床, 2024, 51(7): 359-365.
[10] 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249.
[11] 吴世英, 徐平龙, 张飞. 靶向肿瘤驱动基因的胃癌治疗研究进展[J]. 浙江大学学报(医学版), 2024, 53(1): 73-83.
[12] 胃癌高通量测序临床应用中国专家共识[J]. 中国肿瘤临床, 2023, 50(6): 309-318.
[13] Duan, Y., Li, J., Zhou, S. and Bi, F. (2024) Effectiveness of PD-1 Inhibitor-Based First-Line Therapy in Chinese Patients with Metastatic Gastric Cancer: A Retrospective Real-World Study. Frontiers in Immunology, 15, Article ID: 1370860.
https://doi.org/10.3389/fimmu.2024.1370860
[14] 陈小兵, 刘勇, 薛卫成, 等. 基于PD-L1蛋白表达水平的胃癌免疫治疗专家共识(2023年版) [J]. 中国肿瘤临床, 2024, 51(2): 55-63.
[15] Pociupany, M., Snoeck, R., Dierickx, D. and Andrei, G. (2024) Treatment of Epstein-Barr Virus Infection in Immunocompromised Patients. Biochemical Pharmacology, 225, Article ID: 116270.
https://doi.org/10.1016/j.bcp.2024.116270
[16] Chen, Y., Sun, Z., Yin, J., et al. (2024) Digital Assessment of Tertiary Lymphoid Structures and Therapeutic Responses in Gastric Cancer: A Multi-Centric Retrospective Study. International Journal of Surgery, 110, 6732-6747.
[17] Kim, E.J., Chae, H., Park, Y., Ryu, M., Kim, H., Shin, J., et al. (2023) Clinical Outcomes of Epstein-Barr Virus (EBV)-Associated Metastatic and Locally Advanced Unresectable Gastric Cancers (GCs) in Patients Receiving First-Line Fluoropyrimidine and Platinum (FP) Doublet Chemotherapy. Gastric Cancer, 27, 146-154.
https://doi.org/10.1007/s10120-023-01445-7
[18] Maestri, D., Napoletani, G., Kossenkov, A., Preston-Alp, S., Caruso, L.B. and Tempera, I. (2023) The Three-Dimensional Structure of the EBV Genome Plays a Crucial Role in Regulating Viral Gene Expression in EBVaGC. Nucleic Acids Research, 51, 12092-12110.
https://doi.org/10.1093/nar/gkad936
[19] Bos, J., Groen-van Schooten, T.S., Brugman, C.P., Jamaludin, F.S., van Laarhoven, H.W.M. and Derks, S. (2024) The Tumor Immune Composition of Mismatch Repair Deficient and Epstein-Barr Virus-Positive Gastric Cancer: A Systematic Review. Cancer Treatment Reviews, 127, Article ID: 102737.
https://doi.org/10.1016/j.ctrv.2024.102737
[20] Angerilli, V., Vanoli, A., Celin, G., Ceccon, C., Gasparello, J., Sabbadin, M., et al. (2024) Gastric Carcinoma in Autoimmune Gastritis: A Histopathologic and Molecular Study. Modern Pathology, 37, Article ID: 100491.
https://doi.org/10.1016/j.modpat.2024.100491
[21] Volesky-Avellaneda, K.D., Morais, S., Walter, S.D., O’Brien, T.R., Hildesheim, A., Engels, E.A., et al. (2023) Cancers Attributable to Infections in the US in 2017. JAMA Oncology, 9, 1678-1687.
https://doi.org/10.1001/jamaoncol.2023.4273
[22] 高雅楠, 刘彩霞. PI3K/AKT/mTOR通路促进胃癌发生发展及化疗耐药的研究进展[J]. 中国当代医药, 2023, 30(11): 33-37.
[23] 李俊. EBV相关胃癌中SNAIL生物学作用及调控机制的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021
[24] Piper, A., Penney, C., Holliday, J., Tincknell, G., Ma, Y., Napaki, S., et al. (2024) EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. International Journal of Molecular Sciences, 25, Article No. 5565.
https://doi.org/10.3390/ijms25105565
[25] Morgos, D., Stefani, C., Miricescu, D., Greabu, M., Stanciu, S., Nica, S., et al. (2024) Targeting PI3K/Akt/Mtor and MAPK Signaling Pathways in Gastric Cancer. International Journal of Molecular Sciences, 25, Article No. 1848.
https://doi.org/10.3390/ijms25031848
[26] Dayyani, F., Chao, J., Lee, F., Taylor, T.H., Neumann, K. and Cho, M.T. (2024) A Phase II Study of Cabozantinib and Pembrolizumab in Advanced Gastric/Gastroesophageal Adenocarcinomas Resistant or Refractory to Immune Checkpoint Inhibitors. The Oncologist, 29, oyae117.
https://doi.org/10.1093/oncolo/oyae117
[27] Jia, J., Zhao, H., Li, F., Zheng, Q., Wang, G., Li, D., et al. (2024) Research on Drug Treatment and the Novel Signaling Pathway of Chronic Atrophic Gastritis. Biomedicine & Pharmacotherapy, 176, Article ID: 116912.
https://doi.org/10.1016/j.biopha.2024.116912
[28] Wang, Y., Ma, L., Kuang, Z., Li, D., Yang, J., Liu, Y., et al. (2024) Preparation of Radiolabeled Zolbetuximab Targeting CLDN18.2 and Its Preliminary Evaluation for Potential Clinical Applications. Molecular Pharmaceutics, 21, 3838-3847.
https://doi.org/10.1021/acs.molpharmaceut.4c00122
[29] Wu, J., Chen, J., Zhao, Y., Yuan, M., Chen, X., He, X., et al. (2024) Molecular SPECT/CT Profiling of Claudin18.2 Expression in Vivo: Implication for Patients with Gastric Cancer. Molecular Pharmaceutics, 21, 3447-3458.
https://doi.org/10.1021/acs.molpharmaceut.4c00155
[30] Qi, C., Liu, C., Gong, J., Liu, D., Wang, X., Zhang, P., et al. (2024) Claudin18.2-Specific CAR T Cells in Gastrointestinal Cancers: Phase 1 Trial Final Results. Nature Medicine, 30, 2224-2234.
https://doi.org/10.1038/s41591-024-03037-z
[31] Qi, C., Chong, X., Zhou, T., Ma, M., Gong, J., Zhang, M., et al. (2024) Clinicopathological Significance and Immunotherapeutic Outcome of Claudin 18.2 Expression in Advanced Gastric Cancer: A Retrospective Study. Chinese Journal of Cancer Research, 36, 78-89.
https://doi.org/10.21147/j.issn.1000-9604.2024.01.08
[32] Botta, G.P., Chao, J., Ma, H., Hahn, M., Sierra, G., Jia, J., et al. (2024) Metastatic Gastric Cancer Target Lesion Complete Response with Claudin18.2-Car T Cells. Journal for ImmunoTherapy of Cancer, 12, e007927.
https://doi.org/10.1136/jitc-2023-007927
[33] 陶道玉. TFF2及Claudin18. 2表达失调在胃癌中的临床意义[D]: [硕士学位论文]. 济南: 山东大学, 2023
[34] Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279.
https://doi.org/10.3322/caac.21657
[35] Wang, Z., Lv, Z., Xu, Q., Sun, L. and Yuan, Y. (2021) Identification of Differential Proteomics in Epstein-Barr Virus-Associated Gastric Cancer and Related Functional Analysis. Cancer Cell International, 21, Article No. 368.
https://doi.org/10.1186/s12935-021-02077-6
[36] 王泽洋. EBV相关性胃癌多维度表型特征识别及其关联蛋白GBP5的作用机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2021
[37] Su, C., Yu, R., Hong, X., Zhang, P., Guo, Y., Cai, J., et al. (2023) CXCR4 Expressed by Tumor-Infiltrating B Cells in Gastric Cancer Related to Survival in the Tumor Microenvironment: An Analysis Combining Single-Cell RNA Sequencing with Bulk RNA Sequencing. International Journal of Molecular Sciences, 24, Article No. 12890.
https://doi.org/10.3390/ijms241612890
[38] Qin, N., Zhang, Y., Xu, L., Liu, W. and Luo, B. (2022) Maintenance of Epstein-Barr Virus Latency through Interaction of LMP2A with Cxcr4. Archives of Virology, 167, 1947-1959.
https://doi.org/10.1007/s00705-022-05511-w
[39] 韩超, 胡晓云, 刘畅, 等. 延胡索通过靶向CXCL17激活AMPK信号通路下调PD-L1抑制EB病毒感染诱导的胃癌免疫逃逸[J]. 中国医科大学学报, 2024, 53(5): 414-420.
[40] 张宏佳, 陆佩东, 孔令薇, 等. 免疫趋化因子CXCR4通过IL-6/STAT3信号通路调控胃癌炎症因子分泌和凋亡[J]. 免疫学杂志, 2023, 39(12): 1075-1082.
[41] Sun, Y., Shi, D., Sun, J., Zhang, Y., Liu, W. and Luo, B. (2024) Regulation Mechanism of EBV-Encoded EBER1 and LMP2A on YAP1 and the Impact of YAP1 on the EBV Infection Status in EBV-Associated Gastric Carcinoma. Virus Research, 343, Article ID: 199352.
https://doi.org/10.1016/j.virusres.2024.199352
[42] Baral, B., Kandpal, M., Ray, A., Jana, A., Yadav, D.S., Sachin, K., et al. (2023) Helicobacter pylori and Epstein-Barr Virus Infection in Cell Polarity Alterations. Folia Microbiologica, 69, 41-57.
https://doi.org/10.1007/s12223-023-01091-7
[43] Du, Y., Zhang, J., Gong, L., Feng, Z., Wang, D., Pan, Y., et al. (2022) Hypoxia-Induced EBV-circLMP2A Promotes Angiogenesis in EBV-Associated Gastric Carcinoma through the KHSRP/VHL/HIF1α/VEGFA Pathway. Cancer Letters, 526, 259-272.
https://doi.org/10.1016/j.canlet.2021.11.031
[44] Duan, X., Chen, H., Zhou, X., Liu, P., Zhang, X., Zhu, Q., et al. (2022) EBV Infection in Epithelial Malignancies Induces Resistance to Antitumor Natural Killer Cells via F3-Mediated Platelet Aggregation. Cancer Research, 82, 1070-1083.
https://doi.org/10.1158/0008-5472.can-21-2292
[45] Li, P., Zhang, H., Chen, T., et al. (2024) Cancer-Associated Fibroblasts Promote Proliferation, Angiogenesis, Metastasis and Immuno-Suppression in Gastric Cancer. Matrix Biology.
[46] Fang, K., Hung, H., Lau, N.Y.S., Chi, J., Wu, D. and Cheng, K. (2023) Development of a Genetically Engineered Mouse Model Recapitulating LKB1 and PTEN Deficiency in Gastric Cancer Pathogenesis. Cancers, 15, Article No. 5893.
https://doi.org/10.3390/cancers15245893
[47] Wang, X., Xu, W., Zhu, C., Cheng, Y. and Qi, J. (2023) PRMT7 Inhibits the Proliferation and Migration of Gastric Cancer Cells by Suppressing the PI3K/AKT Pathway via PTEN. Journal of Cancer, 14, 2833-2844.
https://doi.org/10.7150/jca.88102
[48] van Ree, J.H., Jeganathan, K.B., Fierro Velasco, R.O., Zhang, C., Can, I., Hamada, M., et al. (2023) Hyperphosphorylated PTEN Exerts Oncogenic Properties. Nature Communications, 14, Article No. 2983.
https://doi.org/10.1038/s41467-023-38740-x
[49] Vidotto, T., Melo, C.M., Lautert-Dutra, W., Chaves, L.P., Reis, R.B. and Squire, J.A. (2023) Pan-Cancer Genomic Analysis Shows Hemizygous PTEN Loss Tumors Are Associated with Immune Evasion and Poor Outcome. Scientific Reports, 13, Article No. 5049.
https://doi.org/10.1038/s41598-023-31759-6
[50] Xu, J., Liu, D., Niu, H., Zhu, G., Xu, Y., Ye, D., et al. (2023) Correction: Resveratrol Reverses Doxorubicin Resistance by Inhibiting Epithelial-Mesenchymal Transition (EMT) through Modulating PTEN/Akt Signaling Pathway in Gastric Cancer. Journal of Experimental & Clinical Cancer Research, 42, Article No. 23.
https://doi.org/10.1186/s13046-023-02593-5
[51] Lin, X., Li, G., Yan, X., Fu, W., Ruan, J., Ding, H., et al. (2023) Long Non-Coding RNA BC002811 Promotes Gastric Cancer Metastasis by Regulating SOX2 Binding to the pten Promoter. International Journal of Biological Sciences, 19, 967-980.
https://doi.org/10.7150/ijbs.76407
[52] Park, H., Imoto, S. and Miyano, S. (2022) Predictivenetwork: Predictive Gene Network Estimation with Application to Gastric Cancer Drug Response-Predictive Network Analysis. BMC Bioinformatics, 23, Article No. 342.
https://doi.org/10.1186/s12859-022-04871-z
[53] Deng, H., Gao, J., Cao, B., Qiu, Z., Li, T., Zhao, R., et al. (2023) LncRNA CCAT2 Promotes Malignant Progression of Metastatic Gastric Cancer through Regulating CD44 Alternative Splicing. Cellular Oncology, 46, 1675-1690.
https://doi.org/10.1007/s13402-023-00835-4
[54] Hui, D., Chen, J., Jiang, Y., Pan, Y., Zhang, Z., Dong, M., et al. (2020) Cd44+cd24-/Low Sphere-Forming Cells of EBV-Associated Gastric Carcinomas Show Immunosuppressive Effects and Induce Tregs Partially through Production of Pge2. Experimental Cell Research, 390, Article ID: 111968.
https://doi.org/10.1016/j.yexcr.2020.111968
[55] Nie, P., Zhang, W., Meng, Y., Lin, M., Guo, F., Zhang, H., et al. (2022) A YAP/TAZ-CD54 Axis Is Required for CXCR2-CD44-Tumor-Specific Neutrophils to Suppress Gastric Cancer. Protein & Cell, 14, 513-531.
https://doi.org/10.1093/procel/pwac045
[56] Giraud, J., Seeneevassen, L., Rousseau, B., Bouriez, D., Sifré, E., Giese, A., et al. (2022) Cd44v3 Is a Marker of Invasive Cancer Stem Cells Driving Metastasis in Gastric Carcinoma. Gastric Cancer, 26, 234-249.
https://doi.org/10.1007/s10120-022-01357-y
[57] Gómez-Gallegos, A.A., Ramírez-Vidal, L., Becerril-Rico, J., Pérez-Islas, E., Hernandez-Peralta, Z.J., Toledo-Guzmán, M.E., et al. (2023) CD24+CD44+CD54+EpCAM+ Gastric Cancer Stem Cells Predict Tumor Progression and Metastasis: Clinical and Experimental Evidence. Stem Cell Research & Therapy, 14, Article No. 16.
https://doi.org/10.1186/s13287-023-03241-7
[58] Xie, W., Cheng, J., Hong, Z., Cai, W., Zhuo, H., Hou, J., et al. (2022) Multi-Transcriptomic Analysis Reveals the Heterogeneity and Tumor-Promoting Role of Spp1/cd44-Mediated Intratumoral Crosstalk in Gastric Cancer. Cancers, 15, Article No. 164.
https://doi.org/10.3390/cancers15010164
[59] Zhang, J., Wang, H., Wu, J., Yuan, C., Chen, S., Liu, S., et al. (2022) GALNT1 Enhances Malignant Phenotype of Gastric Cancer via Modulating CD44 Glycosylation to Activate the Wnt/β-Catenin Signaling Pathway. International Journal of Biological Sciences, 18, 6068-6083.
https://doi.org/10.7150/ijbs.73431
[60] Hou, W., Kong, L., Hou, Z. and Ji, H. (2022) CD44 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Gastric Cancer. BMC Medical Genomics, 15, Article No. 225.
https://doi.org/10.1186/s12920-022-01383-w
[61] Sohel, M. (2023) Comprehensive Exploration of Biochanin A as an Oncotherapeutics Potential in the Treatment of Multivarious Cancers with Molecular Insights. Phytotherapy Research, 38, 489-506.
https://doi.org/10.1002/ptr.8050
[62] Jin, G., Zhang, J., Cao, T., Chen, B., Tian, Y. and Shi, Y. (2022) Exosome-Mediated lncRNA SND1-IT1 from Gastric Cancer Cells Enhances Malignant Transformation of Gastric Mucosa Cells via Up-Regulating SNAIL1. Journal of Translational Medicine, 20, Article No. 284.
https://doi.org/10.1186/s12967-022-03306-w
[63] Yu, T., Ran, L., Zhao, H., Yin, P., Li, W., Lin, J., et al. (2021) Circular RNA circ-TNPO3 Suppresses Metastasis of GC by Acting as a Protein Decoy for IGF2BP3 to Regulate the Expression of MYC and SNAIL. Molecular TherapyNucleic Acids, 26, 649-664.
https://doi.org/10.1016/j.omtn.2021.08.029
[64] Wang, Z., Peng, Z., Liu, Q., Guo, Z., Menatola, M., Su, J., et al. (2021) Co-Expression with Membrane CMTM6/4 on Tumor Epithelium Enhances the Prediction Value of PD-L1 on Anti-Pd-1/l1 Therapeutic Efficacy in Gastric Adenocarcinoma. Cancers, 13, Article No. 5175.
https://doi.org/10.3390/cancers13205175
[65] Zhang, C., Zhao, S. and Wang, X. (2021) Co-Expression of CMTM6 and PD-L1: A Novel Prognostic Indicator of Gastric Cancer. Cancer Cell International, 21, Article No. 78.
https://doi.org/10.1186/s12935-020-01734-6
[66] Wang, S., Shi, J., Wang, X., Mu, H., Wang, X., Xu, K., et al. (2023) 1h-Indazoles Derivatives Targeting PI3K/AKT/mTOR Pathway: Synthesis, Anti-Tumor Effect and Molecular Mechanism. Bioorganic Chemistry, 133, Article ID: 106412.
https://doi.org/10.1016/j.bioorg.2023.106412
[67] Roy, G., Yang, T., Liu, S., Luo, Y., Liu, Y. and Zhong, Q. (2023) Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. International Journal of Molecular Sciences, 24, Article No. 1964.
https://doi.org/10.3390/ijms24031964
[68] 孙菁阳, 肖华, 潘晓雯, 等. MAP9对EB病毒阳性胃癌细胞生物学行为影响[J]. 青岛大学学报(医学版), 2020, 56(4): 432-436.
[69] Zhao, X., Huang, X., Dang, C., Wang, X., Qi, Y. and Li, H. (2024) The Epstein-Barr Virus-miRNA-BART6-5p Regulates TGF-β/SMAD4 Pathway to Induce Glycolysis and Enhance Proliferation and Metastasis of Gastric Cancer Cells. Oncology Research, 32, 999-1009.
https://doi.org/10.32604/or.2024.046679