[1]
|
涂汉明, 刘振东. 中国地势起伏度研究[J]. 测绘学报, 1991, 20(4): 311-319.
|
[2]
|
张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116-120.
|
[3]
|
Xue, Q., Wang, Z. and Chen, Q. (2021) Multi-Objective Optimization of Building Design for Life Cycle Cost and CO2 Emissions: A Case Study of a Low-Energy Residential Building in a Severe Cold Climate. Building Simulation, 15, 83-98. https://doi.org/10.1007/s12273-021-0796-5
|
[4]
|
Tayeh, B.A., Hamada, H.M., Almeshal, I. and Bakar, B.H.A. (2022) Durability and Mechanical Properties of Cement Concrete Comprising Pozzolanic Materials with Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17, e01429. https://doi.org/10.1016/j.cscm.2022.e01429
|
[5]
|
Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013) Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry. Journal of Cleaner Production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049
|
[6]
|
Davidovits, J. and Cordi, S. (1979) Synthesis of New High Temperature Geo-Polymers for Reinforced Plastics/Composites. Proceedings of the 1979 Fourth Annual Pacific Technical Conference and Technical Displays, Costa Mesa, 31 January-2 February 1979, 151-154.
|
[7]
|
Zada Farhan, K., Azmi Megat Johari, M. and Demirboğa, R. (2022) Evaluation of Properties of Steel Fiber Reinforced GGBFS-Based Geopolymer Composites in Aggressive Environments. Construction and Building Materials, 345, Article ID: 128339. https://doi.org/10.1016/j.conbuildmat.2022.128339
|
[8]
|
Huang, Y., Tan, J., Xuan, X., Liu, L., Xie, M., Liu, H., et al. (2021) Study on Untreated and Alkali Treated Rice Straw Reinforced Geopolymer Composites. Materials Chemistry and Physics, 262, Article ID: 124304. https://doi.org/10.1016/j.matchemphys.2021.124304
|
[9]
|
Huang, Y., Tan, J., Xuan, X., Wei, S., Liu, L., Yu, S., et al. (2022) Durability of Plant Fiber Reinforced Alkali Activated Composites. Construction and Building Materials, 314, Article ID: 125501. https://doi.org/10.1016/j.conbuildmat.2021.125501
|
[10]
|
Cai, J., Liu, Z., Lv, N., Xu, G., Tian, Q., Shen, W., et al. (2023) Eco-Friendly Lightweight Composite Prepared with a Geopolymer and Wheat Straw. Green Materials. https://doi.org/10.1680/jgrma.23.00025
|
[11]
|
Chen, R., Ahmari, S. and Zhang, L. (2013) Utilization of Sweet Sorghum Fiber to Reinforce Fly Ash-Based Geopolymer. Journal of Materials Science, 49, 2548-2558. https://doi.org/10.1007/s10853-013-7950-0
|
[12]
|
Valencia-Saavedra, W.G., Mejía de Gutiérrez, R. and Puertas, F. (2020) Performance of FA-Based Geopolymer Concretes Exposed to Acetic and Sulfuric Acids. Construction and Building Materials, 257, Article ID: 119503. https://doi.org/10.1016/j.conbuildmat.2020.119503
|
[13]
|
Li, Z., Zhang, S., Zuo, Y., Chen, W. and Ye, G. (2019) Chemical Deformation of Metakaolin Based Geopolymer. Cement and Concrete Research, 120, 108-118. https://doi.org/10.1016/j.cemconres.2019.03.017
|
[14]
|
Lin, H., Liu, H., Li, Y. and Kong, X. (2023) Effects of Wood Fiber on the Properties of Silicoaluminophosphate Geopolymer. Journal of Building Engineering, 64, Article ID: 105652. https://doi.org/10.1016/j.jobe.2022.105652
|
[15]
|
Sá Ribeiro, R.A., Sá Ribeiro, M.G., Sankar, K. and Kriven, W.M. (2016) Geopolymer-Bamboo Composite—A Novel Sustainable Construction Material. Construction and Building Materials, 123, 501-507. https://doi.org/10.1016/j.conbuildmat.2016.07.037
|
[16]
|
Turner, L.K. and Collins, F.G. (2013) Carbon Dioxide Equivalent (CO2-E) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Construction and Building Materials, 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
|
[17]
|
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2006) Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
|
[18]
|
杜常博, 李东泽, 易富, 等. 改性玄武岩纤维对混凝土抗硫酸盐性能的影响[J]. 复合材料学报, 2024, 42(1): 1-11.
|
[19]
|
夏冬桃, 喻诗汀, 李彪, 等. 钢纤维增强碱矿渣再生混凝土力学性能及碳排放分析[J]. 建筑材料学报, 2024, 27(10): 938-945.
|
[20]
|
朱飞飞, 乔宏霞, 付勇, 等. 西部盐渍土地区玄武岩纤维混凝土冻融试验及数值分析[J]. 硅酸盐学报, 2024, 52(11): 3431-3443.
|
[21]
|
Sim, J., Park, C. and Moon, D.Y. (2005) Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures. Composites Part B: Engineering, 36, 504-512. https://doi.org/10.1016/j.compositesb.2005.02.002
|
[22]
|
Yang, W., Liu, L., Wu, W., Zhang, K., Xiong, X., Li, C., et al. (2024) A Review of the Mechanical Properties and Durability of Basalt Fiber Recycled Concrete. Construction and Building Materials, 412, Article ID: 134882. https://doi.org/10.1016/j.conbuildmat.2024.134882
|
[23]
|
Zheng, Y., Zhang, Y., Zhuo, J., Zhang, Y. and Wan, C. (2022) A Review of the Mechanical Properties and Durability of Basalt Fiber-Reinforced Concrete. Construction and Building Materials, 359, Article ID: 129360. https://doi.org/10.1016/j.conbuildmat.2022.129360
|
[24]
|
Wu, R., Gu, Q., Gao, X., Luo, Y., Zhang, H., Tian, S., et al. (2024) Effect of Basalt Fibers and Silica Fume on the Mechanical Properties, Stress-Strain Behavior, and Durability of Alkali-Activated Slag-Fly Ash Concrete. Construction and Building Materials, 418, Article ID: 135440. https://doi.org/10.1016/j.conbuildmat.2024.135440
|
[25]
|
Yang, Z., Lu, F., Zhan, X., Zhu, H., Zhang, B., Chen, Z., et al. (2024) Mechanical Properties and Mesoscopic Damage Characteristics of Basalt Fibre-Reinforced Seawater Sea-Sand Slag-Based Geopolymer Concrete. Journal of Building Engineering, 84, Article ID: 108688. https://doi.org/10.1016/j.jobe.2024.108688
|
[26]
|
Zhang, T., Wang, K., Lin, B. and Yao, Y. (2024) The Enhancement Mechanism of Modified Basalt Fiber on the Performance of Geopolymer Concrete. Construction and Building Materials, 417, Article ID: 135123. https://doi.org/10.1016/j.conbuildmat.2024.135123
|
[27]
|
Asil, M.B. and Ranjbar, M.M. (2022) Hybrid Effect of Carbon Nanotubes and Basalt Fibers on Mechanical, Durability, and Microstructure Properties of Lightweight Geopolymer Concretes. Construction and Building Materials, 357, Article ID: 129352. https://doi.org/10.1016/j.conbuildmat.2022.129352
|
[28]
|
Punurai, W., Kroehong, W., Saptamongkol, A. and Chindaprasirt, P. (2018) Mechanical Properties, Microstructure and Drying Shrinkage of Hybrid Fly Ash-Basalt Fiber Geopolymer Paste. Construction and Building Materials, 186, 62-70. https://doi.org/10.1016/j.conbuildmat.2018.07.115
|
[29]
|
Saloni, Parveen, and Pham, T.M. (2020) Enhanced Properties of High-Silica Rice Husk Ash-Based Geopolymer Paste by Incorporating Basalt Fibers. Construction and Building Materials, 245, Article ID: 118422. https://doi.org/10.1016/j.conbuildmat.2020.118422
|
[30]
|
Xu, J., Kang, A., Wu, Z., Xiao, P. and Gong, Y. (2023) Evaluation of Workability, Microstructure and Mechanical Properties of Recycled Powder Geopolymer Reinforced by Waste Hydrophilic Basalt Fiber. Journal of Cleaner Production, 396, Article ID: 136514. https://doi.org/10.1016/j.jclepro.2023.136514
|
[31]
|
徐勇, 张耀君, 王亚超, 等. 玄武岩纤维增韧三元地质聚合物的制备[J]. 化工新型材料, 2011, 39(11): 128-131.
|
[32]
|
Zhou, X., Zeng, Y., Chen, P., Jiao, Z. and Zheng, W. (2021) Mechanical Properties of Basalt and Polypropylene Fibre-Reinforced Alkali-Activated Slag Concrete. Construction and Building Materials, 269, Article ID: 121284. https://doi.org/10.1016/j.conbuildmat.2020.121284
|
[33]
|
Bian, Y., Song, F., Liu, H., Li, R. and Xiao, C. (2024) Study on the Performance of Basalt Fiber Geopolymer Concrete by Freeze-Thaw Cycle Coupled with Sulfate Erosion. AIP Advances, 14, Article ID: 015136. https://doi.org/10.1063/5.0187990
|
[34]
|
Guo, X. and Pan, X. (2018) Mechanical Properties and Mechanisms of Fiber Reinforced Fly Ash-Steel Slag Based Geopolymer Mortar. Construction and Building Materials, 179, 633-641. https://doi.org/10.1016/j.conbuildmat.2018.05.198
|
[35]
|
Şahin, F., Uysal, M., Canpolat, O., Aygörmez, Y., Cosgun, T. and Dehghanpour, H. (2021) Effect of Basalt Fiber on Metakaolin-Based Geopolymer Mortars Containing Rilem, Basalt and Recycled Waste Concrete Aggregates. Construction and Building Materials, 301, Article ID: 124113. https://doi.org/10.1016/j.conbuildmat.2021.124113
|
[36]
|
Zhang, Y.H., Zhong, W.L. and Fan, L.F. (2024) Long-Term Durability Investigation of Basalt Fiber-Reinforced Geopolymer Concrete in Marine Environment. Journal of Materials Research and Technology, 31, 593-605. https://doi.org/10.1016/j.jmrt.2024.06.078
|
[37]
|
Ziada, M., Erdem, S., Tammam, Y., Kara, S. and Lezcano, R.A.G. (2021) The Effect of Basalt Fiber on Mechanical, Microstructural, and High-Temperature Properties of Fly Ash-Based and Basalt Powder Waste-Filled Sustainable Geopolymer Mortar. Sustainability, 13, Article 12610. https://doi.org/10.3390/su132212610
|
[38]
|
冷玲倻, 张鹏飞, 梁文文. 高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为[J]. 硅酸盐通报, 2024, 43(3): 914-921.
|
[39]
|
Alomayri, T. (2021) Performance Evaluation of Basalt Fiber-Reinforced Geopolymer Composites with Various Contents of Nano CaCO3. Ceramics International, 47, 29949-29959. https://doi.org/10.1016/j.ceramint.2021.07.169
|
[40]
|
Intarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Zhang, H., Yoo, D., Limkatanyu, S., et al. (2022) Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials, 12, Article 943. https://doi.org/10.3390/nano12060943
|
[41]
|
Li, J., Si, J., Luo, F., Zuo, C., Zhang, P., Sun, Y., et al. (2022) Self-Compensating Geopolymer Utilizing Nano-Clay and Chopped Basalt Fibers. Construction and Building Materials, 357, Article ID: 129302. https://doi.org/10.1016/j.conbuildmat.2022.129302
|