玄武岩纤维增强地聚物材料的研究进展
Research Progress of Basalt Fiber Reinforced Geopolymer Materials
DOI: 10.12677/hjce.2024.1312242, PDF, HTML, XML,    科研立项经费支持
作者: 蒋玉恒, 章文姣*, 陈 涛:辽宁工业大学土木建筑工程学院,辽宁 锦州
关键词: 地聚物玄武岩纤维工作性能力学性能耐久性能Geopolymer Basalt Fiber Working Performance Mechanical Properties Durability
摘要: 地聚物复合材料(Geopolymer Composite, GPC)因早期强度高、环境效益好而被认为是传统水泥的良好代替品。但由于GPC本身脆度较高,抗裂性能较差在一定程度上限制了其应用。为提高GPC的韧性,通常在GPC中添加一定量的纤维,其中玄武岩纤维因其造价低、强度高、耐腐蚀性强,以及与混凝土其他材料粘结性好在GPC中起到了很好的辅助增强效果。文章综述了玄武岩纤维增强地聚物复合材料(Basalt Fiber Reinforced Geopolymer Composite, BFRGPC)的研究进展,包括玄武岩纤维掺量在GPC工作性能、力学性能和耐久性能方面的影响,并对目前存在的问题提出了建议,便于将来更好地应用BFRGPC。
Abstract: Geopolymer composite (GPC) is considered a good alternative to conventional cement due to its high early strength and good environmental benefits. However, due to the high brittleness of GPC itself, the poor crack resistance limits its application to a certain extent. In order to improve the toughness of GPC, a certain amount of fiber is usually added to GPC, of which basalt fiber plays a very good auxiliary strengthening effect in GPC because of its low cost, high strength, strong corrosion resistance, and good adhesion with other materials of concrete. This paper reviews the research progress of the Basalt Fiber Reinforced Geopolymer Composite (BFRGPC), including the effects of basalt fiber content on the working properties, mechanical properties and durability of GPC. Some suggestions on the existing problems are put forward to facilitate the better application of BFRGPC in the future.
文章引用:蒋玉恒, 章文姣, 陈涛. 玄武岩纤维增强地聚物材料的研究进展[J]. 土木工程, 2024, 13(12): 2199-2206. https://doi.org/10.12677/hjce.2024.1312242

1. 引言

随着中国经济的不断发展,国家对电力的需求也日益增加。传统的火力发电需消耗大量的煤炭等不可再生资源,寻求可以部分代替火力发电的新能源如水能、风能、核能等已引起世界各国的重视。中国的地势存在西高东低的特点且具有较大的高度落差[1],同时中国的水资源也较为丰富,这都为大力发展水能提供了良好的先决条件[2]。为了充分利用这些水资源需要建设大量的水坝、水库等以存储水资源来进行发电。混凝土因其制造难度低、抗压强度高和耐侵蚀性较好而被广泛应用于建造水利设施,但混凝土本身的抗拉强度低,易产生裂缝而降低混凝土的强度,这会缩短水利设施的安全使用寿命。目前,水利设施中仍在大量使用传统的建筑材料,这些材料不仅会消耗大量的能源,还会对环境造成一定的影响。

在建筑行业中,使用的传统建筑材料会在其完整的生命周期内消耗大量能源和排放出大量的CO2。据统计,建筑行业的CO2排放量约占CO2总排放量的40%,能源消耗量占全球能源消耗的36% [3]。其中每生产1吨普通波特兰水泥(Ordinary Portland Cement, OPC)便会导致约0.9吨CO2释放到大气中,这会对环境造成许多负面影响,例如加剧温室效应导致全球气候变化[4] [5]。因此,寻找一种能够代替OPC的材料是极其重要的。

地聚物复合材料(Geopolymer composite, GPC)是一种半结晶三维硅铝酸盐材料,通常由铝硅酸盐前驱体经激发剂活化而成[6]。GPC前驱体通常为高炉矿渣[7]-[9]、粉煤灰[10]-[12]、偏高岭土[13]-[15]等工业废物,这能节约许多处理废物的成本并减少对环境造成的污染。研究表明,GPC生产过程中能耗低,能大大减少CO2的排放[16]。GPC的抗压强度高,耐久性能好[17],但其抗裂性能差,抗弯性能较低,限制了其应用范围。纤维在水泥混凝土中的应用研究表明,添加纤维能较好地改善混凝土的抗裂性能[18]-[20]。相比于其他纤维,玄武岩纤维具有造价低、强度高、耐腐蚀性强,以及与混凝土其他材料粘结性好等特点[21]-[23],因此,国内外科研工作者也将目光聚集到用玄武岩纤维改善GPC的性能,并得出了许多有用的结论。为将这些研究结果更好地指导将来的科学研究和实践应用,本文对近年来玄武岩纤维增强地聚物复合材料(Basalt Fiber Reinforced Geopolymer Composite, BFRGPC)的研究进行了梳理与总结,重点介绍了玄武岩掺量对BFRGPC工作性能、力学性能和耐久性能的影响,并对未来BFRGPC的发展方向进行了展望。

2. 工作性能

BFRGC需要具有良好的工作性能才能确保在工程实际中的应用,适宜的流动性和凝结时间是BFRGC良好工作性能的重要部分。

2.1. 流动性

BFRGPC的流动性可以通过坍落度来进行测量。在Wu等[24]研究中发现,随着纤维掺量(体积掺量,下同)的增加,掺玄武岩的GPC的坍落度比不掺玄武岩纤维的GPC降低了约3.8%~27.6%。Yang等[25]的研究结论为,随着纤维掺量增加为0.3%,0.6%,0.9%时,GPC的坍落度分别降低了17.7%,31.1%,56.1%。Zhang等[26]研究发现,在玄武岩纤维掺量为0.2%~1.2%时,GPC的坍落度降低了3.7%~28.5%。Asil等[27]的研究结论为,BFRGPC的坍落度比不掺玄武岩纤维的GPC降低约19.4%~39.8%。

图1中可以看出,添加玄武岩纤维后GPC的坍落度整体降低,并且BFRGPC坍落度随着纤维掺量的增加而逐渐降低。加入玄武岩纤维后GPC坍落度降低主要有以下几点:1) 随着纤维含量的增加,纤维的比表面积增加,产生多余的摩擦力,从而增加了阻力,影响浆料的自由流动。2) 纤维在混合过程中相互接触,形成纤维网络,导致纤维结块的存在,易形成纤维团聚和结块效应。3) 混合过程中,纤维与GPC基体之间的摩擦也导致混合物中水分分散不足,影响浆体的流动。

Figure 1. Relationship between basalt fiber content and GPC slump

1. 玄武岩纤维掺量与GPC塌落度的关系

2.2. 凝结时间

关于纤维掺量对BFRGPC凝结时间影响的研究,不同研究人员发现了不同的结果。Punurai等[28]和Saloni等[29]研究发现,随着纤维掺量的增加,BFRGPC凝结时间不断延长,比不掺纤维的GPC的凝结时间分别延长103%和101%。这是因为非晶相的不断生成在GPC的凝固和硬化过程中起着非常重要的作用。玄武岩纤维的比表面积小于前驱体的比表面积,因此玄武岩纤维中二氧化硅、氧化铝等非晶相的浸出率低于前驱体,从而导致添加玄武岩纤维后GPC凝结时间延长。Xu [30]等发现,随着纤维掺量的增加,BFRGPC的凝结时间呈先减小后增大的趋势,这是由于玄武岩纤维掺量较低时在基体中会产生一定的孔隙,这为聚合反应提供了一定的空间进而加快聚合反应,缩短凝结时间。但当纤维掺量增加到0.9%时,GPC的空隙率过高,反而会减缓聚合反应的速度。

3. 力学性能

BFRGPC优良的力学性能是其能大范围应用的重要保证。玄武岩纤维的掺量对其力学性能具有一定的影响。

3.1. 抗压强度

图2可以看出,玄武岩纤维掺量总体在1.2vol%以下,且GPC抗压强度随着纤维掺量的增加都呈现出先增加后降低的趋势。

在Xu等[30]的研究中发现,随着纤维掺量的增加,GPC的抗压强度先上升后下降,在纤维掺量为0.6%时,其抗压强度达到最高值。继续增加纤维掺量,GPC抗压强度开始降低,但在实验范围内,BFRGPC的抗压强度始终高于未掺纤维的GPC。Wu等[24]研究发现,在添加0.2%的玄武岩纤维时,GPC的抗压强度达到最高值,相对于零掺量的GPC,其抗压强度提高了14%。当纤维掺量过高时,BFRGPC的抗压

Figure 2. Relationship between basalt fiber content and compressive strength of GPC

2. 玄武岩纤维掺量与GPC抗压强度的关系

Figure 3. Relationship between basalt fiber content and flexural strength of GPC

3. 玄武岩纤维掺量与GPC抗弯强度的关系

强度低于不含纤维的GPC的抗压强度。Yang等[25]、Zhang等[26]、徐勇等[31]也得到了类似的结论,只是BFRGPC出现抗压强度最高值的纤维掺量有所不同。这是因为当基体受到冲击时,基体吸收的能量越多,抗裂纹扩展能力就越强。适量的纤维更容易均匀地分散在基体中,分散良好的玄武岩纤维网络结构可以有效地增强GPC的抗压性能,抑制微裂缝的产生和演化,从而提高GPC的抗压强度。当纤维掺量过高时,纤维分散不足,易产生纤维团聚,在基体内部出现孔洞,导致抗压强度降低[32]

3.2. 抗弯强度

在GPC中添加玄武岩纤维主要用于提升GPC的抗弯强度,减小GPC发生脆性破坏的概率,提高在工程应用中的安全性。图3为玄武岩纤维掺量与GPC抗弯强度的关系曲线图。由图3可以看出BFRGPC的抗弯强度均高于未添加纤维的GPC,然而随着纤维掺量的增加,BFRGPC的抗弯强度变化趋势,不同研究人员给出了不同的结论。Wu等[24]研究发现,随着纤维掺量的增加,GPC的抗弯强度先增加后降低,在纤维掺量为0.4%时,其抗弯强度最高为5.0 MPa,随后GPC的抗弯强度开始降低。在Xu等[30]和徐勇等[31]的研究中也发现了类似的结论,GPC的抗弯强度随着纤维掺量的增加而增加,在掺量为0.6%时达到最高值,其抗弯强度比未添加纤维的GPC提高了62%,随后纤维掺量继续增加,GPC的抗弯强度开始减弱。Bian等[33]研究发现,GPC的抗弯强度随着玄武岩纤维掺量的增加而持续增加,在纤维掺量为1%时,其抗弯强度达到最高。同样,Zhang等[26]也发现了类似的结论,随着纤维掺量的增加,GPC的抗弯强度也随之增加,加入1.2%的玄武岩纤维可以使GPC的抗弯强度提高37%。

这是因为在适当的纤维掺量下,通过纤维断裂、纤维拉出和纤维桥接等共同作用,减少了裂纹的形成并延缓了GPC中裂纹的扩展,这在很大程度上提升了BFRGC的抗弯强度。在纤维掺量过高时,玄武岩纤维在基体中流动性降低从而导致纤维在基体中分布不均和纤维团聚,降低了纤维和基体之间的界面粘结力,影响纤维与基体的粘附,因此纤维不能很好地承受应力,导致BFRGC的抗弯强度降低[34]

4. 耐久性能

耐久性对GPC结构的使用寿命起着决定性作用,孔隙结构是影响GPC耐久性的重要因素之一。玄武岩纤维的加入可以有效改善GPC的耐久性,包括抗冻融、抗干湿循环、耐高温等。Sahin等[35]和Bian等[33]试验都表明,随着玄武岩纤维掺量不断增加,BFGPC分别经过180次和200次冻融循环后,其残余抗压强度也随之提高,这表明添加玄武岩纤维对GPC的抗冻融性能起到积极的作用。分析其原因,纤维在胶凝材料与骨料之间起到了桥接的作用,有效地抑制裂缝扩展并填充了孔隙。随着玄武岩纤维掺量的增加,纤维的孔隙填充作用进一步加强,显著减轻了冻融循环对GPC的损伤并改善了其微观结构。Zhang等[36]的实验表明,在干湿循环条件下,添加1%的玄武岩纤维的BFGPC的残余抗压强度为44.6 MPa,高于不掺纤维的GPC的残余抗压强度42.1 MPa。添加1%的玄武岩纤维的BFGPC的孔隙率相对于未掺纤维的GPC降低了0.3%,这是因为纤维有效地减少了裂缝和微裂缝的形成,从而限制了水分和化学物质的渗透,减少了侵蚀。Ziada等[37]研究发现,随着玄武岩纤维掺量的增加,BFGPC在不同高温环境下的残余抗压强度都不断增加,在玄武岩纤维掺量为12%时,BFGPC的残余抗压强度达到最高值。冷玲倻等[38]的研究也表明,添加0.1%玄武岩纤维的BFGPC相较于未添加纤维的GPC其动态抗压强度分别提高了20.60%和37.60%,这主要是由于玄武岩纤维与基体相容性较好,纤维之间形成了相互交错的网络结构,提高了界面应力。在一定条件下纤维可能存在分布不均的情况,这会产生一些较大的孔隙和裂缝从而降低GPC的强度,为了改善这种现象,添加适量的纳米材料可以降低一定的孔隙率和延缓裂纹的形成[39]-[41]

5. 总结与展望

1) 添加玄武岩纤维后,GPC的流动性会下降,随着玄武岩纤维掺量的不断增加,GPC的凝结时间整体上也会延长。

2) 加入适量的玄武岩纤维能提高GPC的抗压强度,但添加过量的纤维,反而会因为纤维团聚而导致GPC的抗压强度下降。在合理的纤维添加范围内,加入玄武岩纤维的BFRGPC的抗弯强度整体高于未掺纤维的普通GPC。

3) 添加适量的玄武岩纤维可以提高GPC耐久性,如抗冻融性、耐硫酸盐侵蚀性、抗干湿循环性等。为了改善GPC的孔隙结构,可以通过添加纳米材料等措施。

4) 目前大多数关于BFRGPC的研究多偏向于探索其力学及耐久性能,对其内在破坏机理及多种纤维混掺方面研究尚不全面,未来在这些方面可以进一步研究。

5) 玄武岩纤维本身具有一定的化学惰性,这会减弱其与基体的附着力,进而影响BFRGPC的机械性能。为了提高玄武岩纤维与基体的附着力,可以加入盐酸、复合硅烷剂等,对纤维进行适当的预处理,以改善纤维与基体的结合。

基金项目

辽宁省教育厅高等学校基本科研项目(LJ212410154032);辽宁省属本科高校基本科研业务费专项资金(LJZZ222410154008);辽宁工业大学大学生创新创业训练计划省级项目(162)。

NOTES

*通讯作者。

参考文献

[1] 涂汉明, 刘振东. 中国地势起伏度研究[J]. 测绘学报, 1991, 20(4): 311-319.
[2] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116-120.
[3] Xue, Q., Wang, Z. and Chen, Q. (2021) Multi-Objective Optimization of Building Design for Life Cycle Cost and CO2 Emissions: A Case Study of a Low-Energy Residential Building in a Severe Cold Climate. Building Simulation, 15, 83-98.
https://doi.org/10.1007/s12273-021-0796-5
[4] Tayeh, B.A., Hamada, H.M., Almeshal, I. and Bakar, B.H.A. (2022) Durability and Mechanical Properties of Cement Concrete Comprising Pozzolanic Materials with Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17, e01429.
https://doi.org/10.1016/j.cscm.2022.e01429
[5] Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013) Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry. Journal of Cleaner Production, 51, 142-161.
https://doi.org/10.1016/j.jclepro.2012.10.049
[6] Davidovits, J. and Cordi, S. (1979) Synthesis of New High Temperature Geo-Polymers for Reinforced Plastics/Composites. Proceedings of the 1979 Fourth Annual Pacific Technical Conference and Technical Displays, Costa Mesa, 31 January-2 February 1979, 151-154.
[7] Zada Farhan, K., Azmi Megat Johari, M. and Demirboğa, R. (2022) Evaluation of Properties of Steel Fiber Reinforced GGBFS-Based Geopolymer Composites in Aggressive Environments. Construction and Building Materials, 345, Article ID: 128339.
https://doi.org/10.1016/j.conbuildmat.2022.128339
[8] Huang, Y., Tan, J., Xuan, X., Liu, L., Xie, M., Liu, H., et al. (2021) Study on Untreated and Alkali Treated Rice Straw Reinforced Geopolymer Composites. Materials Chemistry and Physics, 262, Article ID: 124304.
https://doi.org/10.1016/j.matchemphys.2021.124304
[9] Huang, Y., Tan, J., Xuan, X., Wei, S., Liu, L., Yu, S., et al. (2022) Durability of Plant Fiber Reinforced Alkali Activated Composites. Construction and Building Materials, 314, Article ID: 125501.
https://doi.org/10.1016/j.conbuildmat.2021.125501
[10] Cai, J., Liu, Z., Lv, N., Xu, G., Tian, Q., Shen, W., et al. (2023) Eco-Friendly Lightweight Composite Prepared with a Geopolymer and Wheat Straw. Green Materials.
https://doi.org/10.1680/jgrma.23.00025
[11] Chen, R., Ahmari, S. and Zhang, L. (2013) Utilization of Sweet Sorghum Fiber to Reinforce Fly Ash-Based Geopolymer. Journal of Materials Science, 49, 2548-2558.
https://doi.org/10.1007/s10853-013-7950-0
[12] Valencia-Saavedra, W.G., Mejía de Gutiérrez, R. and Puertas, F. (2020) Performance of FA-Based Geopolymer Concretes Exposed to Acetic and Sulfuric Acids. Construction and Building Materials, 257, Article ID: 119503.
https://doi.org/10.1016/j.conbuildmat.2020.119503
[13] Li, Z., Zhang, S., Zuo, Y., Chen, W. and Ye, G. (2019) Chemical Deformation of Metakaolin Based Geopolymer. Cement and Concrete Research, 120, 108-118.
https://doi.org/10.1016/j.cemconres.2019.03.017
[14] Lin, H., Liu, H., Li, Y. and Kong, X. (2023) Effects of Wood Fiber on the Properties of Silicoaluminophosphate Geopolymer. Journal of Building Engineering, 64, Article ID: 105652.
https://doi.org/10.1016/j.jobe.2022.105652
[15] Sá Ribeiro, R.A., Sá Ribeiro, M.G., Sankar, K. and Kriven, W.M. (2016) Geopolymer-Bamboo Composite—A Novel Sustainable Construction Material. Construction and Building Materials, 123, 501-507.
https://doi.org/10.1016/j.conbuildmat.2016.07.037
[16] Turner, L.K. and Collins, F.G. (2013) Carbon Dioxide Equivalent (CO2-E) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Construction and Building Materials, 43, 125-130.
https://doi.org/10.1016/j.conbuildmat.2013.01.023
[17] Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2006) Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933.
https://doi.org/10.1007/s10853-006-0637-z
[18] 杜常博, 李东泽, 易富, 等. 改性玄武岩纤维对混凝土抗硫酸盐性能的影响[J]. 复合材料学报, 2024, 42(1): 1-11.
[19] 夏冬桃, 喻诗汀, 李彪, 等. 钢纤维增强碱矿渣再生混凝土力学性能及碳排放分析[J]. 建筑材料学报, 2024, 27(10): 938-945.
[20] 朱飞飞, 乔宏霞, 付勇, 等. 西部盐渍土地区玄武岩纤维混凝土冻融试验及数值分析[J]. 硅酸盐学报, 2024, 52(11): 3431-3443.
[21] Sim, J., Park, C. and Moon, D.Y. (2005) Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures. Composites Part B: Engineering, 36, 504-512.
https://doi.org/10.1016/j.compositesb.2005.02.002
[22] Yang, W., Liu, L., Wu, W., Zhang, K., Xiong, X., Li, C., et al. (2024) A Review of the Mechanical Properties and Durability of Basalt Fiber Recycled Concrete. Construction and Building Materials, 412, Article ID: 134882.
https://doi.org/10.1016/j.conbuildmat.2024.134882
[23] Zheng, Y., Zhang, Y., Zhuo, J., Zhang, Y. and Wan, C. (2022) A Review of the Mechanical Properties and Durability of Basalt Fiber-Reinforced Concrete. Construction and Building Materials, 359, Article ID: 129360.
https://doi.org/10.1016/j.conbuildmat.2022.129360
[24] Wu, R., Gu, Q., Gao, X., Luo, Y., Zhang, H., Tian, S., et al. (2024) Effect of Basalt Fibers and Silica Fume on the Mechanical Properties, Stress-Strain Behavior, and Durability of Alkali-Activated Slag-Fly Ash Concrete. Construction and Building Materials, 418, Article ID: 135440.
https://doi.org/10.1016/j.conbuildmat.2024.135440
[25] Yang, Z., Lu, F., Zhan, X., Zhu, H., Zhang, B., Chen, Z., et al. (2024) Mechanical Properties and Mesoscopic Damage Characteristics of Basalt Fibre-Reinforced Seawater Sea-Sand Slag-Based Geopolymer Concrete. Journal of Building Engineering, 84, Article ID: 108688.
https://doi.org/10.1016/j.jobe.2024.108688
[26] Zhang, T., Wang, K., Lin, B. and Yao, Y. (2024) The Enhancement Mechanism of Modified Basalt Fiber on the Performance of Geopolymer Concrete. Construction and Building Materials, 417, Article ID: 135123.
https://doi.org/10.1016/j.conbuildmat.2024.135123
[27] Asil, M.B. and Ranjbar, M.M. (2022) Hybrid Effect of Carbon Nanotubes and Basalt Fibers on Mechanical, Durability, and Microstructure Properties of Lightweight Geopolymer Concretes. Construction and Building Materials, 357, Article ID: 129352.
https://doi.org/10.1016/j.conbuildmat.2022.129352
[28] Punurai, W., Kroehong, W., Saptamongkol, A. and Chindaprasirt, P. (2018) Mechanical Properties, Microstructure and Drying Shrinkage of Hybrid Fly Ash-Basalt Fiber Geopolymer Paste. Construction and Building Materials, 186, 62-70.
https://doi.org/10.1016/j.conbuildmat.2018.07.115
[29] Saloni, Parveen, and Pham, T.M. (2020) Enhanced Properties of High-Silica Rice Husk Ash-Based Geopolymer Paste by Incorporating Basalt Fibers. Construction and Building Materials, 245, Article ID: 118422.
https://doi.org/10.1016/j.conbuildmat.2020.118422
[30] Xu, J., Kang, A., Wu, Z., Xiao, P. and Gong, Y. (2023) Evaluation of Workability, Microstructure and Mechanical Properties of Recycled Powder Geopolymer Reinforced by Waste Hydrophilic Basalt Fiber. Journal of Cleaner Production, 396, Article ID: 136514.
https://doi.org/10.1016/j.jclepro.2023.136514
[31] 徐勇, 张耀君, 王亚超, 等. 玄武岩纤维增韧三元地质聚合物的制备[J]. 化工新型材料, 2011, 39(11): 128-131.
[32] Zhou, X., Zeng, Y., Chen, P., Jiao, Z. and Zheng, W. (2021) Mechanical Properties of Basalt and Polypropylene Fibre-Reinforced Alkali-Activated Slag Concrete. Construction and Building Materials, 269, Article ID: 121284.
https://doi.org/10.1016/j.conbuildmat.2020.121284
[33] Bian, Y., Song, F., Liu, H., Li, R. and Xiao, C. (2024) Study on the Performance of Basalt Fiber Geopolymer Concrete by Freeze-Thaw Cycle Coupled with Sulfate Erosion. AIP Advances, 14, Article ID: 015136.
https://doi.org/10.1063/5.0187990
[34] Guo, X. and Pan, X. (2018) Mechanical Properties and Mechanisms of Fiber Reinforced Fly Ash-Steel Slag Based Geopolymer Mortar. Construction and Building Materials, 179, 633-641.
https://doi.org/10.1016/j.conbuildmat.2018.05.198
[35] Şahin, F., Uysal, M., Canpolat, O., Aygörmez, Y., Cosgun, T. and Dehghanpour, H. (2021) Effect of Basalt Fiber on Metakaolin-Based Geopolymer Mortars Containing Rilem, Basalt and Recycled Waste Concrete Aggregates. Construction and Building Materials, 301, Article ID: 124113.
https://doi.org/10.1016/j.conbuildmat.2021.124113
[36] Zhang, Y.H., Zhong, W.L. and Fan, L.F. (2024) Long-Term Durability Investigation of Basalt Fiber-Reinforced Geopolymer Concrete in Marine Environment. Journal of Materials Research and Technology, 31, 593-605.
https://doi.org/10.1016/j.jmrt.2024.06.078
[37] Ziada, M., Erdem, S., Tammam, Y., Kara, S. and Lezcano, R.A.G. (2021) The Effect of Basalt Fiber on Mechanical, Microstructural, and High-Temperature Properties of Fly Ash-Based and Basalt Powder Waste-Filled Sustainable Geopolymer Mortar. Sustainability, 13, Article 12610.
https://doi.org/10.3390/su132212610
[38] 冷玲倻, 张鹏飞, 梁文文. 高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为[J]. 硅酸盐通报, 2024, 43(3): 914-921.
[39] Alomayri, T. (2021) Performance Evaluation of Basalt Fiber-Reinforced Geopolymer Composites with Various Contents of Nano CaCO3. Ceramics International, 47, 29949-29959.
https://doi.org/10.1016/j.ceramint.2021.07.169
[40] Intarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Zhang, H., Yoo, D., Limkatanyu, S., et al. (2022) Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials, 12, Article 943.
https://doi.org/10.3390/nano12060943
[41] Li, J., Si, J., Luo, F., Zuo, C., Zhang, P., Sun, Y., et al. (2022) Self-Compensating Geopolymer Utilizing Nano-Clay and Chopped Basalt Fibers. Construction and Building Materials, 357, Article ID: 129302.
https://doi.org/10.1016/j.conbuildmat.2022.129302