[1]
|
Libby, P., Pasterkamp, G., Crea, F. and Jang, I. (2019) Reassessing the Mechanisms of Acute Coronary Syndromes. Circulation Research, 124, 150-160. https://doi.org/10.1161/circresaha.118.311098
|
[2]
|
Crea, F. and Liuzzo, G. (2013) Pathogenesis of Acute Coronary Syndromes. Journal of the American College of Cardiology, 61, 1-11. https://doi.org/10.1016/j.jacc.2012.07.064
|
[3]
|
Tarkin, J.M., Joshi, F.R. and Rudd, J.H.F. (2014) PET Imaging of Inflammation in Atherosclerosis. Nature Reviews Cardiology, 11, 443-457. https://doi.org/10.1038/nrcardio.2014.80
|
[4]
|
Swiatlowska, P., Tipping, W., Marhuenda, E., Severi, P., Fomin, V., Yang, Z., et al. (2023) Hypertensive Pressure Mechanosensing Alone Triggers Lipid Droplet Accumulation and Transdifferentiation of Vascular Smooth Muscle Cells to Foam Cells. Advanced Science, 11, Article ID: 2308686. https://doi.org/10.1002/advs.202308686
|
[5]
|
Galindo, C.L., Khan, S., Zhang, X., Yeh, Y., Liu, Z. and Razani, B. (2023) Lipid-Laden Foam Cells in the Pathology of Atherosclerosis: Shedding Light on New Therapeutic Targets. Expert Opinion on Therapeutic Targets, 27, 1231-1245. https://doi.org/10.1080/14728222.2023.2288272
|
[6]
|
Hossaini Nasr, S. and Huang, X. (2021) Nanotechnology for Targeted Therapy of Atherosclerosis. Frontiers in Pharmacology, 12, Article 755569. https://doi.org/10.3389/fphar.2021.755569
|
[7]
|
Chan, C.K.W., Zhang, L., Cheng, C.K., Yang, H., Huang, Y., Tian, X.Y., et al. (2017) Recent Advances in Managing Atherosclerosis via Nanomedicine. Small, 14, Article ID: 1702793. https://doi.org/10.1002/smll.201702793
|
[8]
|
Grootaert, M.O.J. and Bennett, M.R. (2021) Vascular Smooth Muscle Cells in Atherosclerosis: Time for a Re-Assessment. Cardiovascular Research, 117, 2326-2339. https://doi.org/10.1093/cvr/cvab046
|
[9]
|
Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. (2014) Mechanisms of Plaque Formation and Rupture. Circulation Research, 114, 1852-1866. https://doi.org/10.1161/circresaha.114.302721
|
[10]
|
Dai, T., He, W., Yao, C., Ma, X., Ren, W., Mai, Y., et al. (2020) Applications of Inorganic Nanoparticles in the Diagnosis and Therapy of Atherosclerosis. Biomaterials Science, 8, 3784-3799. https://doi.org/10.1039/d0bm00196a
|
[11]
|
Han, J., Mao, K., Yang, Y. and Sun, T. (2024) Impact of Inorganic/Organic Nanomaterials on the Immune System for Disease Treatment. Biomaterials Science, 12, 4903-4926. https://doi.org/10.1039/d4bm00853g
|
[12]
|
Zhang, L., Tian, X.Y., Chan, C.K.W., Bai, Q., Cheng, C.K., Chen, F.M., et al. (2018) Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating. ACS Applied Materials & Interfaces, 11, 13888-13904. https://doi.org/10.1021/acsami.8b17928
|
[13]
|
Talev, J. and Kanwar, J.R. (2020) Iron Oxide Nanoparticles as Imaging and Therapeutic Agents for Atherosclerosis. Seminars in Thrombosis and Hemostasis, 46, 553-562. https://doi.org/10.1055/s-0039-3400247
|
[14]
|
Ou, L., Zhong, S., Ou, J. and Tian, J. (2020) Application of Targeted Therapy Strategies with Nanomedicine Delivery for Atherosclerosis. Acta Pharmacologica Sinica, 42, 10-17. https://doi.org/10.1038/s41401-020-0436-0
|
[15]
|
Yang, L., Zang, G., Li, J., Li, X., Li, Y. and Zhao, Y. (2020) Cell-Derived Biomimetic Nanoparticles as a Novel Drug Delivery System for Atherosclerosis: Predecessors and Perspectives. Regenerative Biomaterials, 7, 349-358. https://doi.org/10.1093/rb/rbaa019
|
[16]
|
Alam, S.R., Stirrat, C., Richards, J., Mirsadraee, S., Semple, S.I.K., Tse, G., et al. (2015) Vascular and Plaque Imaging with Ultrasmall Superparamagnetic Particles of Iron Oxide. Journal of Cardiovascular Magnetic Resonance, 17, 83. https://doi.org/10.1186/s12968-015-0183-4
|
[17]
|
Kim, Y., Lobatto, M.E., Kawahara, T., Lee Chung, B., Mieszawska, A.J., Sanchez-Gaytan, B.L., et al. (2014) Probing Nanoparticle Translocation across the Permeable Endothelium in Experimental Atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 111, 1078-1083. https://doi.org/10.1073/pnas.1322725111
|
[18]
|
Lobatto, M.E., Fuster, V., Fayad, Z.A. and Mulder, W.J.M. (2011) Perspectives and Opportunities for Nanomedicine in the Management of Atherosclerosis. Nature Reviews Drug Discovery, 10, 835-852. https://doi.org/10.1038/nrd3578
|
[19]
|
Katsuki, S., Matoba, T., Nakashiro, S., Sato, K., Koga, J., Nakano, K., et al. (2014) Nanoparticle-Mediated Delivery of Pitavastatin Inhibits Atherosclerotic Plaque Destabilization/Rupture in Mice by Regulating the Recruitment of Inflammatory Monocytes. Circulation, 129, 896-906. https://doi.org/10.1161/circulationaha.113.002870
|
[20]
|
Zhang, J., Zu, Y., Dhanasekara, C.S., Li, J., Wu, D., Fan, Z., et al. (2016) Detection and Treatment of Atherosclerosis Using Nanoparticles. WIREs Nanomedicine and Nanobiotechnology, 9, e1412. https://doi.org/10.1002/wnan.1412
|
[21]
|
Jia, X., Bai, X., Yang, X., Wang, L., Lu, Y., Zhu, L., et al. (2022) VCAM-1-Binding Peptide Targeted Cationic Liposomes Containing NLRP3 siRNA to Modulate LDL Transcytosis as a Novel Therapy for Experimental Atherosclerosis. Metabolism, 135, Article ID: 155274. https://doi.org/10.1016/j.metabol.2022.155274
|
[22]
|
Distasio, N., Dierick, F., Ebrahimian, T., Tabrizian, M. and Lehoux, S. (2022) Design and Development of Branched Poly(β-Aminoester) Nanoparticles for Interleukin-10 Gene Delivery in a Mouse Model of Atherosclerosis. Acta Biomaterialia, 143, 356-371. https://doi.org/10.1016/j.actbio.2022.02.043
|
[23]
|
Xu, W., Zhang, S., Zhou, Q. and Chen, W. (2019) VHPKQHR Peptide Modified Magnetic Mesoporous Nanoparticles for MRI Detection of Atherosclerosis Lesions. Artificial Cells, Nanomedicine, and Biotechnology, 47, 2440-2448. https://doi.org/10.1080/21691401.2019.1626411
|
[24]
|
Höltke, C., Enders, L., Stölting, M., Geyer, C., Masthoff, M., Kuhlmann, M.T., et al. (2023) Detection of Early Endothelial Dysfunction by Optoacoustic Tomography. International Journal of Molecular Sciences, 24, Article 8627. https://doi.org/10.3390/ijms24108627
|
[25]
|
Fang, F., Ni, Y., Yu, H., Yin, H., Yang, F., Li, C., et al. (2022) Inflammatory Endothelium-Targeted and Cathepsin Responsive Nanoparticles Are Effective against Atherosclerosis. Theranostics, 12, 4200-4220. https://doi.org/10.7150/thno.70896
|
[26]
|
Lemke, G. (2019) How Macrophages Deal with Death. Nature Reviews Immunology, 19, 539-549. https://doi.org/10.1038/s41577-019-0167-y
|
[27]
|
Wu, Z., Zhou, M., Tang, X., Zeng, J., Li, Y., Sun, Y., et al. (2022) Carrier-Free Trehalose-Based Nanomotors Targeting Macrophages in Inflammatory Plaque for Treatment of Atherosclerosis. ACS Nano, 16, 3808-3820. https://doi.org/10.1021/acsnano.1c08391
|
[28]
|
Krolikoski, M., Monslow, J. and Puré, E. (2019) The CD44-HA Axis and Inflammation in Atherosclerosis: A Temporal Perspective. Matrix Biology, 78, 201-218. https://doi.org/10.1016/j.matbio.2018.05.007
|
[29]
|
Hossaini Nasr, S., Rashidijahanabad, Z., Ramadan, S., Kauffman, N., Parameswaran, N., Zinn, K.R., et al. (2020) Effective Atherosclerotic Plaque Inflammation Inhibition with Targeted Drug Delivery by Hyaluronan Conjugated Atorvastatin Nanoparticles. Nanoscale, 12, 9541-9556. https://doi.org/10.1039/d0nr00308e
|
[30]
|
Hou, X., Lin, H., Zhou, X., Cheng, Z., Li, Y., Liu, X., et al. (2020) Novel Dual Ros-Sensitive and CD44 Receptor Targeting Nanomicelles Based on Oligomeric Hyaluronic Acid for the Efficient Therapy of Atherosclerosis. Carbohydrate Polymers, 232, Article ID: 115787. https://doi.org/10.1016/j.carbpol.2019.115787
|
[31]
|
He, J., Zhang, W., Zhou, X., Xu, F., Zou, J., Zhang, Q., et al. (2023) Reactive Oxygen Species (ROS)-Responsive Size-Reducible Nanoassemblies for Deeper Atherosclerotic Plaque Penetration and Enhanced Macrophage-Targeted Drug Delivery. Bioactive Materials, 19, 115-126. https://doi.org/10.1016/j.bioactmat.2022.03.041
|
[32]
|
Wang, J., Wu, M., Chang, J., Li, L., Guo, Q., Hao, J., et al. (2019) Scavenger Receptor-AI-Targeted Ultrasmall Gold Nanoclusters Facilitate in Vivo MR and Ex Vivo Fluorescence Dual-Modality Visualization of Vulnerable Atherosclerotic Plaques. Nanomedicine: Nanotechnology, Biology and Medicine, 19, 81-94. https://doi.org/10.1016/j.nano.2019.04.003
|
[33]
|
Zhu, Y., Xu, Y., Han, D., Zhang, X., Qin, C., Liu, J., et al. (2023) Scavenger Receptor-AI Targeted Theranostic Nanoparticles for Regression of Atherosclerotic Plaques via ABCA1 Modulation. Nanomedicine: Nanotechnology, Biology and Medicine, 50, 102672. https://doi.org/10.1016/j.nano.2023.102672
|
[34]
|
Dai, Y., Sha, X., Song, X., Zhang, X., Xing, M., Liu, S., et al. (2022) Targeted Therapy of Atherosclerosis Vulnerable Plaque by Ros-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. International Journal of Nanomedicine, 17, 5413-5429. https://doi.org/10.2147/ijn.s371873
|
[35]
|
Lv, F., Fang, H., Huang, L., Wang, Q., Cao, S., Zhao, W., et al. (2024) Curcumin Equipped Nanozyme‐Like Metal-Organic Framework Platform for the Targeted Atherosclerosis Treatment with Lipid Regulation and Enhanced Magnetic Resonance Imaging Capability. Advanced Science, 11, Article ID: 2309062. https://doi.org/10.1002/advs.202309062
|
[36]
|
Marques, P.E., Nyegaard, S., Collins, R.F., Troise, F., Freeman, S.A., Trimble, W.S., et al. (2019) Multimerization and Retention of the Scavenger Receptor SR-B1 in the Plasma Membrane. Developmental Cell, 50, 283-295.e5. https://doi.org/10.1016/j.devcel.2019.05.026
|
[37]
|
Shen, W., Azhar, S. and Kraemer, F.B. (2018) SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annual Review of Physiology, 80, 95-116. https://doi.org/10.1146/annurev-physiol-021317-121550
|
[38]
|
Akinkuolie, A.O., Paynter, N.P., Padmanabhan, L. and Mora, S. (2014) High-Density Lipoprotein Particle Subclass Heterogeneity and Incident Coronary Heart Disease. Circulation: Cardiovascular Quality and Outcomes, 7, 55-63. https://doi.org/10.1161/circoutcomes.113.000675
|
[39]
|
Dhanasekara, C.S., Zhang, J., Nie, S., Li, G., Fan, Z. and Wang, S. (2021) Nanoparticles Target Intimal Macrophages in Atherosclerotic Lesions. Nanomedicine: Nanotechnology, Biology and Medicine, 32, Article ID: 102346. https://doi.org/10.1016/j.nano.2020.102346
|
[40]
|
Nie, S., Zhang, J., Martinez-Zaguilan, R., Sennoune, S., Hossen, M.N., Lichtenstein, A.H., et al. (2015) Detection of Atherosclerotic Lesions and Intimal Macrophages Using CD36-Targeted Nanovesicles. Journal of Controlled Release, 220, 61-70. https://doi.org/10.1016/j.jconrel.2015.10.004
|
[41]
|
Gao, C., Huang, Q., Liu, C., Kwong, C.H.T., Yue, L., Wan, J., et al. (2020) Treatment of Atherosclerosis by Macrophage-Biomimetic Nanoparticles via Targeted Pharmacotherapy and Sequestration of Proinflammatory Cytokines. Nature Communications, 11, Article No. 2622. https://doi.org/10.1038/s41467-020-16439-7
|
[42]
|
Kim, M., Sahu, A., Kim, G.B., Nam, G.H., Um, W., Shin, S.J., et al. (2018) Comparison of in Vivo Targeting Ability between CRGD and Collagen-Targeting Peptide Conjugated Nano-Carriers for Atherosclerosis. Journal of Controlled Release, 269, 337-346. https://doi.org/10.1016/j.jconrel.2017.11.033
|