纳米药物靶向技术在动脉粥样硬化诊治的进展
Advances in Atherosclerosis Diagnosis and Treatment with Nanomedicine Targeting Technology
DOI: 10.12677/acm.2025.152490, PDF, HTML, XML,    科研立项经费支持
作者: 刘红利, 李雪霖*:重庆医科大学,重庆;重庆市人民医院健康管理中心,重庆
关键词: 动脉粥样硬化纳米粒主动靶向Atherosclerosis Nanoparticles Active Targeting
摘要: 动脉粥样硬化是心血管疾病发生发展的重要病理基础之一,主要包括泡沫细胞形成,坏死核心,血栓形成或斑块破裂。随着纳米药物递送技术在肿瘤医学研究的应用,纳米载体给药系统在心血管疾病中也备受关注。根据纳米药物递送系统在动脉粥样硬化中靶向斑块、斑块局部释放药物和提高斑块内药物有效浓度等方面的特点,我们系统介绍了相关靶向药物在动脉粥样硬化诊疗的应用,为纳米药物递送系统在动脉粥样硬化的诊疗进一步研究提供了参考。
Abstract: Atherosclerosis is one of the important pathologic bases for the development of cardiovascular disease, which mainly includes foam cell formation, necrotic core, thrombosis or plaque rupture. With the application of nanomedicine delivery technology in medical oncology research, nanocarrier drug delivery systems in cardiovascular diseases have also attracted much attention. According to the characteristics of nano drug delivery systems in atherosclerosis in terms of targeting plaques, releasing drugs locally in plaques and increasing the effective concentration of drugs in plaques, we systematically introduce the application of relevant targeted drugs in the diagnosis and treatment of atherosclerosis, which provides a reference for the further research on the diagnosis and treatment of atherosclerosis by nanocarrier drug delivery systems.
文章引用:刘红利, 李雪霖. 纳米药物靶向技术在动脉粥样硬化诊治的进展[J]. 临床医学进展, 2025, 15(2): 1409-1416. https://doi.org/10.12677/acm.2025.152490

1. 引言

动脉粥样硬化(atherosclerosis, AS)是一种慢性炎症性疾病,是心血管疾病的重要病理基础。动脉粥样硬化的发病机制复杂,其中动脉粥样硬化斑块危害最大。斑块一般在动脉壁内膜,由胶原纤维、平滑肌细胞形成纤维帽,细胞碎片、脂质和炎症细胞形成脂质坏死核心。纤维帽与富含脂质的坏死结合,被平滑肌细胞包围,巨噬泡沫细胞浸润,参与斑块破裂的发生发展[1] [2]。因此,AS主要研究方向在于减少斑块形成、延缓斑块发展。纳米药物递送系统在肿瘤医学研究中广泛应用,使得其在心血管疾病中也备受关注。因此,本文从纳米药物靶向应用于动脉粥样硬化的诊治方面的研究进行分析,为纳米药物递送系统应用于动脉粥样硬化治疗的设计和构建提供参考。

2. 动脉粥样硬化机制

根据国家心血管病中心发布的2022年中国心血管健康与疾病的报告显示,城乡居民疾病死亡构成比中,心血管疾病占首位,并且我国心血管疾病患病率处于持续上升阶段。心血管疾病发展其中一个主要因素是动脉粥样硬[3]。动脉粥样硬化的发展过程主要包括三个阶段。

第一阶段,泡沫细胞的形成,这是动脉粥样硬化起始的标志。在各种危险因素下,血管内皮细胞功能失调导致其通透性发生改变,低密度脂蛋白更易进入血管壁在内皮下聚集,其在酶和活性氧的修饰下成为氧化低密度脂蛋白(Oxidized Low Density Lipoprotein, ox-LDL) [4]。oxLDL是炎症因子的有效诱导剂,介导单核细胞与内皮细胞的结合。血管内皮细胞损伤诱导释放细胞因子和趋化因子募集炎症细胞(主要是单核细胞),单核细胞在粘附分子如血管粘附分子-1 (Vascular Adhesion Molecule-1, VCAM-1)、细胞间粘附分子-1 (Intracellular Adhension Molecule-1, ICAM-1)的作用下活化为巨噬细胞[5] [6]。巨噬细胞在其清道夫受体促进ox-LDL的摄取下转化为泡沫细胞[7]

第二阶段,在免疫细胞和炎症因子等的刺激下,血管平滑肌细胞(Vascular Smooth Muscle Cells, VSMCs)收缩表型出现丢失、迁移到内膜层以及进一步的表型转换。这个过程称为内膜增厚、内膜平滑肌细胞增殖、降解胶原细胞外基质并分泌蛋白聚糖,蛋白聚糖与脂蛋白结合[5]。内膜中,一部分VSMCs摄取ox-LDL成为平滑肌细胞来源的泡沫细胞,另一部分VSMCs被富含胶原蛋白的纤维组织取代并扩展形成纤维帽。积累的泡沫细胞和平滑肌细胞发生细胞凋亡和继发性坏死,形成坏死核心[8]

最后一个阶段,是斑块破裂和血栓形成。纤维帽中SMC逐渐丢失,同时,浸润的巨噬细胞分泌蛋白水解酶(如纤溶酶原激活剂、组织蛋白酶和基质金属蛋白酶)降解富含胶原蛋白的帽基质,两者共同作用导致纤维帽变薄。在薄帽基础上,巨噬细胞过表达基质金属蛋白酶-9的组成型活性突变形式可导致斑块破裂[9]。随着斑块破裂,帽部胶原蛋白和高血栓形成的脂质核心(富含表达组织因子的凋亡微粒)暴露,成为血液中血栓形成因素之一,与局部血流障碍和全身性血栓形成倾向共同导致血栓形成[10]。极大地增加了心脑血管事件发生的风险。

3. 纳米材料的类型

纳米材料克服了传统药物中存在的毒性高、吸收率低、靶点定位不准确等问题,成为治疗AS中最有前途的新工具之一。目前用于生物医学研究的纳米材料大致可分为以下几类:有机纳米材料:如聚乙二醇(PEG)、聚乳酸羟基乙酸(PLGA)、透明质酸、壳聚糖、聚乙烯吡咯烷酮等[11]。无机纳米材料:如金纳米粒、二氧化硅、铁、铜等。仿生纳米材料:如红细胞膜、血小板膜和巨噬细胞膜纳米颗粒[12] [13]

4. 纳米技术在动脉粥样硬化中的应用

4.1. 被动靶向

在正常血管内皮中,连接紧密血管间隙大概仅为2 nm,而在AS的发展过程中,局部斑块处的血管通透性增高,血管内皮细胞间隙扩大,从而产生类似实体瘤的滞留效应,这有利于纳米药被动靶向AS斑块处发挥诊治作用[14] [15]

Alam等[16]研究发现,超小超顺磁氧化铁纳米粒能在AS中成像,并穿过血管内皮细胞间隙在斑块破裂处或易损斑块处大量聚集,且不易发生快速肾清除作用。Kim [17]等发现,应用PEG修饰的PLGA复合纳米粒能穿过斑块血管内皮细胞聚集在斑块内部。Lobatto [18]等也采用PEG修饰的PLGA复合纳米粒应用在增强核磁共振成像技术,再次证明有机纳米材料可通过长循环的滞留效应和被动靶向作用于血管斑块,并随着给药时间的延长逐渐分布于全斑块处。在治疗AS方面,Katsuki [19]等制备的匹伐他汀PLGA颗粒较游离的匹伐他汀可明显抑制斑块破裂。通过纳米材料在机体的滞留效应与被动靶向作用,可对病变部位进行成像与治疗,但被动靶向设计材料时受限于材料选择、制备尺寸、形状等多种因素,导致药物利用率大大下降。

4.2. 主动靶向

主动靶向通过对纳米颗粒进行配体修饰发挥作用[20]。根据AS的发生机制,主动靶向的部位主要有斑块血管内皮细胞、巨噬细胞及血管基底膜等。

4.2.1. 血管内皮细胞

AS泡沫细胞形成过程中,斑块部位的血管内皮细胞受损处于炎症激活状态,会过表达VCAM-1、ICAM-1、整合素及选择素等,上述分子有利于脂质蓄积和炎症细胞的招募,参与斑块的形成。因此,可以选择其作为靶标,选择合适的配体修饰应用于靶向纳米粒的发展。熊等人[21]为评估炎症对内皮细胞中NLRP3炎症小体表达的影响。制备了脂质体包封载VCAM-1结合肽的甲基化NLRP3siRNA纳米,该纳米可靶向AS大鼠模型炎症激活状态的内皮细胞,有效降低该部位炎症小体的表达并减弱低密度脂蛋白在内皮细胞中的沉积,从而减少斑块形成。Nicholas等[22]人开发了一种包含编码IL-10的DNA质粒纳米粒,并用靶向VCAM-1包被上述纳米(NP-VHPK)。NP-VHPK在内皮细胞和红细胞中的毒性明显低于其他为未包被VCAM-1的纳米粒。此外,在ApoE-/-小鼠模型中注射NP-VHPK后,IL-10显著聚集在整个主动脉和主动脉窦斑块处,导致局部血管炎症减轻。装载有VCAM-1靶向肽VHPK的NPs也已被用于动脉粥样硬化的诊断,通过磁共振成像检测发现VHPKNPs造影剂在斑块区域信号强度显著增强[23]。以上研究都发现VCAM-1靶向肽(VHPK肽)可以靶向至AS动物模型中处于炎症激活状态的内皮细胞,应用于AS诊断和治疗的研究中。血管内皮中VCAM-1主要参与泡沫细胞的形成,对于AS的治疗具有一定的局限性,是否可以延缓已形成的泡沫细胞继续进展需要我们进一步探索。

由于整合素αvβ3在动脉粥样硬化病变中高表达[24],Fei等[25]使用环肽c (RGDfC)修饰的纳米颗粒来靶向AS内皮细胞中的整合素αvβ3,研究发现该纳米在AS病变早期及晚期均有富集。此外,还发现该纳米粒可通过整合素靶向定位到肝脏,并在该器官中产生潜在的毒性。非酒精性脂肪肝也是动脉粥样硬化性心血管疾病的危险因素之一,或许,未来我们可以利用整合素这个靶标,设计同时靶向肝脏及动脉的纳米进行疾病的诊治,延缓疾病的发生与发展。

4.2.2. 巨噬细胞

巨噬细胞参与了AS的发生发展的全过程,所以纳米药物递送系统通过靶向巨噬细胞实现成像及治疗也是目前的热点研究。巨噬细胞靶标类型很多,包括其本身以及其表达的一些炎性受体分子,如CD44受体,清道夫受体。

机体吞噬清除凋亡或死亡细胞的机制是巨噬细胞识别凋亡或坏死细胞表面表达的“吃我”信号分子:磷脂酰丝氨酸(PS) [26]。因此,吴等[27]报道了一种基于海藻糖(Tr,mTOR非依赖性自噬诱导剂之一)、L-精氨酸(Arg)和PS结合,一氧化氮(NO)驱动的无载体纳米马达。该纳米通过NO驱动实现靶向AS斑块后,PS发出的“吃我”信号分子,精确靶向AS斑块中的巨噬细胞发挥自噬作用。但PS可暴露于缺血缺氧的组织中,不免对心、脑等组织器官发挥作用,其靶向的准确性及安全性需进一步在动物模型进行评估。

针对巨噬细胞炎性受体分子CD44受体靶向作用的研究,主要是利用CD44受体与透明质酸具有高亲和性,从而实现靶向斑块部位的巨噬细胞[28]。Hossaini等[29]设计了以阿托伐他汀为核心,连接透明质酸的纳米粒子(HA-ATV-NP)。在早期AS小鼠动物模型中,通过磁共振成像发现该纳米粒显著减低了AS的斑块形成。连接用以疏水毒素ATV形成纳米粒子(HA-ATV-NP)的核心。体内外实验结果都显示,HA-ATV-NP对巨噬细胞的抗炎作用明显强于ATV-NP。许多其他研究结果也都表明了包载HA的纳米粒更容易富集于AS斑块巨噬细胞中[30] [31]。HA有良好的生物相容性、免疫原性及亲水性,可在体内被特异性降解,其已逐渐成为纳米药物传递系统靶向性研究的常用修饰物。

在AS中,清道夫受体包括A、B两种亚型。清道夫受体(scavenger receptor, SR)在AS中促进泡沫细胞的形成,影响胆固醇的代谢,调节炎症因子产生、参与细胞间的信号传导。其中研究发现SR-A1在斑块晚期的泡沫细胞中高表达,健康的血管壁中找不到[32]。因此,朱等[33]人构建了靶向SR-A1纳米粒,将ABCA1与IR780封装在PLGA-PEG胶束中,胶束与SA-R1靶向肽(PP1)偶联配制SAU-NPs,发现其对病变斑块不仅靶向性高、稳定性好,并且抑制了巨噬细胞向泡沫细胞的转化。此外,SAU-NPs通过激活LXRα-ABCA1/ABCG1/SR-BI通路有效减少胆固醇在泡沫细胞中的沉积。硫酸葡聚糖(dextran sulfate, DS)作为SR-A的配体,可特异性结合到泡沫细胞过表达的SR-A表面进入细胞[34]。吕等[35]人开发了一种有助于AS的早期诊断和治疗的纳米平台,通过DS的表面修饰PCN-222 (Mn)与姜黄素(Cur)制备Cur/MOF@DS纳米平台,其能够有效地靶向斑块内巨噬细胞或泡沫细胞表面的SR-A,在核磁共振下成像,并且清除斑块微环境中过量活性氧,促进巨噬细胞自噬并使巨噬细胞极化来调节脂质含量,从而延缓AS进展。

SR-B家族主要包括SR-B1和CD36两类,SR-B1是一种多配体膜受体,作为生理相关的高密度脂蛋白(high density lipoprotein, HDL)受体,介导HDL-C选择性递送至细胞[36]。巨噬细胞SR-B1通过Src/PI3K/Akt/Rac1信号通路发挥作用,还可以介导胞吞或凋亡细胞的清除,从而提高吞噬细胞的存活率和抗炎反应[37]。故而可利用天然或重组的HDL作为纳米药物递送载体,但是天然HDL不易获取,且不利于工业化生产,所以重组HDL逐渐成为主要研究对象。He等[38]构建了负载了β-环糊精的辛伐他汀盘状重组HDL (βCD-ST-d-rHDL),该r-HDL可将药物靶向至巨噬细胞发挥抗炎作用,清除胞内的胆固醇,减少胞内脂质沉积,并改善细胞膜流动性/渗透性。目前对于rHDL的研究关注在开发能够直接或间接增强HDL引导的反向胆固醇转运(RCT)上,对于其靶向斑块的研究不够丰富。随着精准纳米医学的出现,研究人员开始试图利用rHDL用于AS的治疗和诊断,后续可能会有更多关于rHDL在纳米材料方面的研究。

SR-B家族中的CD36细胞主要分布在斑块和富含脂质的巨噬细胞或泡沫细胞中,CD36的异常过表达可促进脂质积累、泡沫细胞形成、炎症发生、内皮细胞凋亡和血栓形成。在oxLDL表面富集的氧化磷脂酰胆碱是动脉粥样硬化病变中将oxLDL与内膜巨噬细胞的CD36受体结合的负责配体,故Chathurika S Dhanasekara等[39]使用氧化磷脂酰胆碱制备的脂质体纳米粒,发现该纳米粒与巨噬细胞CD36受体具有很高的亲和力,并且聂等[40]人的研究中MRI成像和荧光成像均证实了脂质体与AS内膜巨噬细胞和泡沫细胞共定位。

上述针对巨噬细胞清道夫受体不同亚型靶点的研究进行探讨,发现靶向巨噬细胞不仅能够促进自噬、抗炎,并且在AS磁共振成像方面具有巨大优势。因此,依据巨噬细胞和泡沫细胞中的特异性表达,可设计靶向清道夫受体的双模态成像探针,用无创磁共振/荧光分子成像精确判断斑块易损程度,预测斑块类型,从而尽早干预,提高生存率。这可作为AS诊疗一体化的重要研究方向,早日实现靶向清道夫受体纳米药物的临床转化。

目前细胞膜仿生纳米颗粒也逐渐成为研究热点。巨噬细胞是参与动脉粥样硬化全过程的细胞之一,且具有多种生物学功能,许多研究者利用这一特性,构建了巨噬细胞膜,Gao C等[41]报道一种巨噬细胞膜包被的活性氧响应性仿生药物递送系统,发现巨噬细胞膜递药系统不仅可以吸附炎症因子抑制炎症发生,可以启动促炎机制协同作用提高导致动脉粥样硬化治疗效果。这为动脉粥样硬化治疗药物转运提供了新思路。

4.2.3. 血管基底膜

早些时候,一些研究人员制备了靶向胶原蛋白IV的载药纳米粒,都发现靶向胶原蛋白IV的纳米粒可在AS早期阶段选择性地定位到损伤血管内皮基底膜发挥诊疗作用,相较于游离药物具有更好的治疗效果。后来,Kim等[42]人将IV型胶原靶向肽与可特异性结合血管生成标记物αβ整联蛋白的cRGD肽作为AS靶向纳米载体配体相比较,虽然结果发现,cRGD肽相比ColIV-tg肽靶向部位效果更加显著。但胶原蛋白IV的选择性靶向作用仍值得探索。

5. 总结

综上所述,AS斑块的生理病理特征为靶向纳米药物的发展提供了坚实的依据。文中介绍了纳米药物滞留效应的被动靶向以及配体修饰发挥作用的主动靶向,结合双模态分子成像技术,构建诊疗一体化模式为AS斑块治疗提供更有效的手段、更丰富的信息。当前靶向巨噬细胞的研究有待继续丰富,且该领域纳米药物制备复杂,质量控制繁琐,疗效不稳定,生物安全性仍需探索。但目前细胞膜来源的仿生纳米颗粒备受关注,仿生纳米颗粒被认为是“自我”的,与传统的纳米颗粒相比,其具有更好的生物相容性、免疫逃逸能力、高效的体内循环效应与强靶向性等优势。因此,将纳米颗粒与生物细胞膜结合靶向作用部位,实现AS斑块治疗,磁共振成像预测斑块进展与斑块类型值得我们进一步探索。相信在不久的将来,随着纳米医学、个性化治疗和材料科学的发展,基于纳米药物的诊疗活动最终能够取得巨大的进步并最终实现临床转化。

基金项目

重庆市科卫联合医学科研项目(2023MSXM095)。

NOTES

*通讯作者。

参考文献

[1] Libby, P., Pasterkamp, G., Crea, F. and Jang, I. (2019) Reassessing the Mechanisms of Acute Coronary Syndromes. Circulation Research, 124, 150-160.
https://doi.org/10.1161/circresaha.118.311098
[2] Crea, F. and Liuzzo, G. (2013) Pathogenesis of Acute Coronary Syndromes. Journal of the American College of Cardiology, 61, 1-11.
https://doi.org/10.1016/j.jacc.2012.07.064
[3] Tarkin, J.M., Joshi, F.R. and Rudd, J.H.F. (2014) PET Imaging of Inflammation in Atherosclerosis. Nature Reviews Cardiology, 11, 443-457.
https://doi.org/10.1038/nrcardio.2014.80
[4] Swiatlowska, P., Tipping, W., Marhuenda, E., Severi, P., Fomin, V., Yang, Z., et al. (2023) Hypertensive Pressure Mechanosensing Alone Triggers Lipid Droplet Accumulation and Transdifferentiation of Vascular Smooth Muscle Cells to Foam Cells. Advanced Science, 11, Article ID: 2308686.
https://doi.org/10.1002/advs.202308686
[5] Galindo, C.L., Khan, S., Zhang, X., Yeh, Y., Liu, Z. and Razani, B. (2023) Lipid-Laden Foam Cells in the Pathology of Atherosclerosis: Shedding Light on New Therapeutic Targets. Expert Opinion on Therapeutic Targets, 27, 1231-1245.
https://doi.org/10.1080/14728222.2023.2288272
[6] Hossaini Nasr, S. and Huang, X. (2021) Nanotechnology for Targeted Therapy of Atherosclerosis. Frontiers in Pharmacology, 12, Article 755569.
https://doi.org/10.3389/fphar.2021.755569
[7] Chan, C.K.W., Zhang, L., Cheng, C.K., Yang, H., Huang, Y., Tian, X.Y., et al. (2017) Recent Advances in Managing Atherosclerosis via Nanomedicine. Small, 14, Article ID: 1702793.
https://doi.org/10.1002/smll.201702793
[8] Grootaert, M.O.J. and Bennett, M.R. (2021) Vascular Smooth Muscle Cells in Atherosclerosis: Time for a Re-Assessment. Cardiovascular Research, 117, 2326-2339.
https://doi.org/10.1093/cvr/cvab046
[9] Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. (2014) Mechanisms of Plaque Formation and Rupture. Circulation Research, 114, 1852-1866.
https://doi.org/10.1161/circresaha.114.302721
[10] Dai, T., He, W., Yao, C., Ma, X., Ren, W., Mai, Y., et al. (2020) Applications of Inorganic Nanoparticles in the Diagnosis and Therapy of Atherosclerosis. Biomaterials Science, 8, 3784-3799.
https://doi.org/10.1039/d0bm00196a
[11] Han, J., Mao, K., Yang, Y. and Sun, T. (2024) Impact of Inorganic/Organic Nanomaterials on the Immune System for Disease Treatment. Biomaterials Science, 12, 4903-4926.
https://doi.org/10.1039/d4bm00853g
[12] Zhang, L., Tian, X.Y., Chan, C.K.W., Bai, Q., Cheng, C.K., Chen, F.M., et al. (2018) Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating. ACS Applied Materials & Interfaces, 11, 13888-13904.
https://doi.org/10.1021/acsami.8b17928
[13] Talev, J. and Kanwar, J.R. (2020) Iron Oxide Nanoparticles as Imaging and Therapeutic Agents for Atherosclerosis. Seminars in Thrombosis and Hemostasis, 46, 553-562.
https://doi.org/10.1055/s-0039-3400247
[14] Ou, L., Zhong, S., Ou, J. and Tian, J. (2020) Application of Targeted Therapy Strategies with Nanomedicine Delivery for Atherosclerosis. Acta Pharmacologica Sinica, 42, 10-17.
https://doi.org/10.1038/s41401-020-0436-0
[15] Yang, L., Zang, G., Li, J., Li, X., Li, Y. and Zhao, Y. (2020) Cell-Derived Biomimetic Nanoparticles as a Novel Drug Delivery System for Atherosclerosis: Predecessors and Perspectives. Regenerative Biomaterials, 7, 349-358.
https://doi.org/10.1093/rb/rbaa019
[16] Alam, S.R., Stirrat, C., Richards, J., Mirsadraee, S., Semple, S.I.K., Tse, G., et al. (2015) Vascular and Plaque Imaging with Ultrasmall Superparamagnetic Particles of Iron Oxide. Journal of Cardiovascular Magnetic Resonance, 17, 83.
https://doi.org/10.1186/s12968-015-0183-4
[17] Kim, Y., Lobatto, M.E., Kawahara, T., Lee Chung, B., Mieszawska, A.J., Sanchez-Gaytan, B.L., et al. (2014) Probing Nanoparticle Translocation across the Permeable Endothelium in Experimental Atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 111, 1078-1083.
https://doi.org/10.1073/pnas.1322725111
[18] Lobatto, M.E., Fuster, V., Fayad, Z.A. and Mulder, W.J.M. (2011) Perspectives and Opportunities for Nanomedicine in the Management of Atherosclerosis. Nature Reviews Drug Discovery, 10, 835-852.
https://doi.org/10.1038/nrd3578
[19] Katsuki, S., Matoba, T., Nakashiro, S., Sato, K., Koga, J., Nakano, K., et al. (2014) Nanoparticle-Mediated Delivery of Pitavastatin Inhibits Atherosclerotic Plaque Destabilization/Rupture in Mice by Regulating the Recruitment of Inflammatory Monocytes. Circulation, 129, 896-906.
https://doi.org/10.1161/circulationaha.113.002870
[20] Zhang, J., Zu, Y., Dhanasekara, C.S., Li, J., Wu, D., Fan, Z., et al. (2016) Detection and Treatment of Atherosclerosis Using Nanoparticles. WIREs Nanomedicine and Nanobiotechnology, 9, e1412.
https://doi.org/10.1002/wnan.1412
[21] Jia, X., Bai, X., Yang, X., Wang, L., Lu, Y., Zhu, L., et al. (2022) VCAM-1-Binding Peptide Targeted Cationic Liposomes Containing NLRP3 siRNA to Modulate LDL Transcytosis as a Novel Therapy for Experimental Atherosclerosis. Metabolism, 135, Article ID: 155274.
https://doi.org/10.1016/j.metabol.2022.155274
[22] Distasio, N., Dierick, F., Ebrahimian, T., Tabrizian, M. and Lehoux, S. (2022) Design and Development of Branched Poly(β-Aminoester) Nanoparticles for Interleukin-10 Gene Delivery in a Mouse Model of Atherosclerosis. Acta Biomaterialia, 143, 356-371.
https://doi.org/10.1016/j.actbio.2022.02.043
[23] Xu, W., Zhang, S., Zhou, Q. and Chen, W. (2019) VHPKQHR Peptide Modified Magnetic Mesoporous Nanoparticles for MRI Detection of Atherosclerosis Lesions. Artificial Cells, Nanomedicine, and Biotechnology, 47, 2440-2448.
https://doi.org/10.1080/21691401.2019.1626411
[24] Höltke, C., Enders, L., Stölting, M., Geyer, C., Masthoff, M., Kuhlmann, M.T., et al. (2023) Detection of Early Endothelial Dysfunction by Optoacoustic Tomography. International Journal of Molecular Sciences, 24, Article 8627.
https://doi.org/10.3390/ijms24108627
[25] Fang, F., Ni, Y., Yu, H., Yin, H., Yang, F., Li, C., et al. (2022) Inflammatory Endothelium-Targeted and Cathepsin Responsive Nanoparticles Are Effective against Atherosclerosis. Theranostics, 12, 4200-4220.
https://doi.org/10.7150/thno.70896
[26] Lemke, G. (2019) How Macrophages Deal with Death. Nature Reviews Immunology, 19, 539-549.
https://doi.org/10.1038/s41577-019-0167-y
[27] Wu, Z., Zhou, M., Tang, X., Zeng, J., Li, Y., Sun, Y., et al. (2022) Carrier-Free Trehalose-Based Nanomotors Targeting Macrophages in Inflammatory Plaque for Treatment of Atherosclerosis. ACS Nano, 16, 3808-3820.
https://doi.org/10.1021/acsnano.1c08391
[28] Krolikoski, M., Monslow, J. and Puré, E. (2019) The CD44-HA Axis and Inflammation in Atherosclerosis: A Temporal Perspective. Matrix Biology, 78, 201-218.
https://doi.org/10.1016/j.matbio.2018.05.007
[29] Hossaini Nasr, S., Rashidijahanabad, Z., Ramadan, S., Kauffman, N., Parameswaran, N., Zinn, K.R., et al. (2020) Effective Atherosclerotic Plaque Inflammation Inhibition with Targeted Drug Delivery by Hyaluronan Conjugated Atorvastatin Nanoparticles. Nanoscale, 12, 9541-9556.
https://doi.org/10.1039/d0nr00308e
[30] Hou, X., Lin, H., Zhou, X., Cheng, Z., Li, Y., Liu, X., et al. (2020) Novel Dual Ros-Sensitive and CD44 Receptor Targeting Nanomicelles Based on Oligomeric Hyaluronic Acid for the Efficient Therapy of Atherosclerosis. Carbohydrate Polymers, 232, Article ID: 115787.
https://doi.org/10.1016/j.carbpol.2019.115787
[31] He, J., Zhang, W., Zhou, X., Xu, F., Zou, J., Zhang, Q., et al. (2023) Reactive Oxygen Species (ROS)-Responsive Size-Reducible Nanoassemblies for Deeper Atherosclerotic Plaque Penetration and Enhanced Macrophage-Targeted Drug Delivery. Bioactive Materials, 19, 115-126.
https://doi.org/10.1016/j.bioactmat.2022.03.041
[32] Wang, J., Wu, M., Chang, J., Li, L., Guo, Q., Hao, J., et al. (2019) Scavenger Receptor-AI-Targeted Ultrasmall Gold Nanoclusters Facilitate in Vivo MR and Ex Vivo Fluorescence Dual-Modality Visualization of Vulnerable Atherosclerotic Plaques. Nanomedicine: Nanotechnology, Biology and Medicine, 19, 81-94.
https://doi.org/10.1016/j.nano.2019.04.003
[33] Zhu, Y., Xu, Y., Han, D., Zhang, X., Qin, C., Liu, J., et al. (2023) Scavenger Receptor-AI Targeted Theranostic Nanoparticles for Regression of Atherosclerotic Plaques via ABCA1 Modulation. Nanomedicine: Nanotechnology, Biology and Medicine, 50, 102672.
https://doi.org/10.1016/j.nano.2023.102672
[34] Dai, Y., Sha, X., Song, X., Zhang, X., Xing, M., Liu, S., et al. (2022) Targeted Therapy of Atherosclerosis Vulnerable Plaque by Ros-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. International Journal of Nanomedicine, 17, 5413-5429.
https://doi.org/10.2147/ijn.s371873
[35] Lv, F., Fang, H., Huang, L., Wang, Q., Cao, S., Zhao, W., et al. (2024) Curcumin Equipped Nanozyme‐Like Metal-Organic Framework Platform for the Targeted Atherosclerosis Treatment with Lipid Regulation and Enhanced Magnetic Resonance Imaging Capability. Advanced Science, 11, Article ID: 2309062.
https://doi.org/10.1002/advs.202309062
[36] Marques, P.E., Nyegaard, S., Collins, R.F., Troise, F., Freeman, S.A., Trimble, W.S., et al. (2019) Multimerization and Retention of the Scavenger Receptor SR-B1 in the Plasma Membrane. Developmental Cell, 50, 283-295.e5.
https://doi.org/10.1016/j.devcel.2019.05.026
[37] Shen, W., Azhar, S. and Kraemer, F.B. (2018) SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annual Review of Physiology, 80, 95-116.
https://doi.org/10.1146/annurev-physiol-021317-121550
[38] Akinkuolie, A.O., Paynter, N.P., Padmanabhan, L. and Mora, S. (2014) High-Density Lipoprotein Particle Subclass Heterogeneity and Incident Coronary Heart Disease. Circulation: Cardiovascular Quality and Outcomes, 7, 55-63.
https://doi.org/10.1161/circoutcomes.113.000675
[39] Dhanasekara, C.S., Zhang, J., Nie, S., Li, G., Fan, Z. and Wang, S. (2021) Nanoparticles Target Intimal Macrophages in Atherosclerotic Lesions. Nanomedicine: Nanotechnology, Biology and Medicine, 32, Article ID: 102346.
https://doi.org/10.1016/j.nano.2020.102346
[40] Nie, S., Zhang, J., Martinez-Zaguilan, R., Sennoune, S., Hossen, M.N., Lichtenstein, A.H., et al. (2015) Detection of Atherosclerotic Lesions and Intimal Macrophages Using CD36-Targeted Nanovesicles. Journal of Controlled Release, 220, 61-70.
https://doi.org/10.1016/j.jconrel.2015.10.004
[41] Gao, C., Huang, Q., Liu, C., Kwong, C.H.T., Yue, L., Wan, J., et al. (2020) Treatment of Atherosclerosis by Macrophage-Biomimetic Nanoparticles via Targeted Pharmacotherapy and Sequestration of Proinflammatory Cytokines. Nature Communications, 11, Article No. 2622.
https://doi.org/10.1038/s41467-020-16439-7
[42] Kim, M., Sahu, A., Kim, G.B., Nam, G.H., Um, W., Shin, S.J., et al. (2018) Comparison of in Vivo Targeting Ability between CRGD and Collagen-Targeting Peptide Conjugated Nano-Carriers for Atherosclerosis. Journal of Controlled Release, 269, 337-346.
https://doi.org/10.1016/j.jconrel.2017.11.033