[1]
|
Hadi, H.A., Tarmizi, A.I., Khalid, K.A., Gajdács, M., Aslam, A. and Jamshed, S. (2021) The Epidemiology and Global Burden of Atopic Dermatitis: A Narrative Review. Life, 11, Article 936. https://doi.org/10.3390/life11090936
|
[2]
|
Dizon, M.P., Yu, A.M., Singh, R.K., et al. (2018) Systematic Review of Atopic Dermatitis Disease Definition in Studies Using Routinely Collected Health Data. British Journal of Dermatology, 178, 1280-1287. https://doi.org/10.1111/bjd.16340
|
[3]
|
Barbarot, S., Auziere, S., Gadkari, A., Girolomoni, G., Puig, L., Simpson, E.L., et al. (2018) Epidemiology of Atopic Dermatitis in Adults: Results from an International Survey. Allergy, 73, 1284-1293. https://doi.org/10.1111/all.13401
|
[4]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of Micrornas: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. https://doi.org/10.1002/jcp.27486
|
[5]
|
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The, C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
|
[6]
|
Dalmay, T. (2013) Mechanism of Mirna-Mediated Repression of mRNA Translation. Essays in Biochemistry, 54, 29-38. https://doi.org/10.1042/bse0540029
|
[7]
|
Weidner, J., Bartel, S., Kılıç, A., Zissler, U.M., Renz, H., Schwarze, J., et al. (2020) Spotlight on MicroRNAs in Allergy and Asthma. Allergy, 76, 1661-1678. https://doi.org/10.1111/all.14646
|
[8]
|
Nousbeck, J., McAleer, M.A., Hurault, G., Kenny, E., Harte, K., Kezic, S., et al. (2020) MicroRNA Analysis of Childhood Atopic Dermatitis Reveals a Role for MiR-451a. British Journal of Dermatology, 184, 514-523. https://doi.org/10.1111/bjd.19254
|
[9]
|
Su, H., Chang, R., Zheng, W., Sun, Y. and Xu, T. (2021) MicroRNA-210 and MicroRNA-3570 Negatively Regulate NF-κB-Mediated Inflammatory Responses by Targeting RIPK2 in Teleost Fish. Frontiers in Immunology, 12, Article 617753. https://doi.org/10.3389/fimmu.2021.617753
|
[10]
|
Yasuike, R., Tamagawa-Mineoka, R., Nakamura, N., Masuda, K. and Katoh, N. (2021) Plasma Mir223 Is a Possible Biomarker for Diagnosing Patients with Severe Atopic Dermatitis. Allergology International, 70, 153-155. https://doi.org/10.1016/j.alit.2020.07.010
|
[11]
|
Koizumi, M., Kuzume, K., Ishida, Y. and Midoro-Horiuti, T. (2022) Serum Thymus and Activation-Regulated Chemokine (TARC) Levels Correlate with Atopic Dermatitis Disease Severity in Patients < 6 Months. Allergy and Asthma Proceedings, 43, 461-467. https://doi.org/10.2500/aap.2022.43.220034
|
[12]
|
Bakogiannis, C., Sachse, M., Stamatelopoulos, K. and Stellos, K. (2019) Platelet-Derived Chemokines in Inflammation and Atherosclerosis. Cytokine, 122, Article 154157. https://doi.org/10.1016/j.cyto.2017.09.013
|
[13]
|
Willeit, P., Zampetaki, A., Dudek, K., Kaudewitz, D., King, A., Kirkby, N.S., et al. (2013) Circulating MicroRNAs as Novel Biomarkers for Platelet Activation. Circulation Research, 112, 595-600. https://doi.org/10.1161/circresaha.111.300539
|
[14]
|
Wang, X., Chen, Y., Yuan, W., Yao, L., Wang, S., Jia, Z., et al. (2019) MicroRNA-155-5p Is a Key Regulator of Allergic Inflammation, Modulating the Epithelial Barrier by Targeting PKIα. Cell Death & Disease, 10, Article No. 884. https://doi.org/10.1038/s41419-019-2124-x
|
[15]
|
Das, P., Mounika, P., Yellurkar, M.L., Prasanna, V.S., Sarkar, S., Velayutham, R., et al. (2022) Keratinocytes: An Enigmatic Factor in Atopic Dermatitis. Cells, 11, Article 1683. https://doi.org/10.3390/cells11101683
|
[16]
|
Meng, L., Li, M., Gao, Z., Ren, H., Chen, J., Liu, X., et al. (2019) Possible Role of Hsa-MiR-194-5p, via Regulation of HS3ST2, in the Pathogenesis of Atopic Dermatitis in Children. European Journal of Dermatology, 29, 603-613. https://doi.org/10.1684/ejd.2019.3676
|
[17]
|
Vaher, H., Runnel, T., Urgard, E., Aab, A., Carreras Badosa, G., Maslovskaja, J., et al. (2019) MiR-10a-5p Is Increased in Atopic Dermatitis and Has Capacity to Inhibit Keratinocyte Proliferation. Allergy, 74, 2146-2156. https://doi.org/10.1111/all.13849
|
[18]
|
Vaghf, A., Khansarinejad, B., Ghaznavi-Rad, E. and Mondanizadeh, M. (2022) The Role of MicroRNAs in Diseases and Related Signaling Pathways. Molecular Biology Reports, 49, 6789-6801. https://doi.org/10.1007/s11033-021-06725-y
|
[19]
|
Yan, C., Ying, J., Lu, W., et al. (2022) MiR-1294 Suppresses ROS-Dependent Inflammatory Response in Atopic Dermatitis via Restraining STAT3/NF-κB Pathway. Cellular Immunology, 371, Article 104452. https://doi.org/10.1016/j.cellimm.2021.104452
|
[20]
|
Jia, Q. and Zeng, Y. (2020) Rapamycin Blocks the IL-13-Induced Deficiency of Epidermal Barrier Related Proteins via Upregulation of miR-143 in HaCaT Keratinocytes. International Journal of Medical Sciences, 17, 2087-2094. https://doi.org/10.7150/ijms.45765
|
[21]
|
Bieber, T. (2019) Interleukin-13: Targeting an Underestimated Cytokine in Atopic Dermatitis. Allergy, 75, 54-62. https://doi.org/10.1111/all.13954
|
[22]
|
Tang, F., Zhou, Z., Huang, K., Deng, W., Lin, J., Chen, R., et al. (2022) MicroRNAs in the Regulation of Th17/Treg Homeostasis and Their Potential Role in Uveitis. Frontiers in Genetics, 13, Article 848985. https://doi.org/10.3389/fgene.2022.848985
|
[23]
|
Kärner, J., Wawrzyniak, M., Tankov, S., Runnel, T., Aints, A., Kisand, K., et al. (2016) Increased Microrna-323-3p in IL-22/IL-17-Producing T Cells and Asthma: A Role in the Regulation of the TGF-β Pathway and IL-22 Production. Allergy, 72, 55-65. https://doi.org/10.1111/all.12907
|
[24]
|
沈云章, 竺璐, 林峰, 等. 白芍总苷治疗特应性皮炎小鼠的作用机制[J]. 中国临床药理学杂志, 2021, 37(20): 2842-2846.
|
[25]
|
Chen, Y., Wang, S., Yang, S., Li, R., Yang, Y., Chen, Y., et al. (2021) Inhibitory Role of Ginsenoside Rb2 in Endothelial Senescence and Inflammation Mediated by Microrna-216a. Molecular Medicine Reports, 23, Article No. 415. https://doi.org/10.3892/mmr.2021.12054
|
[26]
|
Ding, X., Zhang, Z., Jin, J., Han, J., Wang, Y., Yang, K., et al. (2020) Salidroside Can Target Both P4HB-Mediated Inflammation and Melanogenesis of the Skin. Theranostics, 10, 11110-11126. https://doi.org/10.7150/thno.47413
|
[27]
|
Lin, L., Zhou, Y., Li, H., Pang, D., Zhang, L., Lu, X., et al. (2017) Polysaccharide Extracted from Chinese White Wax Scale Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Symptoms in BALB/C Mice. Saudi Pharmaceutical Journal, 25, 625-632. https://doi.org/10.1016/j.jsps.2017.04.035
|
[28]
|
Lee, H., Lee, J.K., Ha, H., Lee, M., Seo, C. and Shin, H.K. (2012) Angelicae Dahuricae Radix Inhibits Dust Mite Extract-Induced Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Evidence-Based Complementary and Alternative Medicine, 2012, Article 743075. https://doi.org/10.1155/2012/743075
|
[29]
|
Choi, Y.Y., Kim, M.H., Ahn, K.S., Um, J., Lee, S. and Yang, W.M. (2016) Immunomodulatory Effects of Pseudostellaria Heterophylla (Miquel) Pax on Regulation of Th1/Th2 Levels in Mice with Atopic Dermatitis. Molecular Medicine Reports, 15, 649-656. https://doi.org/10.3892/mmr.2016.6093
|
[30]
|
Wang, Y., Zhang, P., Zhang, J. and Hong, T. (2022) Inhibitory Effect of Bisdemethoxycurcumin on DNCB-Induced Atopic Dermatitis in Mice. Molecules, 28, Article 293. https://doi.org/10.3390/molecules28010293
|
[31]
|
Sung, Y., Kim, D., Yang, W., Nho, K.J., Seo, H.S., Kim, Y.S., et al. (2012) Inhibitory Effects of Drynaria fortunei Extract on House Dust Mite Antigen-Induced Atopic Dermatitis in NC/Nga Mice. Journal of Ethnopharmacology, 144, 94-100. https://doi.org/10.1016/j.jep.2012.08.035
|
[32]
|
王晓钰. 基于miR-155-5p对上皮紧密连接蛋白表达的调控探讨升麻素抗特应性皮炎机制[D]: [博士学位论文]. 南京: 南京中医药大学, 2019.
|
[33]
|
Wang, Z., Yi, T., Long, M., Ding, F., Ouyang, L. and Chen, Z. (2018) Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-Acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation, 41, 859-869. https://doi.org/10.1007/s10753-018-0740-8
|