[1]
|
Wu, L., Li, Y., Fu, Z. and Su, B. (2020) Hierarchically Structured Porous Materials: Synthesis Strategies and Applications in Energy Storage. National Science Review, 7, 1667-1701. https://doi.org/10.1093/nsr/nwaa183
|
[2]
|
Zhou, X., Zhang, H., Shao, L., Lü, F. and He, P. (2020) Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste and Biomass Valorization, 12, 1699-1724. https://doi.org/10.1007/s12649-020-01109-y
|
[3]
|
Zhu, Y., Li, Z., Tao, Y., Zhou, J. and Zhang, H. (2022) Hierarchical Porous Carbon Materials Produced from Heavy Bio-Oil for High-Performance Supercapacitor Electrodes. Journal of Energy Storage, 47, Article 103624. https://doi.org/10.1016/j.est.2021.103624
|
[4]
|
Li, S., Pasc, A., Fierro, V. and Celzard, A. (2016) Hollow Carbon Spheres, Synthesis and Applications—A Review. Journal of Materials Chemistry A, 4, 12686-12713. https://doi.org/10.1039/c6ta03802f
|
[5]
|
Hussain, I., Sahoo, S., Sayed, M.S., Ahmad, M., Sufyan Javed, M., Lamiel, C., et al. (2022) Hollow Nano and Microstructures: Mechanism, Composition, Applications, and Factors Affecting Morphology and Performance. Coordination Chemistry Reviews, 458, Article 214429. https://doi.org/10.1016/j.ccr.2022.214429
|
[6]
|
Lin, Y., Huang, C., Huang, C., Deng, Y., Zou, X., Ma, W., et al. (2024) Cellulose Regulated Lignin/Cellulose-Based Carbon Materials with Hierarchical Porous Structure for Energy Storage. Advanced Composites and Hybrid Materials, 7, Article No. 51. https://doi.org/10.1007/s42114-024-00850-5
|
[7]
|
Xu, F., Han, H., Ding, B., Qiu, Y., Zhang, E., Li, H., et al. (2019) Engineering Pore Ratio in Hierarchical Porous Carbons Towards High-Rate and Large-Volumetric Performances. Microporous and Mesoporous Materials, 282, 205-210. https://doi.org/10.1016/j.micromeso.2019.03.038
|
[8]
|
He, C., Li, B., Yang, G., He, S., Jiang, S., Yang, H., et al. (2025) Progress of 0D Biomass-Derived Porous Carbon Materials Produced by Hydrothermal Assisted Synthesis for Advanced Supercapacitors. Journal of Colloid and Interface Science, 685, 487-508. https://doi.org/10.1016/j.jcis.2025.01.163
|
[9]
|
Liu, L., Fan, S., Wang, W., Yin, S., Lv, Z., Zhang, J., et al. (2024) Tailored Hollow Mesoporous Carbon Nanospheres from Soft Emulsions Enhance Kinetics in Sodium Batteries. JACS Au, 4, 2666-2675. https://doi.org/10.1021/jacsau.4c00421
|
[10]
|
Guo, Z., Han, X., Zhang, C., He, S., Liu, K., Hu, J., et al. (2024) Activation of Biomass-Derived Porous Carbon for Supercapacitors: A Review. Chinese Chemical Letters, 35, Article 109007. https://doi.org/10.1016/j.cclet.2023.109007
|
[11]
|
Liu, X., Zhang, S., Wen, X., Chen, X., Wen, Y., Shi, X., et al. (2020) High Yield Conversion of Biowaste Coffee Grounds into Hierarchical Porous Carbon for Superior Capacitive Energy Storage. Scientific Reports, 10, Article No. 3518. https://doi.org/10.1038/s41598-020-60625-y
|
[12]
|
Chen, C., Wang, H., Han, C., Deng, J., Wang, J., Li, M., et al. (2017) Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass. Journal of the American Chemical Society, 139, 2657-2663. https://doi.org/10.1021/jacs.6b10841
|
[13]
|
Qiang, L., Hu, Z., Li, Z., Yang, Y., Wang, X., Zhou, Y., et al. (2019) Hierarchical Porous Biomass Carbon Derived from Cypress Coats for High Energy Supercapacitors. Journal of Materials Science: Materials in Electronics, 30, 7324-7336. https://doi.org/10.1007/s10854-019-01045-1
|
[14]
|
Lu, Y., Zhou, G., Zhang, Z., Li, C., Dong, Q., Su, Y., et al. (2025) Breaking the Hemicellulose Barrier for the Preparation of High-Performance Porous Carbon for Supercapacitors and Zinc-Ion Capacitors. Chemical Engineering Journal, 508, Article 161085. https://doi.org/10.1016/j.cej.2025.161085
|
[15]
|
Geng, X., Singh, G., Sathish, C.I., Li, Z., Bahadur, R., Liu, Y., et al. (2023) Biomass Derived Nanoarchitectonics of Porous Carbon with Tunable Oxygen Functionalities and Hierarchical Structures and Their Superior Performance in CO2 Adsorption and Energy Storage. Carbon, 214, Article 118347. https://doi.org/10.1016/j.carbon.2023.118347
|
[16]
|
Hwangsud, N., Sangtong, N., Seneesrisakul, K., Saramolee, P. and Thubsuang, U. (2025) Nanoarchitectonics of Biomass-Based Activated Biocarbon with High Surface Area and Balanced Pore Structures for Use as Supercapacitor Electrode Material. Journal of Power Sources, 632, Article 236376. https://doi.org/10.1016/j.jpowsour.2025.236376
|
[17]
|
Chidambaram, B., Sengodan, P., Jeon, S. and Srituravanich, W. (2025) Utilizing Luffa Sponge-Derived Porous Activated Carbon as a Sustainable Environmental Bio-Mass for Renewable Energy Storage Applications. Biomass and Bioenergy, 194, Article 107667. https://doi.org/10.1016/j.biombioe.2025.107667
|
[18]
|
Zhang, C., Fan, Q., Xu, J., Huang, M., Luo, F., Wang, D., et al. (2025) Surface Oxygen-Containing Functional Groups: A Key Tradeoff in Carbon-Based Energy Storage Devices. Chemical Engineering Journal, 505, Article 159162. https://doi.org/10.1016/j.cej.2024.159162
|
[19]
|
Yu, L., Falco, C., Weber, J., White, R.J., Howe, J.Y. and Titirici, M. (2012) Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir, 28, 12373-12383. https://doi.org/10.1021/la3024277
|
[20]
|
Wang, Q., Qin, B., Qu, C., Wang, B., Duan, H., Cao, Q., et al. (2023) Synthesis of Hierarchical Porous Carbon from Bio-Oil for Supercapacitor Application. Energy & Fuels, 37, 16970-16978. https://doi.org/10.1021/acs.energyfuels.3c03069
|
[21]
|
Levent, A. and Saka, C. (2025) Stable Electrode Material for Use in Supercapacitor with Iodine Doping after Sulfonation of Mesoporous Activated Carbon Particles Based on Microalgae Biomass. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-025-06696-1
|
[22]
|
Liang, Y., Yu, Y. and Qi, X. (2025) Synthesis of Hollow Hierarchical Porous Carbon Spheres from Lignin by Soft Template and Hydrothermal Method for Supercapacitors. International Journal of Biological Macromolecules, 307, Article 141938. https://doi.org/10.1016/j.ijbiomac.2025.141938
|
[23]
|
Muruganantham, R., Wang, F., Yuwono, R.A., Sabugaa, M. and Liu, W. (2021) Biomass Feedstock of Waste Mango-Peel-Derived Porous Hard Carbon for Sustainable High-Performance Lithium-Ion Energy Storage Devices. Energy & Fuels, 35, 10878-10889. https://doi.org/10.1021/acs.energyfuels.1c01226
|
[24]
|
Chen, C., Ren, T., Wu, S., Xin, X., Ge, B., Hao, S., et al. (2024) Soft-Templating of Biomass Derivatives into Edge-N Doped 3d-Interconnected Hierarchical Porous Carbon for Multi-Scenario Supercapacitive Energy Storage. Journal of Energy Storage, 102, Article 114192. https://doi.org/10.1016/j.est.2024.114192
|
[25]
|
Liu, S., Zhao, Y., Zhang, B., Xia, H., Zhou, J., Xie, W., et al. (2018) Nano-Micro Carbon Spheres Anchored on Porous Carbon Derived from Dual-Biomass as High Rate Performance Supercapacitor Electrodes. Journal of Power Sources, 381, 116-126. https://doi.org/10.1016/j.jpowsour.2018.02.014
|
[26]
|
Zeng, F., Tan, Z., Yang, X., Wang, X. and Xu, B. (2024) N-Self-Doped Hierarchically Porous Carbon Materials from Waste Coffee Grounds for Symmetric Supercapacitor. Journal of Materials Science: Materials in Electronics, 35, Article No. 885. https://doi.org/10.1007/s10854-024-12643-z
|
[27]
|
Huang, J., Liang, Y., Hu, H., Liu, S., Cai, Y., Dong, H., et al. (2017) Ultrahigh-Surface-Area Hierarchical Porous Carbon from Chitosan: Acetic Acid Mediated Efficient Synthesis and Its Application in Superior Supercapacitors. Journal of Materials Chemistry A, 5, 24775-24781. https://doi.org/10.1039/c7ta08046h
|
[28]
|
Liang, Z., Zhang, L., Liu, H., Zeng, J., Zhou, J., Li, H., et al. (2019) Soft-Template Assisted Hydrothermal Synthesis of Size-Tunable, N-Doped Porous Carbon Spheres for Supercapacitor Electrodes. Results in Physics, 12, 1984-1990. https://doi.org/10.1016/j.rinp.2019.01.074
|
[29]
|
Guan, X., Li, X., Zhao, X., Wang, Z., Zhang, L. and Ma, J. (2025) Recent Advances in Hierarchical Porous Carbon Materials Derived from Lignin in Black Liquor toward High-Performance Supercapacitors: A Review. Journal of Energy Storage, 111, Article 115380. https://doi.org/10.1016/j.est.2025.115380
|
[30]
|
Wang, P., Qi, X., Zhao, W., Qian, M., Bi, H. and Huang, F. (2020) Nitrogen-Doped Hierarchical Few-Layered Porous Carbon for Efficient Electrochemical Energy Storage. Carbon Energy, 3, 349-359. https://doi.org/10.1002/cey2.78
|
[31]
|
Youngjan, S., Rajrujithong, C., Sattayarut, V., Phanthasri, J., Faungnawakij, K., Kewcharoenwong, P., et al. (2025) Versatile Porous Activated Carbon from Silkworm Pupae Waste for Electrochemical Energy Storage Systems. Materials Research Bulletin, 186, Article 113347. https://doi.org/10.1016/j.materresbull.2025.113347
|
[32]
|
Qin, Z., Ye, Y., Zhang, D., He, J., Zhou, J. and Cai, J. (2023) One/Two-Step Contribution to Prepare Hierarchical Porous Carbon Derived from Rice Husk for Supercapacitor Electrode Materials. ACS Omega, 8, 5088-5096. https://doi.org/10.1021/acsomega.2c07932
|
[33]
|
Liu, X., Guo, H., Mu, Y., Duan, L., Li, Y. and Xia, K. (2025) Hierarchical Porous Carbon Microspheres from Resorcinol-Formaldehyde for Supercapacitor and Methylene Blue Adsorption. Journal of Porous Materials. https://doi.org/10.1007/s10934-025-01782-1
|
[34]
|
Le, T.H., Ngo, V.H., Nguyen, M.T., Nguyen, V.C., Vu, D.N., Pham, T.D., et al. (2021) Enhanced Electrochemical Performance of Porous Carbon Derived from Cornstalks for Supercapacitor Applications. Journal of Electronic Materials, 50, 6854-6861. https://doi.org/10.1007/s11664-021-09249-0
|
[35]
|
Wang, Y., Hao, L., Zeng, Y., Cao, X., Huang, H., Liu, J., et al. (2021) Three-Dimensional Hierarchical Porous Carbon Derived from Resorcinol Formaldehyde-Zinc Tatrate/Poly(Styrene-Maleic Anhydride) for High Performance Supercapacitor Electrode. Journal of Alloys and Compounds, 886, Article 161176. https://doi.org/10.1016/j.jallcom.2021.161176
|
[36]
|
Genel, İ., Yardım, Y. and Saka, C. (2025) Utilisation of Green Nitrogen-Doped Biomass-Based Hierarchical Porous Activated Carbon Particles for Enhancement of Electrochemical Energy Storage Performance. Diamond and Related Materials, 152, Article 111912. https://doi.org/10.1016/j.diamond.2024.111912
|
[37]
|
Phakkhawan, A., Kosolwattana, S., Sakulsombat, M., Pimanpang, S., Klangtakai, P. and Amornkitbamrung, V. (2025) Seawater Nanoarchitectonics for an Eco-Friendly Dual-Function Activator-Catalyst Producing Graphene-Decorated Activated Biochar for Applications in Electrochemical Energy Storage. Environmental Research, 272, Article 121176. https://doi.org/10.1016/j.envres.2025.121176
|
[38]
|
Díez, N., Sevilla, M., Fombona-Pascual, A. and Fuertes, A.B. (2022) Monodisperse Porous Carbon Nanospheres with Ultra-High Surface Area for Energy Storage in Electrochemical Capacitors. Batteries & Supercaps, 5, e202200071. https://doi.org/10.1002/batt.202200071
|
[39]
|
Li, S., Yang, J., Wang, H. and Chen, L. (2023) A High Yield and Cost-Effective Pathway for the Production of Iron Doped Porous Carbon Derived from Squid Pen as Supercapacitor Electrode Material. Waste and Biomass Valorization, 14, 2815-2824. https://doi.org/10.1007/s12649-023-02063-1
|
[40]
|
Bao, Q., Zhang, M., Li, J., Wang, X., Zhu, M. and Sun, G. (2024) The Optimal Micro and Meso-Pores Oriented Development of Eucommia Ulmoides Oliver Wood Derived Activated Carbons for Capacitive Performance. Renewable Energy, 225, Article 120209. https://doi.org/10.1016/j.renene.2024.120209
|
[41]
|
Zhou, Y., Yan, W., Yu, X., Chen, T., Wang, S. and Zhao, W. (2020) Boron and Nitrogen Co-Doped Porous Carbon for Supercapacitors: A Comparison between a Microwave-Assisted and a Conventional Hydrothermal Process. Journal of Energy Storage, 32, Article 101706. https://doi.org/10.1016/j.est.2020.101706
|
[42]
|
Tafete, G.A., Uysal, A., Habtu, N.G., Abera, M.K., Yemata, T.A., Duba, K.S., et al. (2024) Hydrothermally Synthesized Nitrogen-Doped Hydrochar from Sawdust Biomass for Supercapacitor Electrodes. International Journal of Electrochemical Science, 19, Article 100827. https://doi.org/10.1016/j.ijoes.2024.100827
|
[43]
|
Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M. and Wang, J. (2020) Activated Carbons Prepared by Indirect and Direct CO2 Activation of Lignocellulosic Biomass for Supercapacitor Electrodes. Renewable Energy, 155, 38-52. https://doi.org/10.1016/j.renene.2020.03.111
|
[44]
|
Xue, B., Xu, J. and Xiao, R. (2021) Synthesis of Hierarchically Porous Carbon with Tailored Porosity and Electrical Conductivity Derived from Hard-Soft Carbon Precursors for Enhanced Capacitive Performance. ACS Sustainable Chemistry & Engineering, 9, 15925-15934. https://doi.org/10.1021/acssuschemeng.1c06020
|
[45]
|
Li, J., Gao, Y., Han, K., Qi, J., Li, M. and Teng, Z. (2019) High Performance Hierarchical Porous Carbon Derived from Distinctive Plant Tissue for Supercapacitor. Scientific Reports, 9, Article No. 17270. https://doi.org/10.1038/s41598-019-53869-w
|