中空分级多孔炭球的制备及其电化学性能研究
Preparation of Hollow Hierarchical Porous Carbon Spheres for Electrochemical Performance
DOI: 10.12677/ms.2025.156152, PDF, HTML, XML,    科研立项经费支持
作者: 池俊霖, 沈弋尧, 鲍忠辉, 颜钰峰, 张馨茹, 王梓睿, 吴元一, 徐 州, 罗 沙*:东北林业大学生物质材料科学与技术教育部重点实验室,黑龙江 哈尔滨
关键词: 软模板水热中空分级多孔炭球CO2活化电化学性能Soft Template Hydrothermal Hollow Hierarchical Porous Carbon Spheres CO2 Activation Electrochemical Performance
摘要: 本文以十二烷基硫酸钠(SDS)为软模板剂,D-核糖为碳源,聚(4-苯乙烯磺酸–共聚–马来酸)钠盐(PSSMA)为稳定剂,采用水热炭化和CO2活化方法制备了中空分级多孔炭球,系统考察了其电化学性能。研究表明,SDS和PSSMA发生相互作用形成混合乳液,作为水热反应的中空微反应器。D-核糖在微反应器与水的界面发生水解、聚合和芳构化等过程并形成炭前驱体,经炭化和CO2活化制得微孔、介孔和大孔并存的中空分级多孔炭球。该炭球具有较高的比表面积、中空的球形腔体、分级的孔隙结构和丰富的表面含氧官能团,有利于电解液和离子的存储、浸润和扩散。当CO2活化时间为1 h时,样品(HPC-1)的比表面积为316 m2∙g1,孔容积为0.19 cm3∙g1,表面分布着大量羧基(-COOH)和羟基(-OH)等含氧官能团,表现出最佳的电化学性能。以6 mol∙L1 KOH为电解液,在三电极体系下,当电流密度为0.2 A∙g1时,比电容为183 F∙g1;电流密度为5 A∙g1时进行5000次充放电循环后比电容保持率仍可达96%;二电极体系下,当电流密度为0.1 A∙g1,比电容为97 F∙g1,当功率密度为50 W∙kg1时,能量密度可达3.36 W∙h∙kg1,表现出良好的应用潜能。
Abstract: This study employs sodium dodecyl sulfate (SDS) as a soft template agent, D-ribose as a carbon source, and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as a stabilizer to prepare hollow hierarchical porous carbon spheres through hydrothermal carbonization and CO2 activation, and investigates their electrochemical performance. The research indicates that SDS and PSSMA interact to form a mixed emulsion, serving as a hollow micro-reactor for the hydrothermal reaction. D-ribose undergoes hydrolysis, polymerization, and aromatization at the interface of the micro-reactor and water, forming a carbon precursor. The resulting hollow hierarchical porous carbon spheres feature the coexistence of micropores, mesopores, and macropores, a high specific surface area, a hollow spherical cavity, a hierarchical pore structure, and abundant oxygen-containing functional groups on the surface, which facilitate the storage, wetting, and diffusion of electrolytes and ions. When the CO2 activation time is 1 h, the sample (HPC-1) exhibits a specific surface area of 316 m2∙g1, a pore volume of 0.19 cm3∙g1, and surface oxygen-containing functional groups such as carboxyl (-COOH) and hydroxyl (-OH), demonstrating optimal electrochemical performance. Using 6 mol∙L1 KOH as the electrolyte, in a three-electrode system, the specific capacitance reaches 183 F∙g1 at a current density of 0.2 A∙g1, and after 5000 charge-discharge cycles at 5 A∙g1, the specific capacitance retention rate remains at 96%. In a two-electrode system, the specific capacitance reaches 97 F∙g1 at a current density of 0.1 A∙g1, and at a power density of 50 W∙kg1, the energy density reaches 3.36 W∙h∙kg1, showing promising application potential.
文章引用:池俊霖, 沈弋尧, 鲍忠辉, 颜钰峰, 张馨茹, 王梓睿, 吴元一, 徐州, 罗沙. 中空分级多孔炭球的制备及其电化学性能研究[J]. 材料科学, 2025, 15(6): 1428-1442. https://doi.org/10.12677/ms.2025.156152

1. 引言

随着全球能源危机和环境污染问题的日益严峻,开发高效、清洁的能源存储与转换技术成为当前的研究热点[1]。超级电容器作为一种新型储能器件,因其功率密度高、循环寿命长、充放电速度快等优点,在便携式电子设备、电动汽车、智能电网等领域展现出广阔的应用前景[2]。电极材料是决定超级电容器性能的关键因素之一,炭材料因其来源广泛、成本低廉、导电性良好、化学稳定性高等优点,成为超级电容器电极材料的研究重点[3]

近年来,具有中空结构的分级多孔炭材料因其独特的结构优势受到广泛关注[4] [5]。中空结构可以有效增加材料的比表面积,提供更多的活性位点,并缩短离子传输距离;分级多孔结构则有利于电解液的浸润和离子的快速扩散,从而提高材料的电化学性能[6] [7]。因此,开发简单高效的方法制备具有中空分级多孔结构的炭材料具有重要意义。

水热法是一种简单、环保的材料制备方法,可以通过调节反应条件实现对材料形貌和结构的调控[8]。软模板法则是制备中空结构材料的有效手段,利用表面活性剂等软模板剂形成胶束、乳液等软模板,引导材料在其表面生长,从而获得中空结构[9]。此外,CO2活化是一种常用的炭材料后处理方法,可以有效提高材料的比表面积和孔隙率,并引入含氧官能团,改善材料的电化学性能[10]

本文以十二烷基硫酸钠(SDS)为软模板剂,D-核糖为碳源,聚(4-苯乙烯磺酸–共聚–马来酸)钠盐(PSSMA)为稳定剂,通过水热炭化和CO2活化制备了中空分级多孔炭球,研究了CO2活化时间对其结构和电化学性能的影响。本研究旨在探索一种简单高效的方法制备高性能超级电容器电极材料,为开发新型能源存储器件提供理论依据和技术支持。

2. 实验部分

2.1. 原料与试剂

D-核糖(D-ribose),十二烷基硫酸钠(SDS),聚(4-苯乙烯磺酸–共聚–马来酸)钠盐(PSSMA),无水乙醇从天津科密欧化学试剂有限公司购买。乙炔黑、聚四氟乙烯从日本大金有限公司购买。去离子水为市售娃哈哈纯净水。所有的化学药品均为分析纯,未经任何处理。

2.2. 材料制备

称取2.4 g D-核糖、0.0692 g SDS和0.15 g PSSMA置于烧杯中,加入60 mL去离子水,充分混合后,将混合物置于水浴加热器中加热30 min,随后于磁力搅拌器上以恒定转速搅拌60 min。搅拌完成后,将混合物移至100 mL高压反应釜中,并将其移入160℃的均相反应器中反应6 h。待反应液冷却至室温后,分别使用蒸馏水和乙醇对产物进行离心处理。离心结束后,收集固体产物置于烘箱中干燥,得到炭前驱体(PPC)。干燥完成后,将PPC粉末置于管式炉中,通入N2排空炉内空气后,以5℃∙min1的升温速率从20℃升至300℃,并在300℃下恒温1 h。随后,继续以5℃∙min1的速率升温至800℃。达到目标温度后,将N2切换为CO2,在CO2气氛下恒温活化x h (x = 0、0.5、1、1.5、2)。活化完成后,自然冷却至室温,得到中空分级多孔炭球(HPC-x,x为活化时间)。具体制备流程如图1所示。

Figure 1. Preparation process of hollow hierarchical porous carbon spheres

1. 中空分级多孔炭球的制备流程

2.3. 表征方法

样品的微观形貌通过美国Thermo Scientific公司Apreo S Hivc型扫描电子显微镜(SEM,工作电压5 kV)和日本株式会社JEM-2100型透射电子显微镜(TEM,加速电压200 kV)进行观察。比表面积和孔结构测试使用美国Micromeritics公司ASAP 2020型全自动比表面积和孔隙度分析仪,测试前样品在200℃下真空脱气120 min,测试温度为77 K。表面元素组成和官能团分析采用美国Thermo Scientific公司Thermo escalab 250Xi型X射线光电子能谱仪(XPS,Mg Kα射线源,电子结合能1253.6 eV)和美国Magna公司Magna-560型傅里叶变换红外光谱仪(FT-IR)。样品的石墨化程度和缺陷分析通过英国Renishaw公司Renishaw Invia型拉曼光谱仪(Raman,激发波长532 nm)和日本株式会社D/MAX 2200型X射线衍射仪(XRD,管电压40 kV,管电流30 mA,Cu Kα放射源,λ = 0.1542 nm,扫描范围2θ为5~80˚)完成。热重分析(TG)在德国Netzsch公司Netzsch Sta 449 F5/F3 Jupiter型热重分析仪上进行,测试条件为氮气气氛,升温速率10℃∙min1,温度范围从室温至800℃。

2.4. 电化学性能测试

电化学性能测试使用英国Solartron Metrology公司Solartron Analytical 1400A型电化学工作站,测试内容包括交流阻抗谱(EIS)、循环伏安法(CV)和恒流充放电(GCD)。在三电极体系中,将活性材料、炭黑和聚四氟乙烯(60%)按质量比8:1:1混合,加入少量乙醇研磨至粘稠状,均匀涂覆在边长为1 cm的正方形泡沫镍上,经15 MPa压力压制并在100℃下干燥12 h,制得工作电极。电解液为6 mol∙L1 KOH,参比电极为Hg/HgO,对电极为Pt片。根据公式C1 = I∆t/(m1×∆V)计算比电容C1 (F·g1),其中I(A)为充放电电流,∆t(s)为放电时间,∆V(V)为GCD窗口电位,m1(g)为电极活性物质的质量。在二电极体系中,采用相同方法在直径为1.5 cm的圆形泡沫镍上制备正负工作电极,以6 mol∙L1 KOH为电解液,玻璃纤维为隔膜,组装成2032纽扣型对称电容器。根据公式C2 = 4I∆t/(m2×∆V)计算比电容C2 (F∙g1),其中m2 (g)为正负电极活性物质的总质量。能量密度E (W∙h∙kg1)和功率密度P (W∙kg1)分别通过公式E = C2(∆V)2/(8×3.6)和P = 3600E/∆t计算。

3. 结果与讨论

3.1. HPC-1的微观形貌和形成机理

通过SEM和TEM (图2(a)图2(b))观察发现,水热反应过程中,在模板剂SDS的引导下,D-核糖经历了充分的水解、聚合和芳构化反应,最终形成了表面光滑、尺寸均匀的具有明显空腔结构的中空炭球,炭球的直径分布在200 nm左右。高分辨透射电镜(HRTEM)图像(图2(c))进一步揭示了样品的多孔结构特征,由图可知,样品中存在大量蠕虫状的微孔,其密度显著高于介孔,此外由炭球堆积效应导致样品中还存在部分大孔结构。大孔、介孔和微孔并存的多级结构能够有效增强电解液对材料的渗透能力,从而提升导电性能[11]。通过元素映射分析(图2(d)~(f))可以看出,炭球表面主要由C和O元素组成。C元素的分布密度明显高于O元素,表明在CO2活化过程中,材料表面的杂质挥发导致C元素含量增加,而O元素含量相对减少。

Figure 2. Morphologies of hollow hierarchical porous carbon spheres (HPC-1): (a) SEM image; (b) TEM image; (c) HRTEM image and (d)~(f) C, O element mapping images

2. 中空分级多孔炭球(HPC-1)的形貌:(a) SEM图;(b) TEM图;(c) HRTEM图和(d)~(f) C,O元素映射图

中空炭前驱体的形成机理如图3所示。在水热条件下,D-核糖水解生成小分子有机酸,促进SDS水解形成类醇结构并团聚为O/W乳液。同时,PSSMA会吸附在胶束表面。随着水热反应的进行,越来越多的SDS形成醇式结构,导致乳液润胀并产生拉伸应力。然而,PSSMA的抑制作用和静电斥力会产生压应力,抑制胶束的生长。在拉伸应力和压应力的共同作用下,由SDS/PSSMA组成的混合胶束呈现中空球形形态。在氢键的驱动下,这些中空球形胶束充当D-核糖发生聚合等反应的微反应器,发生有机-有机自组装,形成中空球形炭前驱体[12]。此外,由于PSSMA之间的静电排斥作用,中空球形炭前驱体呈单分散状态。

Figure 3. Synthesis mechanism of hollow sphere-shaped carbon precursors

3. 中空球形炭前驱体的合成机理

3.2. 中空分级多孔炭球的热性能和孔隙结构分析

图4展示了D-核糖、SDS及炭前驱体的热失重曲线。炭前驱体的热分解过程可分为三个阶段:首先,在约64℃时开始出现质量损失,这一阶段至240℃前,由于材料内部自由水和结合水的蒸发,质量损失较为缓慢[6]。随后,从240℃至640℃,随着多孔炭表面部分官能团的分解,质量损失速率显著加快[11]。最后,在640℃之后,质量损失速率减缓,曲线趋于平缓,至800℃时剩余质量比为52%,表明样品基本完成炭化过程。相比之下,D-核糖原料在180℃左右才开始迅速失重,至800℃时几乎完全分解。SDS则在200℃开始缓慢失重,之后分解速率加快,至800℃时接近完全分解。这些结果表明,在本实验条件下,模板剂SDS在160℃的水热反应中能够保持稳定,并与PSSMA发生相互作用,充当D-核糖发生水热反应的微反应器。随后,通过将热解温度提升至800℃,可实现SDS的完全热解,并形成介孔结构。

图5(a)展示了不同样品的N2吸附–脱附曲线,其等温线均呈现I型与IV型相结合的特征[13]。未炭化样品的N2吸附量最低,而未进行CO2活化的样品HPC-0的N2吸附量虽较未炭化样品有所提升但仍较低,经炭化和活化后的样品N2吸附量明显提升。在相对压力p/p0 < 0.01时,样品吸附曲线斜率显著上升,表明在CO2活化作用下材料生成了大量微孔。在0.95 > p/p0 > 0.4范围内,活化后样品出现吸附回滞环,说明材料中存在一定量的介孔,这归因于模板剂SDS的介孔造孔效应以及高温反应中部分微孔向介孔的转化。当p/p0 > 0.95时,所有样品N2吸附量均呈上升趋势,表明材料内部存在少量大孔,这可能是由于炭球堆积效应及高温下部分孔隙塌陷所致。

图5(b)为各样品的孔径分布曲线,显示样品中存在大孔、介孔和微孔并存的分级孔结构。表1列出了不同样品的孔结构参数。未炭化样品的比表面积和孔体积均最小,而经过炭化和活化处理的样品比表

Figure 4. TG curves of SDS, D-ribose and carbon precursors (PPC)

4. SDS、D-核糖和炭前驱体(PPC)的TG曲线

(a) (b)

Figure 5. (a) N2 adsorption-desorption isotherms; (b) Pore size distribution curves

5. (a) N2吸附–脱附曲线;(b) 孔径分布曲线

Table 1. Pore structure parameters of the samples

1. 样品的孔结构参数

Sample

Specific surface area, SBET

(m2∙g1)

Micropore specific surface area, Smicro (m2∙g1)

Ratio of micropore, Smicro/SBET

Total pore

Volume

(cm3∙g1)

Pore volume of micropore

(cm3∙g1)

Average pore size

(nm)

PPC

5

1

0.22

0

0

4.95

HPC-0

120

107

0.89

0.06

0.06

2.05

HPC-0.5

281

165

0.59

0.18

0.09

2.62

HPC-1

316

198

0.63

0.19

0.10

2.37

HPC-1.5

292

236

0.81

0.16

0.12

2.22

HPC-2

185

113

0.61

0.13

0.06

2.80

面积和孔体积显著增加,表明炭化和活化过程中部分杂质受热挥发,生成了大量孔隙结构。随着CO2活化时间的延长,样品的比表面积和总孔容呈现先上升后下降的趋势,说明CO2活化主要生成微孔和介孔结构。其中,HPC-1的比表面积(316 m2∙g1)和孔容积(cm3∙g1)最大,而HPC-1.5和HPC-2的比表面积和孔容积较HPC-1有所下降,表明活化时间过长会导致微孔结构过多,新孔径难以生成,同时部分孔结构塌陷,从而降低比表面积和孔容积。

3.3. 中空分级多孔炭球的表面元素和结晶性能分析

通过红外光谱对D-核糖和炭前驱体(PPC)进行分析,结果如图6(a)所示。D-核糖在3215 cm1处的吸收峰归因于表面羟基O-H的伸缩振动,而炭前驱体在该处的振动峰消失,同时在1700 cm1处出现了新的羰基C=O伸缩振动峰,表明D-核糖在水热过程中发生了水解反应[14]。此外,1570 cm1处观察到苯环C=C的伸缩振动特征峰,说明苯环结构生成[15]。2950 cm1处的脂肪族C-H伸缩振动峰以及920 cm1处的芳香族C-H弯曲振动峰进一步证实了D-核糖在水热过程中经历了聚合和芳构化反应[16]。在1020 cm1

(a) (b)

(c) (d)

Figure 6. (a) FT-IR spectra of D-ribose and carbon precursors (PPC); (b) XPS survey; (c) C 1s; (d) O 1s of HPC-1

6. (a) D-核糖和炭前驱体(PPC)的FT-IR谱图;HPC-1的(b) XPS全谱图;(c) C 1s;(d) O 1s

1200 cm1和1350 cm1处检测到羟基O-H的弯曲振动和醚键C-O的伸缩振动特征峰,综合FT-IR分析结果可知,D-核糖在水热过程中发生了水解、聚合和芳构化反应[17]。此外,炭前驱体表面富含含氧官能团,这些官能团不仅可作为活性位点提供额外电容,还能增强电极材料与电解液的浸润性,从而提升材料电化学性能[18]

图6(b)为HPC-1的XPS全谱图,其中C 1s峰和O 1s峰显著,C元素含量(89.42%)较高,O元素含量(10.58%)较低。图6(c)为HPC-1的高分辨C 1s XPS谱图,峰值分别对应C-C/C=C (284.13 eV)、C-OH (284.60 eV)、C-O-C (285.41 eV)、-COOH (286.82 eV)和-COOR (289.12 eV)官能团[19]图6(d)为HPC-1的高分辨O 1s XPS谱图,峰值分别对应C=O (535.54 eV)和C-O (532.92 eV)官能团。这些结果表明样品表面存在大量含氧官能团,这些亲水性官能团显著提高了多孔炭的表面润湿性,增强了电解液的渗透性,降低了电解质与材料表面吸附与脱附的阻力,从而提升了离子传输能力和材料的导电性能[20]。这些含氧官能团主要由水热过程中的水解、聚合和芳构化反应生成,与FT-IR分析结果一致。

图7(a)展示了不同样品的XRD图谱。所有样品在2θ为22.3˚和43.9˚处均出现了两个明显的碳特征峰,分别对应于(002)无序石墨炭晶面和(100)有序石墨炭晶面[21]。除这两个位置外,衍射曲线整体较为平缓,无明显尖锐峰,表明制备的炭材料杂质较少,纯度较高。且随着CO2活化时间的增加,样品中石墨炭晶面的强度不断降低,表明CO2活化产生的大量微孔结构会导致部分结晶炭发生坍塌,从而产生缺陷。图7(b)为不同样品的Raman谱图。在1340 cm1和1600 cm1处观察到两个明显的特征峰,分别对应于材料的D带和G带。D带与材料的缺陷程度相关,而G带则反映石墨化程度[22]。通过D带与G带的峰强度比值(ID/IG)可以评估样品的缺陷程度,ID/IG值越小,表明材料的无序度越低,石墨化程度越高[23]。从Raman谱图可以看出,未经高温炭化的炭前驱体PPC的ID/IG值为1.45,而经过氮气炭化的样品HPC-0的ID/IG值降至1.12,表明高温炭化过程中部分杂质挥发,生成了孔隙结构,同时降低了材料的缺陷程度,提高了有序化程度。随着CO2活化时间的延长,样品HPC-0.5、HPC-1、HPC-1.5和HPC-2的ID/IG值分别为1.13、1.16、1.21和1.23,呈现上升趋势,说明材料的缺陷增多,无序化程度增加[24]。这是由于CO2长时间活化导致样品表面微孔结构增多,进而引起炭表面破碎和孔结构塌陷,这一结果与XRD分析结果一致。

(a) (b)

Figure 7. (a) XRD patterns; (b) Raman spectra of different samples

7. 不同样品的(a) XRD谱图;(b) Raman谱图

3.4. 中空分级多孔炭球的电化学性能分析

在三电极体系中,不同样品在5 mV∙s1扫描速率下的循环伏安(CV)曲线如图8(a)所示。所有样品曲线均呈现稳定的矩形形状,且未随活化时间延长而发生明显形变,表明样品具有良好的电容性能[25]图8(b)展示了不同样品在0.2 A∙g1电流密度下的恒电流充放电(GCD)曲线,所有样品的充放电曲线均接近等腰三角形,电流损失较小,表明其充放电性能优异[26]。其中,HPC-1表现出最佳的电容特性和充放电性能。图8(c)为HPC-1在5~200 mV∙s1扫描速率范围内的CV曲线,随着扫描速率的增加,矩形形状未发生显著畸变,表明其电容性能优异[27]图8(d)为HPC-1在0.2~5 A∙g1电流密度下的GCD曲线,即使在5 A∙g1的高电流密度下,曲线仍保持稳定的等腰三角形形状,进一步证实了其优异的双电层电容特性[28]

图8(e)展示了不同样品在0.2~5 A∙g1电流密度范围内的倍率性能。随着电流密度的增加,样品的比电容逐渐下降。与HPC-0相比,CO2活化后样品的电容性能显著提升,其中HPC-1的电容衰减速率最慢,曲线稳定性优于其他样品,表现出最佳的电容性能。图8(f)为不同样品在0.2 A∙g1电流密度下的比表面积与比电容关系图,两者呈现明显的正相关关系。HPC-1的高电容性能归因于其高比表面积和丰富的微孔结构,这有利于增强电解液的渗透性和离子传输能力[29]。而HPC-2由于活化时间过长,部分孔结构坍塌,导致比表面积下降,电容性能随之降低。与文献中报道的多孔炭材料(表2)相比,中空分级多孔炭球(HPC-1)的电化学性能具有显著优势。

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. (a) CV curves at 5 mV∙s1; (b) GCD curves at 0.2 A∙g1 of different samples; (c) CV curves at 5~200 mV∙s1; (d) GCD curves at 0.2~5 A∙g1 of HPC-1; (e) Rate performances; (f) Relationship between specific capacitance with specific surface area at 0.2 A∙g1 of different samples; (g) Nyquist plot (equivalent circuit); (h) Cycling stability of HPC-1

8. 不同样品(a) 在5 mV∙s1的CV曲线;(b) 在0.2 A∙g1的GCD曲线;(c) HPC-1在5~200 mV∙s1的CV曲线;(d) HPC-1在0.2~5 A∙g1的GCD曲线;不同样品(e) 倍率性能;(f) 在0.2 A∙g1比电容和比表面积的关系;(g) HPC-1的Nyquist曲线(插图为等效电路图);(h) HPC-1的循环稳定曲线

Table 2. Capacitive properties of porous carbon materials reported in the literature

2. 文献中已报道的多孔炭材料的电容性能

Samples

Capacitance (F∙g1)

Current density (A∙g1)

Electrolyte

Ref.

RHPC-1000

79

0.5

6 mol∙L1 KOH

[32]

C1000

148.5

0.2

6 mol∙L1 KOH

[33]

AC-Corn

125

0.1

6 mol∙L1 KOH

[34]

THPC

183

0.2

6 mol∙L1 KOH

[35]

N doped AC

119

0.2

1 mol∙L1 KCl

[36]

Seawater-AB-900

85

0.3

6 mol∙L1 KOH

[37]

PCNSS

175

0.2

1 mol∙L1 TEABF4/AN

[38]

Fe doped CSPP

132

0.2

6 mol∙L1 KOH

[39]

AC650

123

0.2

1 mol∙L1 H2SO4

[40]

MHT-20min-10%

120

0.2

6 mol∙L1 KOH

[41]

HC2

80

0.5

2 mol∙L1 KOH

[42]

BAC-550-I

93

0.1

6 mol∙L1 KOH

[43]

图8(g)为HPC-1的Nyquist曲线。曲线与x轴的交点对应体系的内阻(Rs = 0.32 Ω),较小的内阻表明样品具有良好的导电性[30]。高频区的半圆半径较小,表明材料的总电阻较低;中频区半圆与直线的连接处,直线的倾斜部分较短,说明电解液离子在材料表面的扩散性能优异;低频区曲线的斜率较大,进一步证实了其良好的双电层电容特性[31]图8(h)为HPC-1在5 A∙g1电流密度下进行5000次充放电循环的曲线,其电容保持率为96%,库伦效率为92%,表明其具有优异的循环稳定性和使用寿命。

在二电极体系下,对由HPC-1组装而成的CR2032型超级电容器进行了电化学性能测试。图9(a)展示了电容器在0~1 V电压范围内的循环伏安(CV)曲线。随着扫描速率从5 mV∙s1增加到50 mV∙s1,曲线始终保持近似矩形的形状,表明材料具有优异的电化学稳定性和电容特性[44]图9(b)为电流密度在0.1~2 A∙g1范围内的恒电流充放电(GCD)曲线,不同电流密度下的充放电曲线均呈现近似等腰三角形的形状,当电流密度分别为0.1、0.4、0.6、0.8、1和2 A∙g1时计算得到的比电容值,分别为97、74、69、67、62和54 F∙g1,进一步证实了材料具有较高的电化学容量和良好的双电层电容性能。图9(c)为HPC-1的倍率性能,由图可知,即使当电流密度(2 A∙g1)为初始电流密度(0.1 A∙g1)的20倍时,比电容保持率仍为56%,表明材料具有良好的倍率性能。图9(d)为样品的Nyquist曲线,表明HPC-1具有较低的离子和电子传输阻力和较为优良的输运和扩散效率[45]

图9(e)为计算所得的HPC-1的Ragone图。如图所示,当功率密度为50 W∙kg1时,能量密度为3.36 W∙h∙kg1;当功率密度增加至1000 W∙kg1时,能量密度仍保持在1.88 W∙h∙kg1,表明该超级电容器具有优异的电化学性能。图9(f)为材料经过5000次充放电循环后的稳定性曲线,电容保持率高达91%,库伦保持率高达88%,进一步证明了材料具有出色的循环稳定性和长使用寿命特性。

(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) CV curves at 5~50 mV∙s1; (b) GCD curves at 0.1~2 A∙g1; (c) Rate performance; (d) Ragone plot; (e) Nyquist plot; (g) Cycling stability of HPC-1

9. HPC-1在(a) 5~50 mV∙s1的CV曲线;(b) 0.1~2 A∙g1的GCD曲线;(c) 倍率性能;(d) Ragone图;(e) Nyquist曲线;(f) 循环稳定曲线

4. 结论

本研究以十二烷基硫酸钠(SDS)为软模板剂,D-核糖为碳源,聚(4-苯乙烯磺酸–共聚–马来酸)钠盐(PSSMA)为稳定剂,通过水热炭化和CO2活化成功制备了具有中空分级多孔结构的炭球材料,系统研究了其电化学性能。研究结果表明:

  • SDS和PSSMA在水热反应过程中相互作用形成混合乳液,作为中空微反应器,引导D-核糖在微反应器与水的界面发生水解、聚合和芳构化等反应,最终形成炭前驱体。

  • 经过炭化和CO2活化处理后,所得中空分级多孔炭球材料具有微孔、介孔和大孔并存的多级孔结构和较高的比表面积(316 m2∙g1),中空的球形腔体以及表面丰富的含氧官能团(如羧基和羟基)结构有利于电解液的浸润、离子的存储和快速扩散。

  • 电化学性能测试表明,当CO2活化时间为1 h时,样品(HPC-1)表现出最佳的电化学性能。在三电极体系中,以6 mol∙L1 KOH为电解液,在电流密度为0.2 A∙g1时,比电容达到183 F∙g1,在5 A∙g1电流密度下进行5000次充放电循环后,比电容保持率仍高达96%,库伦效率为92%,显示出优异的循环稳定性。在二电极体系中,电流密度为0.1 A∙g1时,比电容为97 F∙g1;在2 A∙g1电流密度下进行5000次充放电循环后,比电容保持率仍高达91%,库伦效率为88%,当功率密度为50 W∙kg1时,能量密度可达3.36 W∙h∙kg1,展现出良好的应用潜力。

综上所述,本研究通过水热–软模板法结合CO2活化成功制备了具有中空分级多孔结构的炭球材料,其独特的结构和优异的电化学性能使其在超级电容器电极材料领域具有广阔的应用前景。

基金项目

东北林业大学国家级大学生创新训练计划项目(202310225038)。

NOTES

*通讯作者。

参考文献

[1] Wu, L., Li, Y., Fu, Z. and Su, B. (2020) Hierarchically Structured Porous Materials: Synthesis Strategies and Applications in Energy Storage. National Science Review, 7, 1667-1701.
https://doi.org/10.1093/nsr/nwaa183
[2] Zhou, X., Zhang, H., Shao, L., Lü, F. and He, P. (2020) Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste and Biomass Valorization, 12, 1699-1724.
https://doi.org/10.1007/s12649-020-01109-y
[3] Zhu, Y., Li, Z., Tao, Y., Zhou, J. and Zhang, H. (2022) Hierarchical Porous Carbon Materials Produced from Heavy Bio-Oil for High-Performance Supercapacitor Electrodes. Journal of Energy Storage, 47, Article 103624.
https://doi.org/10.1016/j.est.2021.103624
[4] Li, S., Pasc, A., Fierro, V. and Celzard, A. (2016) Hollow Carbon Spheres, Synthesis and Applications—A Review. Journal of Materials Chemistry A, 4, 12686-12713.
https://doi.org/10.1039/c6ta03802f
[5] Hussain, I., Sahoo, S., Sayed, M.S., Ahmad, M., Sufyan Javed, M., Lamiel, C., et al. (2022) Hollow Nano and Microstructures: Mechanism, Composition, Applications, and Factors Affecting Morphology and Performance. Coordination Chemistry Reviews, 458, Article 214429.
https://doi.org/10.1016/j.ccr.2022.214429
[6] Lin, Y., Huang, C., Huang, C., Deng, Y., Zou, X., Ma, W., et al. (2024) Cellulose Regulated Lignin/Cellulose-Based Carbon Materials with Hierarchical Porous Structure for Energy Storage. Advanced Composites and Hybrid Materials, 7, Article No. 51.
https://doi.org/10.1007/s42114-024-00850-5
[7] Xu, F., Han, H., Ding, B., Qiu, Y., Zhang, E., Li, H., et al. (2019) Engineering Pore Ratio in Hierarchical Porous Carbons Towards High-Rate and Large-Volumetric Performances. Microporous and Mesoporous Materials, 282, 205-210.
https://doi.org/10.1016/j.micromeso.2019.03.038
[8] He, C., Li, B., Yang, G., He, S., Jiang, S., Yang, H., et al. (2025) Progress of 0D Biomass-Derived Porous Carbon Materials Produced by Hydrothermal Assisted Synthesis for Advanced Supercapacitors. Journal of Colloid and Interface Science, 685, 487-508.
https://doi.org/10.1016/j.jcis.2025.01.163
[9] Liu, L., Fan, S., Wang, W., Yin, S., Lv, Z., Zhang, J., et al. (2024) Tailored Hollow Mesoporous Carbon Nanospheres from Soft Emulsions Enhance Kinetics in Sodium Batteries. JACS Au, 4, 2666-2675.
https://doi.org/10.1021/jacsau.4c00421
[10] Guo, Z., Han, X., Zhang, C., He, S., Liu, K., Hu, J., et al. (2024) Activation of Biomass-Derived Porous Carbon for Supercapacitors: A Review. Chinese Chemical Letters, 35, Article 109007.
https://doi.org/10.1016/j.cclet.2023.109007
[11] Liu, X., Zhang, S., Wen, X., Chen, X., Wen, Y., Shi, X., et al. (2020) High Yield Conversion of Biowaste Coffee Grounds into Hierarchical Porous Carbon for Superior Capacitive Energy Storage. Scientific Reports, 10, Article No. 3518.
https://doi.org/10.1038/s41598-020-60625-y
[12] Chen, C., Wang, H., Han, C., Deng, J., Wang, J., Li, M., et al. (2017) Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass. Journal of the American Chemical Society, 139, 2657-2663.
https://doi.org/10.1021/jacs.6b10841
[13] Qiang, L., Hu, Z., Li, Z., Yang, Y., Wang, X., Zhou, Y., et al. (2019) Hierarchical Porous Biomass Carbon Derived from Cypress Coats for High Energy Supercapacitors. Journal of Materials Science: Materials in Electronics, 30, 7324-7336.
https://doi.org/10.1007/s10854-019-01045-1
[14] Lu, Y., Zhou, G., Zhang, Z., Li, C., Dong, Q., Su, Y., et al. (2025) Breaking the Hemicellulose Barrier for the Preparation of High-Performance Porous Carbon for Supercapacitors and Zinc-Ion Capacitors. Chemical Engineering Journal, 508, Article 161085.
https://doi.org/10.1016/j.cej.2025.161085
[15] Geng, X., Singh, G., Sathish, C.I., Li, Z., Bahadur, R., Liu, Y., et al. (2023) Biomass Derived Nanoarchitectonics of Porous Carbon with Tunable Oxygen Functionalities and Hierarchical Structures and Their Superior Performance in CO2 Adsorption and Energy Storage. Carbon, 214, Article 118347.
https://doi.org/10.1016/j.carbon.2023.118347
[16] Hwangsud, N., Sangtong, N., Seneesrisakul, K., Saramolee, P. and Thubsuang, U. (2025) Nanoarchitectonics of Biomass-Based Activated Biocarbon with High Surface Area and Balanced Pore Structures for Use as Supercapacitor Electrode Material. Journal of Power Sources, 632, Article 236376.
https://doi.org/10.1016/j.jpowsour.2025.236376
[17] Chidambaram, B., Sengodan, P., Jeon, S. and Srituravanich, W. (2025) Utilizing Luffa Sponge-Derived Porous Activated Carbon as a Sustainable Environmental Bio-Mass for Renewable Energy Storage Applications. Biomass and Bioenergy, 194, Article 107667.
https://doi.org/10.1016/j.biombioe.2025.107667
[18] Zhang, C., Fan, Q., Xu, J., Huang, M., Luo, F., Wang, D., et al. (2025) Surface Oxygen-Containing Functional Groups: A Key Tradeoff in Carbon-Based Energy Storage Devices. Chemical Engineering Journal, 505, Article 159162.
https://doi.org/10.1016/j.cej.2024.159162
[19] Yu, L., Falco, C., Weber, J., White, R.J., Howe, J.Y. and Titirici, M. (2012) Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir, 28, 12373-12383.
https://doi.org/10.1021/la3024277
[20] Wang, Q., Qin, B., Qu, C., Wang, B., Duan, H., Cao, Q., et al. (2023) Synthesis of Hierarchical Porous Carbon from Bio-Oil for Supercapacitor Application. Energy & Fuels, 37, 16970-16978.
https://doi.org/10.1021/acs.energyfuels.3c03069
[21] Levent, A. and Saka, C. (2025) Stable Electrode Material for Use in Supercapacitor with Iodine Doping after Sulfonation of Mesoporous Activated Carbon Particles Based on Microalgae Biomass. Biomass Conversion and Biorefinery.
https://doi.org/10.1007/s13399-025-06696-1
[22] Liang, Y., Yu, Y. and Qi, X. (2025) Synthesis of Hollow Hierarchical Porous Carbon Spheres from Lignin by Soft Template and Hydrothermal Method for Supercapacitors. International Journal of Biological Macromolecules, 307, Article 141938.
https://doi.org/10.1016/j.ijbiomac.2025.141938
[23] Muruganantham, R., Wang, F., Yuwono, R.A., Sabugaa, M. and Liu, W. (2021) Biomass Feedstock of Waste Mango-Peel-Derived Porous Hard Carbon for Sustainable High-Performance Lithium-Ion Energy Storage Devices. Energy & Fuels, 35, 10878-10889.
https://doi.org/10.1021/acs.energyfuels.1c01226
[24] Chen, C., Ren, T., Wu, S., Xin, X., Ge, B., Hao, S., et al. (2024) Soft-Templating of Biomass Derivatives into Edge-N Doped 3d-Interconnected Hierarchical Porous Carbon for Multi-Scenario Supercapacitive Energy Storage. Journal of Energy Storage, 102, Article 114192.
https://doi.org/10.1016/j.est.2024.114192
[25] Liu, S., Zhao, Y., Zhang, B., Xia, H., Zhou, J., Xie, W., et al. (2018) Nano-Micro Carbon Spheres Anchored on Porous Carbon Derived from Dual-Biomass as High Rate Performance Supercapacitor Electrodes. Journal of Power Sources, 381, 116-126.
https://doi.org/10.1016/j.jpowsour.2018.02.014
[26] Zeng, F., Tan, Z., Yang, X., Wang, X. and Xu, B. (2024) N-Self-Doped Hierarchically Porous Carbon Materials from Waste Coffee Grounds for Symmetric Supercapacitor. Journal of Materials Science: Materials in Electronics, 35, Article No. 885.
https://doi.org/10.1007/s10854-024-12643-z
[27] Huang, J., Liang, Y., Hu, H., Liu, S., Cai, Y., Dong, H., et al. (2017) Ultrahigh-Surface-Area Hierarchical Porous Carbon from Chitosan: Acetic Acid Mediated Efficient Synthesis and Its Application in Superior Supercapacitors. Journal of Materials Chemistry A, 5, 24775-24781.
https://doi.org/10.1039/c7ta08046h
[28] Liang, Z., Zhang, L., Liu, H., Zeng, J., Zhou, J., Li, H., et al. (2019) Soft-Template Assisted Hydrothermal Synthesis of Size-Tunable, N-Doped Porous Carbon Spheres for Supercapacitor Electrodes. Results in Physics, 12, 1984-1990.
https://doi.org/10.1016/j.rinp.2019.01.074
[29] Guan, X., Li, X., Zhao, X., Wang, Z., Zhang, L. and Ma, J. (2025) Recent Advances in Hierarchical Porous Carbon Materials Derived from Lignin in Black Liquor toward High-Performance Supercapacitors: A Review. Journal of Energy Storage, 111, Article 115380.
https://doi.org/10.1016/j.est.2025.115380
[30] Wang, P., Qi, X., Zhao, W., Qian, M., Bi, H. and Huang, F. (2020) Nitrogen-Doped Hierarchical Few-Layered Porous Carbon for Efficient Electrochemical Energy Storage. Carbon Energy, 3, 349-359.
https://doi.org/10.1002/cey2.78
[31] Youngjan, S., Rajrujithong, C., Sattayarut, V., Phanthasri, J., Faungnawakij, K., Kewcharoenwong, P., et al. (2025) Versatile Porous Activated Carbon from Silkworm Pupae Waste for Electrochemical Energy Storage Systems. Materials Research Bulletin, 186, Article 113347.
https://doi.org/10.1016/j.materresbull.2025.113347
[32] Qin, Z., Ye, Y., Zhang, D., He, J., Zhou, J. and Cai, J. (2023) One/Two-Step Contribution to Prepare Hierarchical Porous Carbon Derived from Rice Husk for Supercapacitor Electrode Materials. ACS Omega, 8, 5088-5096.
https://doi.org/10.1021/acsomega.2c07932
[33] Liu, X., Guo, H., Mu, Y., Duan, L., Li, Y. and Xia, K. (2025) Hierarchical Porous Carbon Microspheres from Resorcinol-Formaldehyde for Supercapacitor and Methylene Blue Adsorption. Journal of Porous Materials.
https://doi.org/10.1007/s10934-025-01782-1
[34] Le, T.H., Ngo, V.H., Nguyen, M.T., Nguyen, V.C., Vu, D.N., Pham, T.D., et al. (2021) Enhanced Electrochemical Performance of Porous Carbon Derived from Cornstalks for Supercapacitor Applications. Journal of Electronic Materials, 50, 6854-6861.
https://doi.org/10.1007/s11664-021-09249-0
[35] Wang, Y., Hao, L., Zeng, Y., Cao, X., Huang, H., Liu, J., et al. (2021) Three-Dimensional Hierarchical Porous Carbon Derived from Resorcinol Formaldehyde-Zinc Tatrate/Poly(Styrene-Maleic Anhydride) for High Performance Supercapacitor Electrode. Journal of Alloys and Compounds, 886, Article 161176.
https://doi.org/10.1016/j.jallcom.2021.161176
[36] Genel, İ., Yardım, Y. and Saka, C. (2025) Utilisation of Green Nitrogen-Doped Biomass-Based Hierarchical Porous Activated Carbon Particles for Enhancement of Electrochemical Energy Storage Performance. Diamond and Related Materials, 152, Article 111912.
https://doi.org/10.1016/j.diamond.2024.111912
[37] Phakkhawan, A., Kosolwattana, S., Sakulsombat, M., Pimanpang, S., Klangtakai, P. and Amornkitbamrung, V. (2025) Seawater Nanoarchitectonics for an Eco-Friendly Dual-Function Activator-Catalyst Producing Graphene-Decorated Activated Biochar for Applications in Electrochemical Energy Storage. Environmental Research, 272, Article 121176.
https://doi.org/10.1016/j.envres.2025.121176
[38] Díez, N., Sevilla, M., Fombona-Pascual, A. and Fuertes, A.B. (2022) Monodisperse Porous Carbon Nanospheres with Ultra-High Surface Area for Energy Storage in Electrochemical Capacitors. Batteries & Supercaps, 5, e202200071.
https://doi.org/10.1002/batt.202200071
[39] Li, S., Yang, J., Wang, H. and Chen, L. (2023) A High Yield and Cost-Effective Pathway for the Production of Iron Doped Porous Carbon Derived from Squid Pen as Supercapacitor Electrode Material. Waste and Biomass Valorization, 14, 2815-2824.
https://doi.org/10.1007/s12649-023-02063-1
[40] Bao, Q., Zhang, M., Li, J., Wang, X., Zhu, M. and Sun, G. (2024) The Optimal Micro and Meso-Pores Oriented Development of Eucommia Ulmoides Oliver Wood Derived Activated Carbons for Capacitive Performance. Renewable Energy, 225, Article 120209.
https://doi.org/10.1016/j.renene.2024.120209
[41] Zhou, Y., Yan, W., Yu, X., Chen, T., Wang, S. and Zhao, W. (2020) Boron and Nitrogen Co-Doped Porous Carbon for Supercapacitors: A Comparison between a Microwave-Assisted and a Conventional Hydrothermal Process. Journal of Energy Storage, 32, Article 101706.
https://doi.org/10.1016/j.est.2020.101706
[42] Tafete, G.A., Uysal, A., Habtu, N.G., Abera, M.K., Yemata, T.A., Duba, K.S., et al. (2024) Hydrothermally Synthesized Nitrogen-Doped Hydrochar from Sawdust Biomass for Supercapacitor Electrodes. International Journal of Electrochemical Science, 19, Article 100827.
https://doi.org/10.1016/j.ijoes.2024.100827
[43] Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M. and Wang, J. (2020) Activated Carbons Prepared by Indirect and Direct CO2 Activation of Lignocellulosic Biomass for Supercapacitor Electrodes. Renewable Energy, 155, 38-52.
https://doi.org/10.1016/j.renene.2020.03.111
[44] Xue, B., Xu, J. and Xiao, R. (2021) Synthesis of Hierarchically Porous Carbon with Tailored Porosity and Electrical Conductivity Derived from Hard-Soft Carbon Precursors for Enhanced Capacitive Performance. ACS Sustainable Chemistry & Engineering, 9, 15925-15934.
https://doi.org/10.1021/acssuschemeng.1c06020
[45] Li, J., Gao, Y., Han, K., Qi, J., Li, M. and Teng, Z. (2019) High Performance Hierarchical Porous Carbon Derived from Distinctive Plant Tissue for Supercapacitor. Scientific Reports, 9, Article No. 17270.
https://doi.org/10.1038/s41598-019-53869-w