赖氨酰氧化酶抑制剂研究进展
The Research Progress of Lysyl Oxidase Inhibitors
DOI: 10.12677/hjmce.2025.133029, PDF, HTML, XML,   
作者: 彭 斌*, 张 影, 张子龙:内蒙古医科大学药学院,内蒙古 呼和浩特;张 捷#:中国人民解放军总医院第九医学中心,北京;王冬梅#:中国医学科学院&北京协和医学院药物研究所,北京
关键词: 赖氨酰氧化酶赖氨酰氧化酶样蛋白癌症纤维化抑制剂Lysyl Oxidase Lysyl Oxidase-Like Protein Cancer Fibrosis Inhibitor
摘要: 赖氨酰氧化酶家族是一类铜依赖的胺氧化酶,包括赖氨酰氧化酶(LOX)和赖氨酰氧化酶样蛋白1、2、3、4 (LOXL1, 2, 3, 4)。赖氨酰氧化酶催化弹性蛋白和胶原的交联反应,促进细胞迁移和转移。LOX与许多疾病相关,包括炎症性疾病、纤维化疾病和癌症。本文综述了赖氨酰氧化酶的结构、功能及其抑制剂的研究进展。
Abstract: The lysyl oxidase family is a group of copper-dependent amine oxidases that include lysyl oxidase (LOX) and lysyl oxidase-like-1, 2, 3 and 4 (LOXL1, 2, 3, 4). Lysyl oxidase catalyzes cross-linking reactions of elastin and collagen, promoting cell migration and metastasis. LOX is associated with many diseases, including inflammatory diseases, fibrotic diseases, and cancer. This article reviews the progress of research on the structure and function of lysyl oxidase and its inhibitors.
文章引用:彭斌, 张影, 张子龙, 张捷, 王冬梅. 赖氨酰氧化酶抑制剂研究进展[J]. 药物化学, 2025, 13(3): 277-292. https://doi.org/10.12677/hjmce.2025.133029

1. 赖氨酰氧化酶家族

赖氨酰氧化酶是细胞分泌的一种铜离子依赖性的胺氧化酶,可催化细胞外基质(extracellular matrix, ECM)中胶原蛋白和弹性蛋白的交联反应[1]。其家族包含5个成员,分别是赖氨酰氧化酶(lysyl oxidase, LOX)和赖氨酰氧化酶样蛋白1、2、3、4 (lysyl oxidase like-1, 2, 3, 4, LOXL1, 2, 3, 4) (图1),赖氨酰氧化酶家族的C端催化结构域具有高度的同源性,包含一个铜离子结合位点、赖氨酸酪氨酸醌辅因子(lysine tyrosylquinone, LTQ)残基和细胞因子受体样(cytokine receptor-like, CRL)结构域[2]。相比之下,N端结构域是可变的。根据N端结构可以进一步将赖氨酰氧化酶家族分为两个亚家族,即LOX和LOXL1亚家族以及LOXL2、LOXL3和LOXL4亚家族[3]。LOX和LOXL1分别以前赖氨酰氧化酶(pro-LOX)和前赖氨酰氧化酶样蛋白1 (pro-LOXL1)的无活性前体蛋白形式分泌,可被骨形态发生蛋白1 (bone morphogenetic protein 1, BMP-1)及相关蛋白进一步水解为具有催化活性的成熟蛋白和N端前肽区[4]。在LOX成熟蛋白形成过程中,LOX的mRNA在细胞核中合成后,易位到核糖体并翻译成pro-LOX,随后在高尔基体中糖基化,通过转运囊泡分泌到细胞膜表面,最终被肽酶剪切成活性LOX和LOX前肽(LOX propeptide, LOX-pp) [5]。LOXL2、LOXL3和LOXL4的N端包含4个富含半胱氨酸的清道夫受体(scavenger receptor cysteine-rich domain, SRCR)的结构域。目前,SRCR结构域的特定功能尚未阐明,但推测其可能在蛋白质–蛋白质相互作用中发挥作用[6]

Figure 1. Domain structure of the lysyl oxidase isozymes [7]

1. 赖氨酰氧化酶家族[7]

2. LOX的结构特性和生物学功能

赖氨酰氧化酶家族蛋白结构解析方面的研究进展相对缓慢。2018年,Zhang X等人首次报道了不含LTQ辅因子的前体状态的人LOXL2 (human LOXL2, hLOXL2)晶体结构(图2(A)) [8]。在该晶体结构中,hLOXL2富含组氨酸的铜结合位点被Zn2+占据,从而阻止了LTQ的生成。基于hLOXL2的Zn2+结合的非活性催化结构域的晶体结构,Vallet等人构建了LOX的同源模型,该模型包含了酶活性所需的主要特征Cu2+和LTQ辅因子(图2(B)) [9]。然而,目前LOX、LOXL1、LOXL3和LOXL4的晶体结构尚未被报道。

(A)

(B)

Figure 2. (A) Crystal structure of human LOXL2 (hLOXL2) in a precursor state. Zinc ions is represented as blue spheres [8]. (B) Homology modeling of LOX. Copper and calcium ions are represented by orange and green colors, respectively [9]

2. (A) 人LOXL2 (hLOXL2)前体状态的晶体结构,蓝色球体代表Zn2+ [8]。(B) LOX的同源模型,Cu2+和Ca2+离子分别以橙色和绿色表示[9]

赖氨酰氧化酶家族蛋白在生理功能和疾病发生中扮演着关键角色。赖氨酰氧化酶负责催化蛋白质中赖氨酸残基的氧化脱氨反应。在这一过程中,赖氨酸残基的ε-氨基氮原子进攻LTQ辅因子(Ⅰ)的羰基,进行亲核加成反应,形成中间体α-羟基胺类化合物(可逆结合),进一步脱水生成底物席夫碱(Schiff base)中间体(Ⅱ);随后,Ⅱ在碱的作用下,还原/芳构化不可逆地转化为产物中间体(Ⅲ);Ⅲ水解产生醛和中间体氨基苯酚(Ⅳ),Ⅳ和氧气在酶催化反应中转化为醌亚胺(Ⅴ)和过氧化氢,Ⅴ在Cu2+和水的作用下,再生LTQ辅因子(Ⅰ),同时释放出氨(图3) [10] [11]

Figure 3. Mechanism of catalysis of lysyl oxidases [10] [11]

3. 赖氨酰氧化酶的催化机制[10] [11]

3. 疾病中的LOX

3.1. LOX在癌症的促进与发展中的作用

在癌症中,胶原沉积、降解和翻译后修饰的失调会显著改变ECM的结构和功能。LOX家族是调节胶原组装的关键蛋白,在许多实体瘤中失调。肿瘤微环境中LOX家族的过度交联会使ECM的硬度增加,进而促进恶性进展[12]

LOX家族成员在不同癌症类型中特异性表达。研究表明,LOX可促进结直肠癌、卵巢癌、肺癌、胃癌和肾细胞癌等多种癌症的进展。然而,该家族不同成员(LOXL1, 2, 3, 4)在不同癌症类型中呈现出显著的功能异质性。LOXL1具有双向调节的作用,与癌症组织相比,LOXL1在正常结肠组织中高表达。体外实验结果也表明,沉默结直肠癌细胞中的LOXL1可显著增强细胞迁移、侵袭和集落形成,而过表达LOXL1则会产生相反的效果。动物实验进一步证明,在结直肠癌细胞系中过表达LOXL1能显著抑制癌细胞转移和生长[13]。但是在肝内胆管癌患者组织和血清中的LOXL1水平却高于未受影响者的非肿瘤组织和血清中的水平[14],提示其作用具有组织特异性。LOXL2被广泛证实具有促癌功能,可促进结直肠癌、胃癌、食管鳞状细胞癌、胆管癌、肝细胞癌、非小细胞肺癌和肾细胞癌的发展[15]。此外,LOXL2的一种新型剪接变体会促进人乳头状瘤病毒阴性头颈部鳞状细胞癌的发展[16]。LOXL3和LOXL4具有促转移特性,LOXL3被观察到在具有高侵袭能力的弥漫型胃癌细胞中显著高表达,并能促进乳腺癌细胞的侵袭和转移[18]。有研究表明LOXL4可促进胃癌细胞的增殖和转移 [19]。在体外,LOXL4的过表达促进了肝癌细胞的迁移和侵袭,而LOXL4的敲除则抑制了细胞迁移和侵袭;在体内,LOXL4的过表达促进了肝癌细胞的肝内转移[20]。然而,关于LOXL4的研究也显示出矛盾结果:Shao等人发现5-氮杂胞苷诱导的LOXL4上调可重新激活野生型p53并引发细胞死亡,从而阻止肝癌的发展[21]。但另一项研究却发现,LOXL4下调会促进肺癌进展[22],表明其功能可能具有癌症类型依赖性。

根据现有数据得知,LOX家族成员在癌症中扮演着不同的角色,其功能不仅因家族成员而异,还可能受肿瘤类型或微环境因素的影响而导致其机制的差异。因此,针对不同癌症类型我们需要开展更加深入的研究,以揭示其作用机制,并为靶向治疗提供理论依据。

3.2. LOX在纤维化疾病中的作用

在多种纤维化模型中,广泛观察到LOX家族蛋白的表达上调,其调控机制与组织微环境失衡密切相关。在肺纤维化模型中,博来霉素(Bleomycin, BLM)诱导的人胎儿肺成纤维细胞及大鼠模型中均显示LOX、LOXL1和LOXL2表达上调,并伴有谷胱甘肽(glutathione, GSH)下调[23]。值得注意的是,这种表达变化可能通过双重机制促进纤维化:一方面由于胶原交联的增强而促进ECM沉积,另一方面通过降低GSH水平而加剧氧化应激,进一步导致组织损伤和纤维化进展。

肝纤维化是由慢性或反复肝损伤引起的,并伴有纤维化蛋白的进行性积累,导致组织结构和功能的改变,晚期肝纤维化通常会导致肝功能衰竭和肝硬化。CCl4诱导的肝硬化(liver cirrhosis)模型显示LOX、LOXL1、LOXL2和LOXL3的基因表达显著增强,通过人脐带间充质干细胞条件培养基治疗可以降低LOX家族基因表达改善肝纤维化[24]

肾纤维化研究揭示了LOX的临床转化价值:慢性肾病(chronic kidney disease, CKD)患者血清和肾组织LOX水平均与纤维化面积相关[25]。值得注意的是,LOX是诱导上皮间质转化(epithelial-mesenchymal transition, EMT)过程中最重要的蛋白之一,EMT在肾纤维化中起重要作用。研究表明,抑制LOX可减轻肾损伤,使ECM正常化,从而在一定程度上改善肾小管周围毛细血管(peritubular capillaries, PTCs)的退化[26]

在心血管系统中,LOX的上调和过度活动也与心肌纤维化(myocardial fibrosis)和心功能障碍密切相关[27]。研究表明,通过下调LOX和LOXL2的表达,可有效抑制转化生长因子β (transforming growth factor-β, TGF-β)途径,从而抑制心肌成纤维细胞转化,减少胶原交联的形成,这一机制为减轻心肌纤维化进展、改善高血糖诱导的心功能障碍提供了潜在的治疗策略[28]

系统性硬化症(systemic sclerosis, SSc),又称硬皮病,是一种临床异质性结缔组织疾病,其特征性表现为胶原异常沉积和皮肤僵硬[29]。研究表明,硬皮病患者的皮肤组织中在细胞内和细胞外的LOX表达水平均高于正常皮肤。组织学分析显示,除胶原束之间的细胞外沉积物外,其表达在下部真皮和皮下脂肪组织的血管附近的单核细胞和成纤维细胞中观察到赖氨酰氧化酶的显著增加。值得注意的是,与全身性硬皮病的水肿期相比,局部硬皮病中LOX的上调现象更为普遍[30]

综上所述,LOX家族成员在不同纤维化疾病中的表达虽然存在差异,但均通过ECM交联推动纤维化进程。这种机制的保守性使其成为抗纤维化治疗的潜在靶点。

4. 赖氨酰氧化酶抑制剂

赖氨酰氧化酶和赖氨酰氧化酶样蛋白是抗纤维化治疗的靶点,并且其基因表达的上调在大多数情况下会促进肿瘤细胞的侵袭和转移,因此,研究人员正致力于开发高效的LOX小分子抑制剂。以期用于多种癌症的治疗以及干预异常纤维化相关疾病。

4.1. β-氨基丙腈

化合物1 (β-氨基丙腈,BAPN,图4)是第一个被发现的LOX抑制剂,它是一种强效不可逆的非特异性LOX抑制剂[2]。然而,Hajdú等人提出了不同的观点,他们发现BAPN并不抑制LOX和LOXL4 (LOX,LOXL4 IC50 > 100 μM),而是对LOXL2/3 (LOXL2 IC50 = 0.073 Μm, LOXL3 IC50 = 0.17 μM)具有选择性的抑制剂,这一发现与之前的报道形成了鲜明对比[31]

1983年,Tang等人通过同位素标记BAPN中的不同碳原子,研究了BAPN与高纯度牛主动脉赖氨酰氧化酶之间的相互作用。不同碳位点标记的BAPN与酶的共价结合程度相当,并且与酶失活同步,这一现象排除了氰基通过酶的作用从BAPN中消除的可能性。与BAPN作用时,酶中的铜含量未发生明显变化,且BAPN不会被加工成游离醛产物。当使用羰酰基修饰试剂对酶进行处理后,BAPN的标记程度会降低,这表明可能存在酶抑制剂席夫碱的形成(图4) [32]

BAPN在多种癌症类型的体外和体内模型中显示出抗癌特性,例如,Yang等人证实BAPN (500 µM)可以阻断缺氧诱导的宫颈癌细胞的侵袭和迁移能力[33];Zhao等人的研究表明,BAPN可以抑制BGC-8细胞中基质金属蛋白酶2和9的表达和活性,而胃癌组织中LOX和基质金属蛋白酶9 (matrix metalloproteinases 2, MMP-9)的相对表达水平呈正相关[34]。然而,BAPN存在一些显著的副作用。它可能导致骨质疏松,增加所有结缔组织的脆性,同时使胶原蛋白的溶解度升高。在硬皮病患者中,口服BAPN出现了皮疹,溶血和骨质疏松等不良反应[35]。这些副作用严重限制了BAPN在临床治疗中的应用。由于BAPN缺乏可进行化学修饰的位点,因此无法对其进行进一步结构优化[36]

Figure 4. Compound 1 structure; in LOXL, compound 1 covalently and irreversibly binds to the LTQ cofactor [35]

4. 化合物1结构;在LOXL中,化合物1与LTQ辅因子共价且不可逆地结合[35]

4.2. 氨甲基吡啶、嘧啶和苄胺类

PharmAkea公司报道了两个系列的新型LOXL2酶抑制剂(图5) [37]:对位被取代的苄胺,如化合物2 (LOXL2 IC50 = 0.67 μM)和2-取代的吡啶-4-基甲胺[38],如化合物3。化合物3是高选择性的LOXL2可逆抑制剂(LOXL2 IC50 = 0.126 μM, LOX IC50 = 5.91 μM)。Rowbottom等[9] [39]对化合物3进行优化,得到外消旋化合物4 (LOX IC50 = 35 μM; LOXL2 IC50 = 0.078 μM; LOXL3 IC50 = 1.38 μM),这是一种对LOX和其他胺氧化酶具有高度选择性的LOXL2强效不可逆抑制剂。在为期14天的小鼠博莱霉素诱导肺部纤维化模型中,口服化合物4能显著减少肺纤维化。外消旋体化合物4拆分得到一对对映异构体,化合物5 (R,R) (LOX IC50 = 45 μM; LOXL2 IC50 = 0.074 μM; LOXL3 IC50 = 1.17 μM)和化合物6 (S,S) (LOX IC50 = 52 μM; LOXL2 IC50 = 0.082 μM; LOXL3 IC50 = 1.22 μM)。化合物56具有更高的LOXL2抑制活性,对hERG无毒性,从而避免了潜在的心脏毒性。化合物5成为进入临床开发的“first in class”LOXL2小分子抑制剂并于2019年8月进入Ⅱ期临床试验(NCT04054245),此后未见进一步更新报道。

Figure 5. Structure of aniline-, aminomethylpyridine-, and pyrimidine-based LOX inhibitors

5. 苯胺类、氨甲基吡啶类、嘧啶类LOX抑制剂结构

将化合物4的2-三氟甲基吡啶环替换成嘧啶环对LOXL2的抑制效果显著提高。基于这一发现,PharmAkea公司以嘧啶结构为基础设计合成了107个嘧啶类化合物,活性测试显示化合物7 (LOXL2 IC50 < 0.1μM,图5)对LOXL2有显著的抑制活性[40]

4.3. 氟烯丙胺类

Pharmaxis公司研发的PXS-S1A是一种氟烯丙胺类分子(结构尚未公开),属于第一代LOX抑制剂,与BAPN的活性和选择性相当[41]。对PXS-S1A进行结构修饰得到PXS-S2A,一种LOXL2的强效特异性抑制剂。使用PXS-S1A和PXS-S2A处理体内原位人乳腺癌细胞(MDA-MB-231)可以明显减少原发性肿瘤体积和肿瘤细胞增殖。

化合物8 (LOXL2 IC50 = 21 nM;LOXL3 IC50 = 63 nM,图6)是一种LOXL2/3双重抑制剂,对LOX具有良好的选择性(LOX IC50 = 1.79 μM) [42]。化合物8可在体外剂量依赖性地减少LOXL2介导的胶原氧化和胶原交联。不幸的是,化合物8被氨基脲敏感性胺氧化酶(semicarbazide-sensitive amine oxidase, SSAO)和血浆胺氧化酶(Plasma Amine Oxidase, PAO)识别为底物,阻碍了该分子的进一步开发[43]

化合物9 (图6)也是一种有效的LOXL2/3抑制剂(LOXL2 IC50 = 5 nM; LOXL3 IC50 = 16 nM) [43]。幸运的是,化合物9对相关胺氧化酶没有脱靶抑制作用,它不被SSAO或PAO识别为底物。在体外实验中,它表现出良好的代谢稳定性,可用于评估LOXL2/LOXL3抑制的体内潜力。构效关系研究表明:氟烯丙胺片段是抑制SSAO、LOX和LOXL2活性的关键基团,从烯丙胺结构中去除氟基团导致小分子抑制活性急剧下降;二甲基磺胺是LOXL2效价所需的关键特征;2-甲基吲哚母核降低了对SSAO的活性;吲哚5位的吸电子基取代,显示对LOXL2的抑制活性明显提高。

化合物10 (图6)是一种有效的LOXL2抑制剂(LOXL2 IC50 = 35 nM) [44]。给大鼠口服化合物10 (30 mg/kg),并测定体内外的酶活性,与血浆中一样,肺中的LOXL2活性在4小时后几乎完全被抑制,这证实了化合物10具有出色的组织渗透性和良好的口服生物利用度。在Ⅰ期临床实验(ACTRN 12617001444370)中证明化合物10能显著减轻纤维化,并显示出保肝效果。此外,以吡唑为母核的氟烯丙胺化合物11 (LOX IC50 < 10 μM,LOXL2 IC50 < 1 μM,图6)也显示出对LOX和LOXL2的抑制效果[45]。Yuhan Corporation公司的专利也对氟烯丙胺类的小分子进行了补充,得到以苯并三唑为母核的LOXL2抑制剂12 (LOXL2 IC50 = 17 nM,图6) [46]

Figure 6. Small molecule structure of fluoroallylamines

6. 氟烯丙胺类小分子结构

Findlay等人将卤代烯丙胺结构与芳基砜基团结合,研发出化合物13 (LOX IC50 = 4.93 μM;LOXL1 IC50 = 1.59 μM;LOXL2 IC50 = 0.57 μM;LOXL3 IC50 = 1.8 μM;LOXL4 IC50 = 0.19 μM,图6),用于治疗原发性骨髓纤维化[47]。该分子已经进入Ⅱ期临床(NCT04676529)研究。构效关系研究表明:将砜换成O、N和S原子皆会令其抑制效果下降;氟烯丙胺为(Z)构型时会比(E)构型效力更好。化合物13作为一种“first in class”药物,是一种口服生物利用度高的高选择性和有效的泛LOX抑制剂。在KPC模型中将化合物13与吉西他滨联合使用可将中位生存期延长约45%,并在早期阶段减少了肝脏内的转移沉积物。进一步地,该公司在卤代烯丙胺结构的基础上增加两个氟原子得到了一系列二氟卤代烯丙胺衍生物[48]。化合物14 (LOX IC50 = 2.0 μM;LOXL1 IC50 = 3.2 μM;LOXL2 IC50 = 0.6 μM;LOXL3 IC50 = 1.4 μM;LOXL4 IC50 = 0.2 μM,图6)和化合物15 (LOX IC50 = 3.7μM;LOXL1 IC50 = 3.4 μM;LOXL2 IC50 = 0.4 μM;LOXL3 IC50 = 1.5 μM;LOXL4 IC50 = 0.3 μM,图6)都可以不可逆地抑制所有赖氨酰氧化酶,进而抑制胶原交联和沉积。在猪损伤模型中,局部应用化合物14和化合物15均能显著改善损伤后疤痕外观。但化合物14作为乳膏制剂时会被降解,而化合物15作为乳膏制剂使用时,则很容易渗透皮肤,且不会降低组织强度。化合物15的I期临床(ACTRN1262100322831)单剂量递增和重复固定剂量试验已经完成,显示出强大的靶标结合能力和持久的抑制作用,目前化合物15正在进行Ⅱ期临床实验(ACTRN12621001545853)。最近,Pharmaxis公司研发的化合物16 (LOX IC50 < 2.0 μM;LOXL2 IC50 < 2.0 μM,图6)显示出对LOX和LOXL2的双重抑制效果[49]

4.4. 氨甲基噻吩、噻唑类

英国癌症研究所曼彻斯特的Leo等人通过高通量筛选,命中了化合物17 (LOX IC50 = 19 μM,图7) [50]。构效关系研究发现了具有亚微摩尔半抑制浓度的氨甲基噻吩18 (LOX IC50 = 0.61 μM,图7)。虽然18显示出良好的抗LOX效力和小鼠肝脏微粒体(MLM)稳定性,但口服后在小鼠体内的血浆暴露率较低。因此进行优化得到了口服生物利用度更好的19 (LOX IC50 = 0.9 μM;LOXL2 IC50 = 1.5 μM,图7)。该抑制剂具有良好的选择性和药代动力学特征,在自发性乳腺肿瘤小鼠中可以显著减少肺转移。构效关系研究中进一步发现将19的噻吩环替换为噻唑环可以显著提高对LOXL2的选择性[51]。化合物20 (LOX IC50 = 3.3 μM;LOXL2 IC50 = 0.151 μM,图7)具有更好的PK谱,并在LOX驱动的GEMM乳腺癌模型中显示出卓越的抗肿瘤功效。最近,Leo等在氨甲基噻吩的基础上将砜变为亚砜亚胺结构,合成了化合物21 (LOXL2 IC50 = 0.62 μM,图7) [52]。构效关系研究表明:伯胺基为活性必需基团,其替换或修饰会导致活性完全丧失;母核为噻吩环且氨甲基和磺酰基分别位于环的2位和5位时最有效,将噻吩环替换为噻唑环可以有效提高其对LOXL2的选择性;磺酰部分是噻吩核的最佳连接体,并且连接体的吸电子效应可能在抑制机制中起重要作用,将砜替换为亚砜亚胺,其活性测试结果显示出极大的潜力;与磺酰基连接的基团上供电子基越多,基团结构越大,化合物对LOX的抑制活性越强,如环烷基或芳基在磺酰基连接体上的附着大大提高了LOX效价,通过添加第二个磺酰基可进一步增强其抑制效果。

Figure 7. Structure of small molecules of aminomethylthiophenes and thiazoles

7. 氨甲基噻吩、噻唑类小分子结构

4.5. 氨甲基喹啉酮、色原酮类

继化合物5之后,PharmAkea公司又研发了一系列喹啉酮和色原酮类的LOXL2小分子抑制剂[53]-[55]。构效关系研究表明:喹啉酮上氮原子的取代会导致活性大大降低;色原酮苯环上的吸电子基取代可以提高其对LOXL2的抑制活性。当苯环上的取代基团含有酰胺结构时会降低其效力。化合物222324 (图8)抑制LOXL2酶活性的IC50值均小于0.3 μM,其中化合物22 (60 mg/kg)在博来霉素的肺纤维化模型中是有效的。

Figure 8. Small molecule structures of aminomethylquinolones and chromones

8. 氨甲基喹啉酮、色原酮类小分子结构

4.6. 含氮杂环类

英国皇家癌症医院研发了一系列含氮杂环类LOX抑制剂[56]-[58]。含伯胺基团的化合物25 (LOX IC50 = 0.37 μM,LOXL2 IC50 = 0.15 μM,LOXL3 IC50 = 0.55 μM,图9),对乳腺癌转基因小鼠模型的测试结果表明,每天口服200 mg/kg可显著减少乳腺癌向肺部的转移。有趣的是,结构中没有伯胺的化合物26 (LOX IC50 = 1.02 μM,图9)、27 (LOX IC50 < 0.63 μM,图9)和28 (LOX IC50 < 0.56 μM,图9)对乳腺癌转基因小鼠模型也显示出减少乳腺癌向肺部的转移的活性。此外,Anovia Biosciences公司研发的哌啶烷类29 (LOX IC50 ≤ 0.5 μM,LOXL2 IC50 ≤ 0.5 μM,LOXL3 IC50 ≤ 0.5 μM,图9) [59],吡咯烷类30 (LOX IC50 = 0.5~1 μM,LOXL2 IC50 ≤ 0.5 μM,LOXL3 IC50 ≤ 0.5 μM,图9) [60]都显示出治疗纤维化疾病的潜力。

Figure 9. Structures of small molecules of diazepines

9. 含氮杂环类小分子结构

4.7. 其他类

除上述结构类型的LOX小分子抑制剂外,专利报道了其他结构类型的LOX抑制剂如双噻唑类[61] (31,LOX IC50 = 2.5 μM,图10),哒嗪酮类[62] (32,LOX IC50 = 0.27 μM,图10)和具有治疗硬皮病潜力的苯并噻唑化合物33 (图10) [63]。除此之外,文献报道,化合物34诱导LOXL2/3特异性赖氨酸(K731)发生自动氧化反应,不可逆地抑制LOXL2,并转化为在LTQ循环中出现的中间体氨基酚结构相似的化合物,直接抑制TGF-βI激酶,达到减轻纤维化和组织僵硬对疾病的促进作用[64]。临床Ⅰ期(NCT03928847)显示化合物34口服给药可以逆转IPF患者的促纤维化标志物[65]。Muhammad等人公开了一类吡唑酮衍生物,可以选择性的抑制LOX家族成员,如泛LOX抑制剂35 (LOX IC50 = 2.6 μM,LOXL2 IC50 = 2.1 μM,LOXL3 IC50 = 1.3 μM,LOXL4 IC50 = 2.1 μM,图10)和LOXL2/3选择性抑制剂36 (LOX IC50 > 100 μM,LOXL2 IC50 = 7.8 μM,LOXL3 IC50 = 5 μM,图10) [66]。构效关系研究表明:吡唑酮中的羰基对活性至关重要;化合物35中将吡唑酮改为六元哒嗪酮会导致失去对任何LOX同工酶的抑制活性,而在化合物36中,将吡唑并[3,4-b]吡啶-3-酮环结构改为吡啶并[2,3-d]嘧啶-4-酮活性明显下降;吡唑酮的1位和4位被大基团取代活性降低,4位可以被共轭双键取代,而5位是大体积脂肪族或芳香族基团时活性明显降低;吡唑并[3,4-b]吡啶-3-酮环的邻位为芳香基团取代,间位和对位未取代时活性最佳。

Figure 10. Structure of other classes of LOX small molecule inhibitors

10. 其他类LOX小分子抑制剂结构

最新研究显示,有四类LOX抑制剂在各自治疗领域展现出了显著的优势。选择性抑制剂PAT-1251拥有优异的LOXL2选择性以及对hERG的无毒性,在肺纤维化模型中显著减少胶原沉积,适合纤维化疾病的长期治疗[38],其II期临床试验正在评估对特发性肺纤维化的治疗效果。PXS-6302是一种氟烯丙胺类的泛LOX抑制剂,其乳膏制剂在局部给药时表现出优异的皮肤渗透性且不降低组织强度。在猪损伤模型中,局部应用PXS-6302能显著改善损伤后的疤痕外观。然而与PAT-1251相比,其抑制所有的LOX家族酶可能会造成一些其他的不良反应[48]。而氨甲基噻吩类CCT365623则显示出LOX/LOXL2的抑制作用和45%的口服生物利用度,在乳腺癌模型中可以显著减少肺转移,显示出抗肿瘤转移治疗的巨大潜力,但其半衰期只有1.2小时,可能需要每日多次给药[50]。EGCG作为一种天然多酚化合物,拥有良好抗纤维化潜力,临床证明其无副作用,口服给药可以逆转IPF患者的促纤维化标志物[65]。不过,EGCG在生理条件下稳定性较差、生物利用度不高,以及代谢转化较快,可以将EGCG制作成前药来优化其药物代谢性质[67]。这四类抑制剂各具特色,为不同疾病的治疗提供了新的选择。其他类型的LOX抑制剂暂时未进行更深一步的研究。

目前尚无LOX小分子抑制剂作为抗纤维化及抗癌药物上市,但不断有新的LOX小分子抑制剂进入临床实验(Ⅰ期临床4个;Ⅱ期临床5个,表1)。

Table 1. LOX small molecule inhibitors in clinical trials

1. 临床实验中的LOX小分子抑制剂

编号

化合物

结构

公司/发起人

靶点

适应症

研究状态

5

PAT-1251

Pharmakea Inc.

LOXL2

肺纤维化、骨髓纤维化、原发性血小板增多症、真性红细胞增多症

临床Ⅱ期

13

PXS-5505

Pharmaxis Ltd.

Lysyl oxidase

原发性骨髓纤维化

临床Ⅱ期

15

PXS-6302

Pharmaxis Ltd.

Lysyl oxidase

瘢痕

临床Ⅱ期

D-青霉胺

Sidney Kimmel Alexion Pharmaceuticals, Inc.

Lysyl oxidase

肝硬化

临床Ⅱ期

四硫钼酸盐

Memorial Sloan Kettering Cancer Center

Lysyl oxidase

乳腺癌、抗血管生成、抗纤维化、抗炎

临床Ⅱ期

10

PXS-5338

Pharmaxis Ltd.

LOXL2

非酒精性脂肪肝,肝硬化,肾脏纤维化,肺纤维化

临床Ⅰ期

34

EGCG

Hal Chapman

LOXL2

特发性肺纤维化

临床Ⅰ期

PXS-5382

Pharmaxis Ltd.

LOXL2

非酒精性脂肪肝;肾脏纤维化;特发性肺纤维化

临床Ⅰ期

PXS-LOXi

Pharmaxis Ltd.

Lysyl oxidase

胰腺癌

临床Ⅰ期

5. 总结

LOX家族成员的活性失调与多种疾病相关,包括炎症性疾病、纤维化疾病和癌症的促进与发展。然而,其生物学功能具有显著的疾病和组织特异性,这为靶向治疗带来了巨大挑战。例如,LOXL1在正常结肠组织中高于结直肠癌细胞中表达,在结直肠癌细胞系中过表达LOXL1能显著抑制转移进展和肿瘤生长,而在肝内胆管癌中却呈现促癌效应。因此,针对不同的LOX家族相关疾病,需要精确调控特定成员的活性,而不是对整个蛋白家族进行泛抑制或激活。目前该领域仍存在若干关键问题需要解决:首先,LOX家族的作用机制尚未完全阐明,特别是在不同疾病中其上下游调控网络的异质性仍不明确。关于这一方面,我们可以运用单细胞测序和空间转录组学等前沿技术,解析LOX家族在特定微环境中的动态调控机制。其次,在药物开发方面,针对不同的疾病,需要科学家们研发出用于靶向单一、双重或多个LOX家族成员的新型LOX家族抑制剂或激动剂,并优化其药物代谢性质,这对于开发更有效的治疗方案显得尤为重要。可以采用人工智能辅助药物设计、机器学习、骨架跃迁或者优化抗体偶联药物的靶向性,以获得选择性更好的LOX抑制剂。值得注意的是,虽然LOX家族作为治疗靶点的潜力巨大,但其复杂的生物学功能要求我们采取多学科交叉的研究策略。只有通过深入的基础研究和临床转化相结合,才能真正实现个体化精准治疗的目标。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Li, T., Wu, C., Gao, L., Qin, F., Wei, Q. and Yuan, J. (2018) Lysyl Oxidase Family Members in Urological Tumorigenesis and Fibrosis. Oncotarget, 9, 20156-20164.
https://doi.org/10.18632/oncotarget.24948
[2] Ferreira, S., Saraiva, N., Rijo, P. and Fernandes, A.S. (2021) LOXL2 Inhibitors and Breast Cancer Progression. Antioxidants, 10, Article 312.
https://doi.org/10.3390/antiox10020312
[3] Grau-Bové, X., Ruiz-Trillo, I. and Rodriguez-Pascual, F. (2015) Origin and Evolution of Lysyl Oxidases. Scientific Reports, 5, Article No. 10568.
https://doi.org/10.1038/srep10568
[4] Rosell-García, T., Rivas-Muñoz, S., Colige, A. and Rodriguez-Pascual, F. (2022) Cleavage of LOXL1 by BMP1 and ADAMTS14 Proteases Suggests a Role for Proteolytic Processing in the Regulation of LOXL1 Function. International Journal of Molecular Sciences, 23, Article 3285.
https://doi.org/10.3390/ijms23063285
[5] Attaran, S., Skoko, J.J., Hopkins, B.L., Wright, M.K., Wood, L.E., Asan, A., et al. (2021) Peroxiredoxin-1 Tyr194 Phosphorylation Regulates LOX-Dependent Extracellular Matrix Remodelling in Breast Cancer. British Journal of Cancer, 125, 1146-1157.
https://doi.org/10.1038/s41416-021-01510-x
[6] Peng, T., Deng, X., Tian, F., Li, Z., Jiang, P., Zhao, X., et al. (2019) The Interaction of LOXL2 with GATA6 Induces VEGFA Expression and Angiogenesis in Cholangiocarcinoma. International Journal of Oncology, 55, 657-670.
https://doi.org/10.3892/ijo.2019.4837
[7] Martínez-González, J., Varona, S., Cañes, L., Galán, M., Briones, A., Cachofeiro, V., et al. (2019) Emerging Roles of Lysyl Oxidases in the Cardiovascular System: New Concepts and Therapeutic Challenges. Biomolecules, 9, Article 610.
https://doi.org/10.3390/biom9100610
[8] Zhang, X., Wang, Q., Wu, J., Wang, J., Shi, Y. and Liu, M. (2018) Crystal Structure of Human Lysyl Oxidase-Like 2 (hLOXL2) in a Precursor State. Proceedings of the National Academy of Sciencesof the United States of America, 115, 3828-3833.
https://doi.org/10.1073/pnas.1720859115
[9] Vallet, S.D., Guéroult, M., Belloy, N., Dauchez, M. and Ricard-Blum, S. (2019) A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS Omega, 4, 8495-8505.
https://doi.org/10.1021/acsomega.9b00317
[10] Löser, R., Kuchar, M., Wodtke, R., Neuber, C., Belter, B., Kopka, K., et al. (2023) Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem, 18, e202300331.
https://doi.org/10.1002/cmdc.202300331
[11] Rowbottom, M.W., Bain, G., Calderon, I., Lasof, T., Lonergan, D., Lai, A., et al. (2017) Identification of 4-(Aminomethyl)-6-(Trifluoromethyl)-2-(Phenoxy)Pyridine Derivatives as Potent, Selective, and Orally Efficacious Inhibitors of the Copper-Dependent Amine Oxidase, Lysyl Oxidase-Like 2 (LOXL2). Journal of Medicinal Chemistry, 60, 4403-4423.
https://doi.org/10.1021/acs.jmedchem.7b00345
[12] Setargew, Y.F.I., Wyllie, K., Grant, R.D., Chitty, J.L. and Cox, T.R. (2021) Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers, 13, Article 491.
https://doi.org/10.3390/cancers13030491
[13] Hu, L., Wang, J., Wang, Y., Wu, L., Wu, C., Mao, B., et al. (2020) LOXL1 Modulates the Malignant Progression of Colorectal Cancer by Inhibiting the Transcriptional Activity of YAP. Cell Communication and Signaling, 18, Article No. 148.
https://doi.org/10.1186/s12964-020-00639-1
[14] Yuan, R., Li, Y., Yang, B., Jin, Z., Xu, J., Shao, Z., et al. (2021) LOXL1 Exerts Oncogenesis and Stimulates Angiogenesis through the Loxl1-Fbln5/αvβ3 Integrin/Fak-MAPK Axis in ICC. Molecular Therapy-Nucleic Acids, 23, 797-810.
https://doi.org/10.1016/j.omtn.2021.01.001
[15] Liburkin-Dan, T., Toledano, S. and Neufeld, G. (2022) Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. International Journal of Molecular Sciences, 23, Article 6249.
https://doi.org/10.3390/ijms23116249
[16] Kasashima, H., Yashiro, M., Okuno, T., Miki, Y., Kitayama, K., Masuda, G., et al. (2018) Significance of the Lysyl Oxidase Members Lysyl Oxidase Like 1, 3, and 4 in Gastric Cancer. Digestion, 98, 238-248.
https://doi.org/10.1159/000489558
[17] Liu, C., Guo, T., Sakai, A., Ren, S., Fukusumi, T., Ando, M., et al. (2019) A Novel Splice Variant of LOXL2 Promotes Progression of Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma. Cancer, 126, 737-748.
https://doi.org/10.1002/cncr.32610
[18] Peinado, H., del Carmen Iglesias-de la Cruz, M., Olmeda, D., Csiszar, K., Fong, K.S.K., Vega, S., et al. (2005) A Molecular Role for Lysyl Oxidase-Like 2 Enzyme in Snail Regulation and Tumor Progression. The EMBO Journal, 24, 3446-3458.
https://doi.org/10.1038/sj.emboj.7600781
[19] Li, R., Zhao, W., Fang, F., Zhuang, C., Zhang, X., Yang, X., et al. (2015) Lysyl Oxidase-Like 4 (LOXL4) Promotes Proliferation and Metastasis of Gastric Cancer via FAK/Src Pathway. Journal of Cancer Research and Clinical Oncology, 141, 269-281.
https://doi.org/10.1007/s00432-014-1823-z
[20] Li, R., Wang, Y., Zhang, X., Feng, M., Ma, J., Li, J., et al. (2019) Exosome-Mediated Secretion of LOXL4 Promotes Hepatocellular Carcinoma Cell Invasion and Metastasis. Molecular Cancer, 18, Article No. 18.
https://doi.org/10.1186/s12943-019-0948-8
[21] Shao, J., Lu, J., Zhu, W., Yu, H., Jing, X., Wang, Y., et al. (2019) Derepression of LOXL4 Inhibits Liver Cancer Growth by Reactivating Compromised P53. Cell Death & Differentiation, 26, 2237-2252.
https://doi.org/10.1038/s41418-019-0293-x
[22] Zhang, Y., Jiang, W., Yang, J., Huang, J., Kang, G., Hu, H., et al. (2019) Downregulation of Lysyl Oxidase‐Like 4 LOXL4 by miR-135a-5p Promotes Lung Cancer Progression in Vitro and in Vivo. Journal of Cellular Physiology, 234, 18679-18687.
https://doi.org/10.1002/jcp.28508
[23] Chen, L., Li, S. and Li, W. (2018) LOX/LOXL in Pulmonary Fibrosis: Potential Therapeutic Targets. Journal of Drug Targeting, 27, 790-796.
https://doi.org/10.1080/1061186x.2018.1550649
[24] Bahmani, M., Ziamajidi, N., Hashemnia, M. and Abbasalipourkabir, R. (2020) Human Umbilical Cord-Derived Mesenchymal Stem Cells Conditioned Medium Ameliorates CCL4-Induced Liver Fibrosis through Regulation of Expression and Activity of Liver Lysyl Oxidase. Toxin Reviews, 40, 971-984.
https://doi.org/10.1080/15569543.2020.1813779
[25] Zhang, X., Li, X., Zhou, W., Liu, X., Huang, J., Zhang, Y., et al. (2020) Serum Lysyl Oxidase Is a Potential Diagnostic Biomarker for Kidney Fibrosis. American Journal of Nephrology, 51, 907-918.
https://doi.org/10.1159/000509381
[26] Saifi, M.A. and Godugu, C. (2020) Inhibition of Lysyl Oxidase Ameliorates Renal Injury by Inhibiting CD44-Mediated Pericyte Detachment and Loss of Peritubular Capillaries. Life Sciences, 243, Article 117294.
https://doi.org/10.1016/j.lfs.2020.117294
[27] El Hajj, E.C., El Hajj, M.C., Ninh, V.K., et al. (2017) Cardioprotective Effects of Lysyl Oxidase Inhibition Against Adverse Extracellular Matrix Remodeling and Cardiomyocyte Apoptosis. The FASEB Journal, 31, 881.5.
https://doi.org/10.1096/fasebj.31.1_supplement.881.5
[28] Zhao, R., Wang, J., Qin, L., Zhang, X. and Mei, Y. (2020) Stevioside Improved Hyperglycemia-Induced Cardiac Dysfunction by Attenuating the Development of Fibrosis and Promoting the Degradation of Established Fibrosis. Journal of Functional Foods, 68, Article 103895.
https://doi.org/10.1016/j.jff.2020.103895
[29] Huang, M., Cai, G., Baugh, L.M., Liu, Z., Smith, A., Watson, M., et al. (2020) Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis through Lysyl Oxidase-Like 4: New Evidence from Three-Dimensional Skin-Like Tissues. Arthritis & Rheumatology, 72, 791-801.
https://doi.org/10.1002/art.41163
[30] Chanoki, M., Ishii, M., Kobayashi, H., Fushida, H., Yashiro, N., Hamada, T., et al. (2006) Increased Expression of Lysyl Oxidase in Skin with Scleroderma. British Journal of Dermatology, 133, 710-715.
https://doi.org/10.1111/j.1365-2133.1995.tb02743.x
[31] Hajdú, I., Kardos, J., Major, B., Fabó, G., Lőrincz, Z., Cseh, S., et al. (2018) Inhibition of the LOX Enzyme Family Members with Old and New Ligands. Selectivity Analysis Revisited. Bioorganic & Medicinal Chemistry Letters, 28, 3113-3118.
https://doi.org/10.1016/j.bmcl.2018.07.001
[32] Tang, S.S., Trackman, P.C. and Kagan, H.M. (1983) Reaction of Aortic Lysyl Oxidase with Beta-Aminopropionitrile. Journal of Biological Chemistry, 258, 4331-4338.
https://doi.org/10.1016/s0021-9258(18)32627-9
[33] Yang, X., Li, S., Li, W., Chen, J., Xiao, X., Wang, Y., et al. (2012) Inactivation of Lysyl Oxidase by β-Aminopropionitrile Inhibits Hypoxia-Induced Invasion and Migration of Cervical Cancer Cells. Oncology Reports, 29, 541-548.
https://doi.org/10.3892/or.2012.2146
[34] Zhao, L., Niu, H., Liu, Y., Wang, L., Zhang, N., Zhang, G., et al. (2019) LOX Inhibition Downregulates MMP-2 and MMP-9 in Gastric Cancer Tissues and Cells. Journal of Cancer, 10, 6481-6490.
https://doi.org/10.7150/jca.33223
[35] Keiser, H.R. and Sjoerdsma, A. (1967) Studies on Beta-Aminopropionitrile in Patients with Scleroderma. Clinical Pharmacology & Therapeutics, 8, 593-602.
https://doi.org/10.1002/cpt196784593
[36] Hecht, J.R., Benson, A.B., Vyushkov, D., Yang, Y., Bendell, J. and Verma, U. (2017) A Phase II, Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab in Combination with FOLFIRI for the Second-Line Treatment of Metastatic Kras Mutant Colorectal Adenocarcinoma. The Oncologist, 22, 243-E23.
https://doi.org/10.1634/theoncologist.2016-0479
[37] Hutchinson, J.H., Rowbottom, M.W., Lonergan, D., Darlington, J., Prodanovich, P., King, C.D., et al. (2017) Small Molecule Lysyl Oxidase-Like 2 (LOXL2) Inhibitors: The Identification of an Inhibitor Selective for LOXL2 over LOX. ACS Medicinal Chemistry Letters, 8, 423-427.
https://doi.org/10.1021/acsmedchemlett.7b00014
[38] Rowbottom, M.W., Hutchinson, J.H. and Lonergan, D. (2016) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2016144702.
[39] Rowbottom, M.W., Hutchinson, J.H. and Calderon, I. (2016) Fluorinated Lysyl Oxidase-Like 2 Nhibitors and Uses Thereof. WO Patent No. 2016144703.
[40] Rowbottom, M.W. and Hutchinson, J.H. (2017) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017003862.
[41] Chang, J., Lucas, M.C., Leonte, L.E., Garcia-Montolio, M., Singh, L.B., Findlay, A.D., et al. (2017) Pre-Clinical Evaluation of Small Molecule LOXL2 Inhibitors in Breast Cancer. Oncotarget, 8, 26066-26078.
https://doi.org/10.18632/oncotarget.15257
[42] Schilter, H., Findlay, A.D., Perryman, L., Yow, T.T., Moses, J., Zahoor, A., et al. (2018) The Lysyl Oxidase Like 2/3 Enzymatic Inhibitor, PXS‐5153A, Reduces Crosslinks and Ameliorates Fibrosis. Journal of Cellular and Molecular Medicine, 23, 1759-1770.
https://doi.org/10.1111/jcmm.14074
[43] Findlay, A.D., Foot, J.S., Buson, A., Deodhar, M., Jarnicki, A.G., Hansbro, P.M., et al. (2019) Identification and Optimization of Mechanism-Based Fluoroallylamine Inhibitors of Lysyl Oxidase-Like 2/3. Journal of Medicinal Chemistry, 62, 9874-9889.
https://doi.org/10.1021/acs.jmedchem.9b01283
[44] Findlay, A., Turner, C., Schilter, H., Deodhar, M., Zhou, W., Perryman, L., et al. (2021) An Activity-Based Bioprobe Differentiates a Novel Small Molecule Inhibitor from a LOXL2 Antibody and Provides Renewed Promise for Anti‐Fibrotic Therapeutic Strategies. Clinical and Translational Medicine, 11, e572.
https://doi.org/10.1002/ctm2.572
[45] Findlay, A., Turner, C., Deodhar, M., et al. (2018) Haloallylamine Pyrazole Derivative Inhibitors of Lysyl Oxidases and Uses Thereof. WO Patent No. 2018157190.
[46] Kim, E.K., Lim, C.H., Lee, K.Y., et al. (2023) Bicyclic Fused Ring Derivative or Salt Thereof and Pharmaceutical Composition Comprising Same. WO Patent No. 2023055124.
[47] Chitty, J.L., Yam, M., Perryman, L., Parker, A.L., Skhinas, J.N., Setargew, Y.F.I., et al. (2023) A First-in-Class Pan-Lysyl Oxidase Inhibitor Impairs Stromal Remodeling and Enhances Gemcitabine Response and Survival in Pancreatic Cancer. Nature Cancer, 4, 1326-1344.
https://doi.org/10.1038/s43018-023-00614-y
[48] Chaudhari, N., Findlay, A.D., Stevenson, A.W., Clemons, T.D., Yao, Y., Joshi, A., et al. (2022) Topical Application of an Irreversible Small Molecule Inhibitor of Lysyl Oxidases Ameliorates Skin Scarring and Fibrosis. Nature Communications, 13, Article No. 5555.
https://doi.org/10.1038/s41467-022-33148-5
[49] Findlay, A.D., Jarolimek, W., Deodhar, M., et al. (2024) Novel Selective Inhibitors of Lysyl Oxidases. WO Patent No. 2024044813.
[50] Leung, L., Niculescu-Duvaz, D., Smithen, D., Lopes, F., Callens, C., McLeary, R., et al. (2019) Anti-Metastatic Inhibitors of Lysyl Oxidase (LOX): Design and Structure-Activity Relationships. Journal of Medicinal Chemistry, 62, 5863-5884.
https://doi.org/10.1021/acs.jmedchem.9b00335
[51] Smithen, D.A., Leung, L.M.H., Challinor, M., Lawrence, R., Tang, H., Niculescu-Duvaz, D., et al. (2019) 2-Aminomethylene-5-Sulfonylthiazole Inhibitors of Lysyl Oxidase (LOX) and LOXL2 Show Significant Efficacy in Delaying Tumor Growth. Journal of Medicinal Chemistry, 63, 2308-2324.
https://doi.org/10.1021/acs.jmedchem.9b01112
[52] Leung, L., Niculescu, D.D., Springer, C., et al. (2024) Sulfoximines as Inhibitors of Lysyl Oxidase. WO Patent No. 2024003557.
[53] Rowbottom, M.W., Hutchinson, J.H. and Lonergan, D. (2018) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2018048930.
[54] Rowbottom, M.W. and Hutchinson, J.H. (2017) Quinolinone Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017139274.
[55] Rowbottom, M.W. and Hutchinson, J.H. (2017) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017015221.
[56] Aljarah, M., Niculescu, D.D., Leung, L., et al. (2020) LOX Inhibitors. WO Patent No. 2020099886.
[57] Leung, L., North, K., Smithen, D., et al. (2019) Hexahydropyrrolo[3,4-c]Pyrrole Derivatives Useful as Lox Inhibitors. WO Patent No. 2019234418.
[58] Marais, R., Springer, C., Niculescu, D.D., et al. (2019) Lysyl Oxidase Inhibitors. WO Patent No. 2019073251.
[59] Clare, M., Kleppe, M., Li, X., et al. (2021) LOX Enzyme Inhibiting Methods and Compositions. WO Patent No. 2021216592.
[60] Clare, M., Du, J., Li, X., et al. (2023) LOX Enzyme Inhibiting Methods and Compositions. WO Patent No. 2023076567.
[61] Sahin, O., Mcinnes, C., Saatci, O., et al. (2022) Bithiazol Deratives as Inhibitors of Lysyl Oxidases. WO Patent No. 2022240476.
[62] Burchardt, E.R. (2006) Novel Lysyl Oxidase Inhibitors. DE Patent No. 102004056226.
[63] Gotteland, J., Gaillard, P. and Chvatchko, Y. (2003) Benzazole Derivatives for the Treatment of Scleroderma. WO Patent No. 2003047570.
[64] Wei, Y., Kim, T.J., Peng, D.H., Duan, D., Gibbons, D.L., Yamauchi, M., et al. (2017) Fibroblast-Specific Inhibition of TGF-β1 Signaling Attenuates Lung and Tumor Fibrosis. Journal of Clinical Investigation, 127, 3675-3688.
https://doi.org/10.1172/jci94624
[65] Chapman, H.A., Wei, Y., Montas, G., Leong, D., Golden, J.A., Trinh, B.N., et al. (2020) Reversal of TGFβ1-Driven Profibrotic State in Patients with Pulmonary Fibrosis. New England Journal of Medicine, 382, 1068-1070.
https://doi.org/10.1056/nejmc1915189
[66] Brücher, B.L.D.M. and Jamall, I.S. (2023) Epistemology of the Origin of Cancer II: Fibroblasts Are the First Cells to Undergo Neoplastic Transformation. Cellular Physiology and Biochemistry, 57, 512-537.
https://doi.org/10.33594/000000672
[67] Ahmed, R.S.I., Liu, G., Renzetti, A., Farshi, P., Yang, H., Soave, C., et al. (2016) Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines. Journal of Cellular Biochemistry, 117, 2357-2369.
https://doi.org/10.1002/jcb.25533