[1]
|
Li, T., Wu, C., Gao, L., Qin, F., Wei, Q. and Yuan, J. (2018) Lysyl Oxidase Family Members in Urological Tumorigenesis and Fibrosis. Oncotarget, 9, 20156-20164. https://doi.org/10.18632/oncotarget.24948
|
[2]
|
Ferreira, S., Saraiva, N., Rijo, P. and Fernandes, A.S. (2021) LOXL2 Inhibitors and Breast Cancer Progression. Antioxidants, 10, Article 312. https://doi.org/10.3390/antiox10020312
|
[3]
|
Grau-Bové, X., Ruiz-Trillo, I. and Rodriguez-Pascual, F. (2015) Origin and Evolution of Lysyl Oxidases. Scientific Reports, 5, Article No. 10568. https://doi.org/10.1038/srep10568
|
[4]
|
Rosell-García, T., Rivas-Muñoz, S., Colige, A. and Rodriguez-Pascual, F. (2022) Cleavage of LOXL1 by BMP1 and ADAMTS14 Proteases Suggests a Role for Proteolytic Processing in the Regulation of LOXL1 Function. International Journal of Molecular Sciences, 23, Article 3285. https://doi.org/10.3390/ijms23063285
|
[5]
|
Attaran, S., Skoko, J.J., Hopkins, B.L., Wright, M.K., Wood, L.E., Asan, A., et al. (2021) Peroxiredoxin-1 Tyr194 Phosphorylation Regulates LOX-Dependent Extracellular Matrix Remodelling in Breast Cancer. British Journal of Cancer, 125, 1146-1157. https://doi.org/10.1038/s41416-021-01510-x
|
[6]
|
Peng, T., Deng, X., Tian, F., Li, Z., Jiang, P., Zhao, X., et al. (2019) The Interaction of LOXL2 with GATA6 Induces VEGFA Expression and Angiogenesis in Cholangiocarcinoma. International Journal of Oncology, 55, 657-670. https://doi.org/10.3892/ijo.2019.4837
|
[7]
|
Martínez-González, J., Varona, S., Cañes, L., Galán, M., Briones, A., Cachofeiro, V., et al. (2019) Emerging Roles of Lysyl Oxidases in the Cardiovascular System: New Concepts and Therapeutic Challenges. Biomolecules, 9, Article 610. https://doi.org/10.3390/biom9100610
|
[8]
|
Zhang, X., Wang, Q., Wu, J., Wang, J., Shi, Y. and Liu, M. (2018) Crystal Structure of Human Lysyl Oxidase-Like 2 (hLOXL2) in a Precursor State. Proceedings of the National Academy of Sciencesof the United States of America, 115, 3828-3833. https://doi.org/10.1073/pnas.1720859115
|
[9]
|
Vallet, S.D., Guéroult, M., Belloy, N., Dauchez, M. and Ricard-Blum, S. (2019) A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS Omega, 4, 8495-8505. https://doi.org/10.1021/acsomega.9b00317
|
[10]
|
Löser, R., Kuchar, M., Wodtke, R., Neuber, C., Belter, B., Kopka, K., et al. (2023) Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem, 18, e202300331. https://doi.org/10.1002/cmdc.202300331
|
[11]
|
Rowbottom, M.W., Bain, G., Calderon, I., Lasof, T., Lonergan, D., Lai, A., et al. (2017) Identification of 4-(Aminomethyl)-6-(Trifluoromethyl)-2-(Phenoxy)Pyridine Derivatives as Potent, Selective, and Orally Efficacious Inhibitors of the Copper-Dependent Amine Oxidase, Lysyl Oxidase-Like 2 (LOXL2). Journal of Medicinal Chemistry, 60, 4403-4423. https://doi.org/10.1021/acs.jmedchem.7b00345
|
[12]
|
Setargew, Y.F.I., Wyllie, K., Grant, R.D., Chitty, J.L. and Cox, T.R. (2021) Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers, 13, Article 491. https://doi.org/10.3390/cancers13030491
|
[13]
|
Hu, L., Wang, J., Wang, Y., Wu, L., Wu, C., Mao, B., et al. (2020) LOXL1 Modulates the Malignant Progression of Colorectal Cancer by Inhibiting the Transcriptional Activity of YAP. Cell Communication and Signaling, 18, Article No. 148. https://doi.org/10.1186/s12964-020-00639-1
|
[14]
|
Yuan, R., Li, Y., Yang, B., Jin, Z., Xu, J., Shao, Z., et al. (2021) LOXL1 Exerts Oncogenesis and Stimulates Angiogenesis through the Loxl1-Fbln5/αvβ3 Integrin/Fak-MAPK Axis in ICC. Molecular Therapy-Nucleic Acids, 23, 797-810. https://doi.org/10.1016/j.omtn.2021.01.001
|
[15]
|
Liburkin-Dan, T., Toledano, S. and Neufeld, G. (2022) Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. International Journal of Molecular Sciences, 23, Article 6249. https://doi.org/10.3390/ijms23116249
|
[16]
|
Kasashima, H., Yashiro, M., Okuno, T., Miki, Y., Kitayama, K., Masuda, G., et al. (2018) Significance of the Lysyl Oxidase Members Lysyl Oxidase Like 1, 3, and 4 in Gastric Cancer. Digestion, 98, 238-248. https://doi.org/10.1159/000489558
|
[17]
|
Liu, C., Guo, T., Sakai, A., Ren, S., Fukusumi, T., Ando, M., et al. (2019) A Novel Splice Variant of LOXL2 Promotes Progression of Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma. Cancer, 126, 737-748. https://doi.org/10.1002/cncr.32610
|
[18]
|
Peinado, H., del Carmen Iglesias-de la Cruz, M., Olmeda, D., Csiszar, K., Fong, K.S.K., Vega, S., et al. (2005) A Molecular Role for Lysyl Oxidase-Like 2 Enzyme in Snail Regulation and Tumor Progression. The EMBO Journal, 24, 3446-3458. https://doi.org/10.1038/sj.emboj.7600781
|
[19]
|
Li, R., Zhao, W., Fang, F., Zhuang, C., Zhang, X., Yang, X., et al. (2015) Lysyl Oxidase-Like 4 (LOXL4) Promotes Proliferation and Metastasis of Gastric Cancer via FAK/Src Pathway. Journal of Cancer Research and Clinical Oncology, 141, 269-281. https://doi.org/10.1007/s00432-014-1823-z
|
[20]
|
Li, R., Wang, Y., Zhang, X., Feng, M., Ma, J., Li, J., et al. (2019) Exosome-Mediated Secretion of LOXL4 Promotes Hepatocellular Carcinoma Cell Invasion and Metastasis. Molecular Cancer, 18, Article No. 18. https://doi.org/10.1186/s12943-019-0948-8
|
[21]
|
Shao, J., Lu, J., Zhu, W., Yu, H., Jing, X., Wang, Y., et al. (2019) Derepression of LOXL4 Inhibits Liver Cancer Growth by Reactivating Compromised P53. Cell Death & Differentiation, 26, 2237-2252. https://doi.org/10.1038/s41418-019-0293-x
|
[22]
|
Zhang, Y., Jiang, W., Yang, J., Huang, J., Kang, G., Hu, H., et al. (2019) Downregulation of Lysyl Oxidase‐Like 4 LOXL4 by miR-135a-5p Promotes Lung Cancer Progression in Vitro and in Vivo. Journal of Cellular Physiology, 234, 18679-18687. https://doi.org/10.1002/jcp.28508
|
[23]
|
Chen, L., Li, S. and Li, W. (2018) LOX/LOXL in Pulmonary Fibrosis: Potential Therapeutic Targets. Journal of Drug Targeting, 27, 790-796. https://doi.org/10.1080/1061186x.2018.1550649
|
[24]
|
Bahmani, M., Ziamajidi, N., Hashemnia, M. and Abbasalipourkabir, R. (2020) Human Umbilical Cord-Derived Mesenchymal Stem Cells Conditioned Medium Ameliorates CCL4-Induced Liver Fibrosis through Regulation of Expression and Activity of Liver Lysyl Oxidase. Toxin Reviews, 40, 971-984. https://doi.org/10.1080/15569543.2020.1813779
|
[25]
|
Zhang, X., Li, X., Zhou, W., Liu, X., Huang, J., Zhang, Y., et al. (2020) Serum Lysyl Oxidase Is a Potential Diagnostic Biomarker for Kidney Fibrosis. American Journal of Nephrology, 51, 907-918. https://doi.org/10.1159/000509381
|
[26]
|
Saifi, M.A. and Godugu, C. (2020) Inhibition of Lysyl Oxidase Ameliorates Renal Injury by Inhibiting CD44-Mediated Pericyte Detachment and Loss of Peritubular Capillaries. Life Sciences, 243, Article 117294. https://doi.org/10.1016/j.lfs.2020.117294
|
[27]
|
El Hajj, E.C., El Hajj, M.C., Ninh, V.K., et al. (2017) Cardioprotective Effects of Lysyl Oxidase Inhibition Against Adverse Extracellular Matrix Remodeling and Cardiomyocyte Apoptosis. The FASEB Journal, 31, 881.5. https://doi.org/10.1096/fasebj.31.1_supplement.881.5
|
[28]
|
Zhao, R., Wang, J., Qin, L., Zhang, X. and Mei, Y. (2020) Stevioside Improved Hyperglycemia-Induced Cardiac Dysfunction by Attenuating the Development of Fibrosis and Promoting the Degradation of Established Fibrosis. Journal of Functional Foods, 68, Article 103895. https://doi.org/10.1016/j.jff.2020.103895
|
[29]
|
Huang, M., Cai, G., Baugh, L.M., Liu, Z., Smith, A., Watson, M., et al. (2020) Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis through Lysyl Oxidase-Like 4: New Evidence from Three-Dimensional Skin-Like Tissues. Arthritis & Rheumatology, 72, 791-801. https://doi.org/10.1002/art.41163
|
[30]
|
Chanoki, M., Ishii, M., Kobayashi, H., Fushida, H., Yashiro, N., Hamada, T., et al. (2006) Increased Expression of Lysyl Oxidase in Skin with Scleroderma. British Journal of Dermatology, 133, 710-715. https://doi.org/10.1111/j.1365-2133.1995.tb02743.x
|
[31]
|
Hajdú, I., Kardos, J., Major, B., Fabó, G., Lőrincz, Z., Cseh, S., et al. (2018) Inhibition of the LOX Enzyme Family Members with Old and New Ligands. Selectivity Analysis Revisited. Bioorganic & Medicinal Chemistry Letters, 28, 3113-3118. https://doi.org/10.1016/j.bmcl.2018.07.001
|
[32]
|
Tang, S.S., Trackman, P.C. and Kagan, H.M. (1983) Reaction of Aortic Lysyl Oxidase with Beta-Aminopropionitrile. Journal of Biological Chemistry, 258, 4331-4338. https://doi.org/10.1016/s0021-9258(18)32627-9
|
[33]
|
Yang, X., Li, S., Li, W., Chen, J., Xiao, X., Wang, Y., et al. (2012) Inactivation of Lysyl Oxidase by β-Aminopropionitrile Inhibits Hypoxia-Induced Invasion and Migration of Cervical Cancer Cells. Oncology Reports, 29, 541-548. https://doi.org/10.3892/or.2012.2146
|
[34]
|
Zhao, L., Niu, H., Liu, Y., Wang, L., Zhang, N., Zhang, G., et al. (2019) LOX Inhibition Downregulates MMP-2 and MMP-9 in Gastric Cancer Tissues and Cells. Journal of Cancer, 10, 6481-6490. https://doi.org/10.7150/jca.33223
|
[35]
|
Keiser, H.R. and Sjoerdsma, A. (1967) Studies on Beta-Aminopropionitrile in Patients with Scleroderma. Clinical Pharmacology & Therapeutics, 8, 593-602. https://doi.org/10.1002/cpt196784593
|
[36]
|
Hecht, J.R., Benson, A.B., Vyushkov, D., Yang, Y., Bendell, J. and Verma, U. (2017) A Phase II, Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab in Combination with FOLFIRI for the Second-Line Treatment of Metastatic Kras Mutant Colorectal Adenocarcinoma. The Oncologist, 22, 243-E23. https://doi.org/10.1634/theoncologist.2016-0479
|
[37]
|
Hutchinson, J.H., Rowbottom, M.W., Lonergan, D., Darlington, J., Prodanovich, P., King, C.D., et al. (2017) Small Molecule Lysyl Oxidase-Like 2 (LOXL2) Inhibitors: The Identification of an Inhibitor Selective for LOXL2 over LOX. ACS Medicinal Chemistry Letters, 8, 423-427. https://doi.org/10.1021/acsmedchemlett.7b00014
|
[38]
|
Rowbottom, M.W., Hutchinson, J.H. and Lonergan, D. (2016) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2016144702.
|
[39]
|
Rowbottom, M.W., Hutchinson, J.H. and Calderon, I. (2016) Fluorinated Lysyl Oxidase-Like 2 Nhibitors and Uses Thereof. WO Patent No. 2016144703.
|
[40]
|
Rowbottom, M.W. and Hutchinson, J.H. (2017) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017003862.
|
[41]
|
Chang, J., Lucas, M.C., Leonte, L.E., Garcia-Montolio, M., Singh, L.B., Findlay, A.D., et al. (2017) Pre-Clinical Evaluation of Small Molecule LOXL2 Inhibitors in Breast Cancer. Oncotarget, 8, 26066-26078. https://doi.org/10.18632/oncotarget.15257
|
[42]
|
Schilter, H., Findlay, A.D., Perryman, L., Yow, T.T., Moses, J., Zahoor, A., et al. (2018) The Lysyl Oxidase Like 2/3 Enzymatic Inhibitor, PXS‐5153A, Reduces Crosslinks and Ameliorates Fibrosis. Journal of Cellular and Molecular Medicine, 23, 1759-1770. https://doi.org/10.1111/jcmm.14074
|
[43]
|
Findlay, A.D., Foot, J.S., Buson, A., Deodhar, M., Jarnicki, A.G., Hansbro, P.M., et al. (2019) Identification and Optimization of Mechanism-Based Fluoroallylamine Inhibitors of Lysyl Oxidase-Like 2/3. Journal of Medicinal Chemistry, 62, 9874-9889. https://doi.org/10.1021/acs.jmedchem.9b01283
|
[44]
|
Findlay, A., Turner, C., Schilter, H., Deodhar, M., Zhou, W., Perryman, L., et al. (2021) An Activity-Based Bioprobe Differentiates a Novel Small Molecule Inhibitor from a LOXL2 Antibody and Provides Renewed Promise for Anti‐Fibrotic Therapeutic Strategies. Clinical and Translational Medicine, 11, e572. https://doi.org/10.1002/ctm2.572
|
[45]
|
Findlay, A., Turner, C., Deodhar, M., et al. (2018) Haloallylamine Pyrazole Derivative Inhibitors of Lysyl Oxidases and Uses Thereof. WO Patent No. 2018157190.
|
[46]
|
Kim, E.K., Lim, C.H., Lee, K.Y., et al. (2023) Bicyclic Fused Ring Derivative or Salt Thereof and Pharmaceutical Composition Comprising Same. WO Patent No. 2023055124.
|
[47]
|
Chitty, J.L., Yam, M., Perryman, L., Parker, A.L., Skhinas, J.N., Setargew, Y.F.I., et al. (2023) A First-in-Class Pan-Lysyl Oxidase Inhibitor Impairs Stromal Remodeling and Enhances Gemcitabine Response and Survival in Pancreatic Cancer. Nature Cancer, 4, 1326-1344. https://doi.org/10.1038/s43018-023-00614-y
|
[48]
|
Chaudhari, N., Findlay, A.D., Stevenson, A.W., Clemons, T.D., Yao, Y., Joshi, A., et al. (2022) Topical Application of an Irreversible Small Molecule Inhibitor of Lysyl Oxidases Ameliorates Skin Scarring and Fibrosis. Nature Communications, 13, Article No. 5555. https://doi.org/10.1038/s41467-022-33148-5
|
[49]
|
Findlay, A.D., Jarolimek, W., Deodhar, M., et al. (2024) Novel Selective Inhibitors of Lysyl Oxidases. WO Patent No. 2024044813.
|
[50]
|
Leung, L., Niculescu-Duvaz, D., Smithen, D., Lopes, F., Callens, C., McLeary, R., et al. (2019) Anti-Metastatic Inhibitors of Lysyl Oxidase (LOX): Design and Structure-Activity Relationships. Journal of Medicinal Chemistry, 62, 5863-5884. https://doi.org/10.1021/acs.jmedchem.9b00335
|
[51]
|
Smithen, D.A., Leung, L.M.H., Challinor, M., Lawrence, R., Tang, H., Niculescu-Duvaz, D., et al. (2019) 2-Aminomethylene-5-Sulfonylthiazole Inhibitors of Lysyl Oxidase (LOX) and LOXL2 Show Significant Efficacy in Delaying Tumor Growth. Journal of Medicinal Chemistry, 63, 2308-2324. https://doi.org/10.1021/acs.jmedchem.9b01112
|
[52]
|
Leung, L., Niculescu, D.D., Springer, C., et al. (2024) Sulfoximines as Inhibitors of Lysyl Oxidase. WO Patent No. 2024003557.
|
[53]
|
Rowbottom, M.W., Hutchinson, J.H. and Lonergan, D. (2018) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2018048930.
|
[54]
|
Rowbottom, M.W. and Hutchinson, J.H. (2017) Quinolinone Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017139274.
|
[55]
|
Rowbottom, M.W. and Hutchinson, J.H. (2017) Lysyl Oxidase-Like 2 Inhibitors and Uses Thereof. WO Patent No. 2017015221.
|
[56]
|
Aljarah, M., Niculescu, D.D., Leung, L., et al. (2020) LOX Inhibitors. WO Patent No. 2020099886.
|
[57]
|
Leung, L., North, K., Smithen, D., et al. (2019) Hexahydropyrrolo[3,4-c]Pyrrole Derivatives Useful as Lox Inhibitors. WO Patent No. 2019234418.
|
[58]
|
Marais, R., Springer, C., Niculescu, D.D., et al. (2019) Lysyl Oxidase Inhibitors. WO Patent No. 2019073251.
|
[59]
|
Clare, M., Kleppe, M., Li, X., et al. (2021) LOX Enzyme Inhibiting Methods and Compositions. WO Patent No. 2021216592.
|
[60]
|
Clare, M., Du, J., Li, X., et al. (2023) LOX Enzyme Inhibiting Methods and Compositions. WO Patent No. 2023076567.
|
[61]
|
Sahin, O., Mcinnes, C., Saatci, O., et al. (2022) Bithiazol Deratives as Inhibitors of Lysyl Oxidases. WO Patent No. 2022240476.
|
[62]
|
Burchardt, E.R. (2006) Novel Lysyl Oxidase Inhibitors. DE Patent No. 102004056226.
|
[63]
|
Gotteland, J., Gaillard, P. and Chvatchko, Y. (2003) Benzazole Derivatives for the Treatment of Scleroderma. WO Patent No. 2003047570.
|
[64]
|
Wei, Y., Kim, T.J., Peng, D.H., Duan, D., Gibbons, D.L., Yamauchi, M., et al. (2017) Fibroblast-Specific Inhibition of TGF-β1 Signaling Attenuates Lung and Tumor Fibrosis. Journal of Clinical Investigation, 127, 3675-3688. https://doi.org/10.1172/jci94624
|
[65]
|
Chapman, H.A., Wei, Y., Montas, G., Leong, D., Golden, J.A., Trinh, B.N., et al. (2020) Reversal of TGFβ1-Driven Profibrotic State in Patients with Pulmonary Fibrosis. New England Journal of Medicine, 382, 1068-1070. https://doi.org/10.1056/nejmc1915189
|
[66]
|
Brücher, B.L.D.M. and Jamall, I.S. (2023) Epistemology of the Origin of Cancer II: Fibroblasts Are the First Cells to Undergo Neoplastic Transformation. Cellular Physiology and Biochemistry, 57, 512-537. https://doi.org/10.33594/000000672
|
[67]
|
Ahmed, R.S.I., Liu, G., Renzetti, A., Farshi, P., Yang, H., Soave, C., et al. (2016) Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines. Journal of Cellular Biochemistry, 117, 2357-2369. https://doi.org/10.1002/jcb.25533
|