MUC2分泌及影响结直肠癌发生的机制研究进展
Research Progress on the Secretion of MUC2 and Its Influence on the Pathogenesis of Colorectal Cancer
摘要: MUC2是肠道杯状细胞分泌的主要黏蛋白,其与肠道上皮屏障共同构成肠道保护屏障,防止上皮细胞直接暴露于肠道微生物,并与肠道菌群共存。MUC2的表达水平与结肠炎和结肠癌的发生有关。不同类型的结肠癌中MUC2的表达水平不同,MUC2表达的差异影响结肠癌的发生和发展。MUC2的表达水平影响肠道菌群的稳态,肠道菌群的变化也能调节MUC2的分泌。唾液酰化、离子通道、外源性食物和药物均会影响MUC2的分泌。本文综述了MUC2在结肠癌中的表达、其对结肠癌转移和结肠炎的影响以及影响MUC2分泌的相关因素,为靶向MUC2的相关药物研发和临床应用提供理论基础。
Abstract: MUC2 is the main mucin secreted by goblet cells in the intestinal tract. It jointly constitutes the protective barrier of the intestinal epithelium with the intestinal epithelial barrier, preventing epithelial cells from being directly exposed to intestinal microorganisms and coexisting with the intestinal microbiota. The expression level of MUC2 is related to the occurrence of colitis and colon cancer. The expression level of MUC2 varies in different types of colon cancer, and the difference in MUC2 expression affects the occurrence and development of colon cancer. The expression level of MUC2 affects the homeostasis of the intestinal microbiota, and changes in the intestinal microbiota can also regulate the secretion of MUC2. Sialylation, ion channels, exogenous food and drugs all affect the secretion of MUC2. This article reviews the expression of MUC2 in colon cancer, its influence on colon cancer metastasis and colitis, as well as the related factors affecting the secretion of MUC2, providing a theoretical basis for the research and development and clinical application of drugs targeting MUC2.
文章引用:刘钰, 苏宇航, 王明月, 许洁斌, 刘胜兵, 王晓敏. MUC2分泌及影响结直肠癌发生的机制研究进展[J]. 生物医学, 2025, 15(5): 983-992. https://doi.org/10.12677/hjbm.2025.155105

1. 引言

肠上皮细胞与黏膜层的化学屏障以及免疫系统一起,作为抵御外部病原体入侵的第一道物理屏障发挥着重要作用,并与肠道菌群共生。紧密连接相关蛋白参与维持上皮屏障的完整性,黏蛋白(Mucin, MUC)参与构成肠上皮第一道防御屏障。MUC是一类高分子量的糖基化蛋白,覆盖在各种器官表面,保护上皮[1],可防止上皮细胞直接暴露于肠道微生物,并通过多种方式影响肠道的生物学功能,包括物理、化学保护、免疫调节和生长。MUC提供了一个避免缺氧、酸性等促进癌症进展的微环境,因此其表达水平影响肠道肿瘤的发生和发展[2],研究表明,MUC可作为癌症治疗潜在的生物标志物和靶点[3]。目前,已鉴定出约20种MUC,包括MUC1-2、MUC3A、MUC3B、MUC4、MUC7-9和MUC12等。根据其结构和功能,它们可分为膜结合/跨膜黏蛋白、分泌型(凝胶形成型)和可溶性(非凝胶形成型)黏蛋白[4]。MUC2是首次发现的凝胶形成MUC,作为杯状细胞分泌的结肠黏液主要结构成分,MUC2的表达异常影响结直肠癌(Colorectal cancer, CRC)的发生和发展。

2. MUC2的结构

MUC2由约5100个氨基酸组成,包含五个不同的区域,包括von Willebrand D1-D2-D’-D3结构域、一个小的PTS结构域、一个大的PTS结构域的N端部分、von Willebrand D4-C结构域以及一个由半胱氨酸结构域组成的C端部分。N端和C端分别包含约1300个和1000个氨基酸,它们通过二硫键折叠并稳定。在粗面内质网中,MUC单体通过二硫键形成二聚体,并被转移到高尔基体进行氧化糖基化,形成储存在杯状细胞中的分泌颗粒。PTS结构域的长中央区域在O-糖基化后变成一个刚性的、伸展的棒状结构域,称为MUC结构域。当完全糖基化时,MUC2单体的质量约为2.5 MDa,并通过C端二聚化和N端三聚化聚合形成巨大的网络聚合物[5]。除了MUC2之外,MUC颗粒中还充满了其他典型的黏液成分,如FCGBP、CLCA1、ZG16和AGR2。缺乏MUC2的小鼠杯状细胞数量相同,但缺乏典型的杯状细胞形态。当MUC2从杯状细胞释放时,会形成聚合物网络以构建黏液层骨架,MUC2的N端和C端的半胱氨酸残基高度糖基化,从而导致MUC2具有亲水性[4]

3. MUC2影响CRC发生

MUC2是肠黏膜屏障重要组成部分,作为高分子量上皮糖蛋白,MUC2参与了诸如上皮细胞保护、信号转导和组织稳态等生理过程。

3.1. MUC2表达减少可导致RCR发生

在哺乳动物中,MUC2及其他MUC基因位于人类染色体11的11p15.5区域,由位于染色体11p15位点的一组基因编码,与血管性血友病因子(von Willebrand Factor, vWF)同一来源。11号染色体上的这一特殊区域已被确认为癌症中非典型DNA甲基化的发生位点,MUC2表达下调与CRC早期癌变有关,这可能是由MUC2启动子的甲基化所致[5]。MUC2基因缺陷会导致小鼠自发性CRC,MUC2启动子的甲基化可能有助于CRC的发展。在IV期CRC中,MUC2基因表达水平高于其他阶段,MUC基因(包括MUC2、MUC5A和MUC5B)的表达变化与临床病理变量高度相关,这为CRC的诊断和预后提供了参考[6]

作为结肠黏液中主要糖蛋白,MUC2将肠道微生物群与宿主细胞分隔,其缺失会导致上皮屏障功能受损、肠道菌群失衡以及自发性结肠炎,进而可导致CRC发生,MUC2基因缺陷可导致结肠炎并伴有代谢异常[7]。小鼠上的研究显示,结肠黏液由两层具有相似结构的蛋白质组成,主要结构成分为MUC2。其内层附着于上皮细胞,无细菌;外层不直接附着于上皮细胞,在内源性蛋白酶作用下,覆盖大面积区域,并可被肠道细菌定植。MUC2可构建一个将细菌与结肠上皮细胞隔开的黏液屏障,内层黏液层不受细菌影响,为结肠上皮细胞提供了一层保护屏障,当MUC2表达下调导致保护性的黏液屏障减弱或丧失时,细菌接触上皮表面并激活炎症反应的微环境,可导致结肠炎症,而慢性炎症会导致细胞损伤和分子变化,将炎症性上皮细胞转化为低度不典型增生(Low-grade atypical hyperplasia, LGD)、高度不典型增生(High-grade atypical hyperplasia, HGD),最终发展为CRC。MUC2表达失调也是多种CRC亚型的组织病理学特征之一[8]。在381名CRC患者肿瘤组织MUC1、MUC2、MUCSAC和MUC6的表达分析中发现,MUC2表达在CRC过程中发生变化,MUC2表达缺失可作为不良预后的预测指标[9]

3.2. MUC2表达与MCA

在CRC中,约10%~20%为黏液性结直肠腺癌(Mucinous colorectal adenocarcinoma, MCA),这种类型的癌症更具侵袭性,且表现出非典型的转移模式,并且MCA在MUC2扩增方面与其他CRC存在基因背景差异。MCA可能试图利用其独特的基因背景来产生包含MUC2分泌的黏液环境,MUC2过表达也是黏液腺癌的常见表现形式。KRAS蛋白作为分子开关,调控RAF、ERK等下游信号通路,导致肿瘤发生[10]。突变体KRAS诱导MUC2表达,协同参与PI3K/AKT和MEK/ERK通路,维持MCA细胞中MUC2的表达[11]。MUC2水平升高也与散发性MCA的加速进展相关[12]。最近有研究显示MUC2可通过招募SMARCA4参与MCA分化[13]

4. MUC2与CRC癌细胞的转移

4.1. MUC2表达降低与CRC转移相关

MUC2低表达与淋巴结转移、肿瘤浸润深度和肿瘤分期显著相关,这适用于CRC的早期诊断。在原发性CRC (P = 0.003)和有淋巴结转移的CRC (80%)中发现MUC2的低表达(P < 0.001)。在60岁以下的CRC中,MUC2的低表达与淋巴管血管侵犯的发生显著相关(P = 0.05)。MUC2低表达是淋巴管和血管侵犯的独立预测指标(P = 0.041) [14]。有研究通过一种qRT-PCR检测方法,即ColoNode,可检测MUC2水平。ColoNode是一种能够确定肿瘤是否容易发生远处转移的高度敏感且可靠的检测方法。ColoNode可表征淋巴结中的肿瘤细胞及其微环境,以评估其形成远处转移的倾向。检测结果显示MUC2可能具有抑制肿瘤转移的作用。这为淋巴结分析提供了另一项质量指标,通过ColoNode可以检测肿瘤细胞离开肠道和局部淋巴结而转移至肝脏和肺等部位进行增殖的功能指标[15]

4.2. MUC2高表达与CRC转移

MUC2的低表达预后不良,但II期CRC患者中MUC2低表达者对辅助化疗的反应更好,MUC2参与氟尿嘧啶辅助化疗耐药性,并可能成为II期CRC患者预后检测的生物标志物[16]。在MCA中,MUC2高表达与肿瘤转移高度相关。半乳糖凝集素-3可通过激活AP-1在转录水平上调节人结肠癌细胞中MUC2的表达,并通过增强MUC2启动子来促进肿瘤细胞转移[17]。MUC2可能是CRC微转移灶的候选标志物,其表达增加与CRC更晚期的T分期相关,MUC2 RT-PCR有可能识别出有早期癌症复发风险的CRC患者[18]

5. MUC2分泌的调控

5.1. 肠道菌群与MUC2的分泌

5.1.1. MUC2缺乏与肠道菌群失调

肠道微生物群在维持体内平衡(包括生物拮抗作用、预防感染、代谢与营养以及免疫系统的建立与调节等方面)中发挥着至关重要的作用。肠道菌群与黏膜屏障之间存在着密切的关系。与野生型小鼠相比,无菌小鼠的肠道黏膜较为稀薄且不稳定。MUC2的寡糖链结构为其提供了与肠道共生菌结合的位点,并促进了益生菌定植。MUC2高度O-糖基化,因此肠道中的MUC2无法被宿主消化系统降解,但可以被共生菌和致病菌降解。MUC2-/-小鼠的肠道菌群变化会加重葡聚糖硫酸钠(Dextran sulfate sodium, DSS)诱导的结肠炎[19]。MUC2基因缺失小鼠表现出正常黏膜代谢途径和肠道稳态的变化。MUC2小鼠中瘤胃球菌科和产丁酸细菌的丰度显著增加。MUC2-/-小鼠和MUC2+/+小鼠之间的肠道菌群存在统计学意义上的显著差异,炎症因子,例如环氧合酶2 (cyclooxygenase 2, COX-2)、白细胞介素-6 (Interleukin-6, IL-6)、肿瘤坏死因子-a (Tumor necrosis factor-α, TNF-a)、白细胞介素-1β (Interleukin-1β, IL-1β)、核因子κB抑制激酶β (Nuclear factor kappa B Inhibitor kinaseβ, IKKβ)等显著增加[20],MUC2缺陷还可能导致β-防御素-2刺激不足及肠道菌群失衡[21]

5.1.2. 肠道菌群的改变影响MUC2分泌

费氏丙酸杆菌(Propionibacterium freudenreichii)能够通过恢复杯状细胞数量以及刺激肠道杯状细胞的MUC2表达来改善急性结肠炎[22]。混合乳酸菌的补充能够通过调节肠道菌群、促进MUC2表达以及修复肠道屏障来减轻由DSS引发的结肠炎[23]。乙酸是肠道细菌产生的重要短链脂肪酸。富含乙酸的酸奶饮食能够增加MUC2的表达并增强肠道上皮的保护功能[24]。高乙酸或丁酸生产饮食(High acetate or butyrate-producing diet, HAMSA)能够改变乙酸生产的不足,并对肠道感染具有保护作用。HAMSA饮食在感染期间改变肠道菌群的组成和功能,增加结肠中MUC2、IL-22和抗菌肽的表达[25]。此外,益生菌能够增加MUC2分泌,从而保护肠道黏液屏障免受食源性病原体的黏附和入侵[26]

5.2. 内质网应激影响MUC2分泌

5.2.1. ERN2促进杯状细胞MUC2分泌

MUC2作为一种大分子糖基化蛋白,对内质网(Endoplasmic reticulum, ER)中蛋白质的正确折叠和组装提出了很高的要求,这也给杯状细胞的分泌机制带来了挑战。内质网核信号转导蛋白2 (Endoplasmic reticulum to nucleus signaling 2, ERN2/IRE1ß)在肠道微生物群与结肠上皮之间的联系中起着重要作用,能够促进杯状细胞产生黏液形成保护性黏液层,但这一功能发生在正常肠道菌群于消化道定植后。ERN2/IRE1ß缺失会导致黏液生成减少、黏液屏障破坏,从而使细菌穿透屏障并引发上皮细胞应激反应[27]。ERN2/IRE1ß通过剪接X盒结合蛋白(X-box binding protein, XBP-1) mRNA来扩大内质网的功能,并防止杯状细胞中的内质网应激[28],而在CRC以及由偶氮甲烷(Azoxymethane, AOM)/DSS诱导的小鼠结肠肿瘤中,ERN2/IRE1ß表达水平降低[29]

5.2.2. 自噬与MUC2分泌

自噬是一种细胞保护系统,用于清除受损的细胞器和错误折叠的蛋白质,这些蛋白质可引发包括内质网应激在内的多种应激反应。自噬影响MUC2的分泌,并参与结肠杯状细胞中MUC2的生物合成。IL-22处理错误折叠的MUC2蛋白以纠正并减少LS174T细胞的自噬过程,从而维持肠屏障防御功能,这也是维持肠道稳态所必需的细胞内降解过程[30]。研究表明,白藜芦醇通过内质网应激信号通路诱导自噬,并刺激杯状细胞中MUC2的合成[31]。齿双歧杆菌(Bifidobacterium dentium)分泌的产物,如γ-氨基丁酸(Aminobutyric acid, GABA),可刺激自噬介导的钙信号和MUC2释放[32]。鹰嘴豆芽素A (Biochanin A, BCA)可通过恢复肠屏障功能和促进自噬改善MUC2-/-小鼠的溃疡性结肠炎(Ulcerative colitis, UC) [33]

5.3. 内质网应激与炎性肠病

内质网应激会抑制杯状细胞MUC2分泌,并与炎性肠病(Inflammation bowel disease, IBD)相关。研究发现,来自齿状双歧杆菌的γ-谷氨酰半胱氨酸可抑制内质网介导的杯状细胞应激,并缓解TNBS诱导的结肠炎[34]。尽管肠上皮细胞的内质网应激与肠道炎症有关,但尚不清楚内质网应激是炎症的诱因还是炎症发生后的反应。在由MUC2基因突变导致肠杯状细胞内质网应激的小鼠中,出现自发性结肠炎,黏液屏障减弱,细菌易位增加[35]。在IBD和感染性结肠炎中,MUC2过度表达,但其机制尚不清楚。MUC2的这种过度表达会耗竭杯状细胞,影响肠黏膜的黏液层。在胃肠道炎症中,增强MUC2折叠可能有助于缓解杯状细胞功能障碍并维持黏膜完整性。高表达MUC2的HT29-H细胞经内质网应激诱导药物处理后,内质网应激和细胞凋亡显著增加,而纠正MUC2折叠和抑制活性氧则可减轻内质网应激并抑制细胞凋亡。在早发性结肠炎中,黏液过度分泌也会导致严重的内质网应激和杯状细胞凋亡[36]。在Winnie小鼠中的研究发现,短链醌类药物Idebenone除了具有强大的抗氧化和线粒体电子供体特性外,还具有抗炎活性。Idebenone治疗可增加Winnie小鼠的MUC2蛋白表达。内质网应激标志物C/EBP同源蛋白(C/EBP homologous protein, CHOP)、转录因子6 (Transcription factor 6, ATF6)和XBP-1显著降低。Idebenone这种抗炎活性和降低内质网应激标志物的能力,可能是UC的一种潜在治疗方法[37]Β (2→1)-β (2→6)分支型链霉糖肽型果聚糖(Branched-streptograminan-type fructans)和β (2→1)线性果聚糖(Linear fructans)以果聚糖依赖的方式影响杯状细胞中与黏液相关和内质网应激相关的基因,并减轻炎症[38]。不饱和脂肪酸能够缓解由饱和脂肪酸在肠道分泌杯状细胞中诱导的内质网应激。二十碳五烯酸(Eicosapentaenoic acid, EPA)和二十二碳六烯酸(Docosahexaenoic acid, DHA)能够保护杯状细胞免受棕榈酸诱导的内质网应激介导的MUC2分泌,并减少MUC2的合成与分泌[39]

5.4. 离子通道和MUC2分泌

在小鼠的杯状细胞中,Piezol起到了维持结肠黏膜层功能的重要作用。敲除Piezol的小鼠其DOCK4 (Dedicator of cytokinesis 4, DOCK4)含量增加。DOCK4是DOCK家族Dock-B亚家族中鸟嘌呤核苷酸交换因子成员。DOCK4可能是肠道杯状细胞分化和MUC2生成的关键调节因子,并在化学损伤后肠道上皮屏障功能的修复中发挥关键作用。CRC样本中MUC2、DOCK4和杯状细胞分化/成熟因子的mRNA水平低于正常结肠组织,且DOCK4与MUC2表达呈正相关[40]。“哨兵”杯状细胞(“sentinel” goblet cells, senGC)位于结肠隐窝入口处,通过激活TLR-和MyD88依赖的Nox/Duox活性氧,合成下游含有NLR家族含PYRIN结构域6 (NLR Family Pyrin Domain Containing 6, NLRP6)炎性小体的核苷酸结合寡聚结构域样受体,TLR2/1、TLR4、TLR5配体的非特异性内吞作用触发senGC钙离子依赖性MUC2分泌,并产生细胞缝隙连接信号,诱导隐窝内邻近杯状细胞分泌MUC2 [41]。富含亮氨酸重复序列蛋白26 (Leucine-rich repeat containing protein 26, LRRC26)能够调节Ca2+和电压激活型钾离子(voltage-activated K+ channel, BK)通道。小鼠结肠杯状细胞具有与LRRC26相关联的BK通道,而MUC2缺失细胞缺乏BK通道,且与LRRC26相关联的BK通道参与小鼠远端结肠黏膜的其余跨上皮电流,因此敲除LRRC26或BK会显著增强小鼠对DSS诱导的结肠炎易感性[42]

5.5. 年龄、饮食影响MUC2的分泌

老年动物肠道菌群中非糖分解菌和糖分解菌的比例增加,β-半乳糖苷酶的丰度降低。在老年小鼠中,半乳糖寡糖减轻了与年龄相关的肠道通透性的增加,并增加了MUC2的表达和黏液厚度[43]。正常剂量的鱼油摄入会下调结肠中MUC2的表达。鱼油这种负面作用可能涉及抑制MUC糖基化过程[44]。维生素D/维生素D受体(Vitamin D receptor, VDR)轴在调节肠道屏障方面发挥着作用。肠道菌群失衡可导致代谢综合征(Metabolic syndrome, MetS)和非酒精性脂肪肝疾病(Non-alcoholic fatty liver diseases, NAFLD),在缺乏维生素D的高脂饮食条件下,回肠中包括α-防御素5 (alpha-defensin 5, DEFA5)、紧密连接和MUC2基因在内的表达被抑制,从而导致黏膜的破坏、肠道通透性增加和肠道菌群失衡[45]。膳食纤维及其代谢产物影响结肠黏膜黏液的分泌,琥珀酸可介导部分水解瓜尔胶(partially hydrolyzed guar gum, PHGG)引起的结肠MUC2表达增加,这一过程与AKT磷酸化有关[46]。肠道微生物来源的丁酸盐通过激活巨噬细胞/WNT/ERK信号通路调节肠道黏液屏障修复,其诱导的M2巨噬细胞的过继转移促进了DSS损伤后杯状细胞的生成和黏液的恢复,丁酸盐有可能作为溃疡性结肠炎(Ulcerative colitis, UC)的治疗靶点[47]

5.6. 外源性药物影响MUC2分泌

胆汁酸等外源性药物也可上调MUC2表达,如胆汁酸可通过MAPK依赖性途径诱导MUC2表达[48],也可诱导GATA结合蛋白4 (GATA binding protein 4, GATA4)表达,GATA4与MUC2启动子结合并刺激其转录[49]。外源性烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, NAD+)通过刺激PLC-δ/PTGES/PKC-δ/ERK/CREB信号通路增加LS 174T杯状细胞的MUC2表达[50]。橙皮素通过阻断RIPK3/MLKL信号通路维持上皮屏障,促进MUC2分泌,改善DSS诱导的结肠炎[51]。白藜芦醇也可通过INK4基因座中反义非编码RNA (Antisense non-coding RNA in the INK4 locus, ANRIL)-miR-34a轴促进MUC2合成来减轻IBD [52]。MUC2在LS174T细胞系中含量高于HT-29,而槲皮素(Quercetin)可通过PLC/PKCa/ERK1-2通路促进LS174T杯状细胞中MUC2分泌,并对肠黏膜屏障发挥保护作用[53]。仙鹤草–黄连联合用药可调节JAK2/STAT3通路,诱导自噬,促进MUC2分泌,减轻IBD症状[54]。吲哚-3-甲醇(indole-3-carbinol, I3C)作为芳烃受体(aryl hydrocarbon receptor, AhR)配体,调节特定MUC表达以减轻肠炎症状。而AhR在肠上皮细胞中的表达对于I3C在结肠炎期间的保护作用至关重要,AhR缺陷影响MUC2表达[55]

5.7. 唾液酰化与MUC2分泌

ST6 N-乙酰半乳糖胺基化酶α-2,6-唾液酸转移酶1 (ST6 N-Acetylgalactosaminide Alpha-2, 6-Sialyltransferase 1, ST6GALNAC1)促进结膜杯状细胞黏液的唾液酸化,眼黏蛋白上的唾液糖苷在保护结膜黏膜免受异物(如过敏原颗粒)侵袭方面发挥着重要作用[56]。ST6GALNAC1能够唾液酸化肠道黏液的末端糖苷,而主要的唾液酸转移酶在杯状细胞中特异性表达,这对于黏液的完整性以及防止被细菌蛋白酶过度降解至关重要。黏液分泌减少会导致MUC缺乏和IBD。ST6GALNAC1基因突变的小鼠黏液屏障受损,容易发生肠道炎症[57]。唾液酰化可介导MUC2的负电荷,促进黏蛋白网络结构形成,从而抑制细菌侵入结肠,维持肠道内稳态[58]

5.8. 醛酮还原酶1b10与MUC2分泌

醛酮还原酶1B10 (Aldo-keto reductase 1B10, AKR1B8)缺乏会导致结肠黏膜上皮屏障和免疫功能异常。在AKR1B8缺陷小鼠中,有明显的中性粒细胞和肥大细胞浸润,yT细胞的数量和功能受损,树突状细胞的发育发生变化,结肠MUC2表达降低。结肠上皮细胞通透性增加[59]。AKR1B8基因敲除小鼠在低剂量(1.5%) DSS治疗后出现严重的急性结肠炎,结肠上皮细胞中的TLR4信号被激活,IL-1ß和IL-6的表达增加,AKR1B8的缺失可能是结肠炎的新致病因素[60]

6. 结论

作为肠道中的主要MUC,MUC2在抵抗病原体入侵以及维持肠道菌群与黏膜之间的共生关系方面发挥着重要作用。MUC2对肠道微生态的维持至关重要,其表达量是影响临床粪菌移植效果的重要因素,对UC患者的肠道粪菌移植来说,MUC2的分泌情况或许可以作为临床粪菌移植的参考指标之一。作为肠屏障的重要组成部分,MUC2表达的升高或降低影响CRC的发生、发展和预后,MUC2的表达情况可作为CRC发生和预后情况的生物靶标,在临床诊断中,可通过MUC2的表达情况来分析和判断CRC的预后,也可通过开发相关调节MUC2的分泌的药物,抑制CRC的发生和发展。靶向MUC2通路可能是一种新的治疗方法,可为肠道炎症和肿瘤的治疗提供新的思路。

基金项目

浙江省基础公益研究计划项目(LGD22H030004);嘉兴大学SRT项目(8517241033)。

参考文献

[1] Liu, Y., Yu, Z., Zhu, L., Ma, S., Luo, Y., Liang, H., et al. (2023) Orchestration of MUC2—The Key Regulatory Target of Gut Barrier and Homeostasis: A Review. International Journal of Biological Macromolecules, 236, Article ID: 123862.
https://doi.org/10.1016/j.ijbiomac.2023.123862
[2] Wi, D.H., Cha, J.H. and Jung, Y.S (2021) Mucin in Cancer: A Stealth Cloak for Cancer Cells. BMB Reports, 54, 344-355.
https://doi.org/10.5483/bmbrep.2021.54.7.064
[3] Ratan, C., Cicily K. D, D., Nair, B. and Nath, L.R. (2021) MUC Glycoproteins: Potential Biomarkers and Molecular Targets for Cancer Therapy. Current Cancer Drug Targets, 21, 132-152.
https://doi.org/10.2174/1568009620666201116113334
[4] Stanforth, K.J., Zakhour, M.I., Chater, P.I., Wilcox, M.D., Adamson, B., Robson, N.A., et al. (2024) The MUC2 Gene Product: Polymerisation and Post-Secretory Organisation—Current Models. Polymers (Basel), 16, Article No. 1663.
https://doi.org/10.3390/polym16121663
[5] Gallego, P., Garcia-Bonete, M., Trillo-Muyo, S., Recktenwald, C.V., Johansson, M.E.V. and Hansson, G.C. (2023) The Intestinal MUC2 Mucin C-Terminus Is Stabilized by an Extra Disulfide Bond in Comparison to Von Willebrand Factor and Other Gel-Forming Mucins. Nature Communications, 14, Article No. 1969.
https://doi.org/10.1038/s41467-023-37666-8
[6] Iranmanesh, H., Majd, A., Nazemalhosseini Mojarad, E., Zali, M.R. and Hashemi, M. (2021) Investigating the Relationship between the Expression Level of Mucin Gene Cluster (MUC2, MUC5A, and MUC5B) and Clinicopathological Characterization of Colorectal Cancer. Galen Medical Journal, 10, e2030.
https://doi.org/10.31661/gmj.v10i0.2030
[7] Ye, J., Haskey, N., Dadlani, H., Zubaidi, H., Barnett, J.A., Ghosh, S., et al. (2021) Deletion of Mucin 2 Induces Colitis with Concomitant Metabolic Abnormalities in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 320, G791-G803.
https://doi.org/10.1152/ajpgi.00277.2020
[8] Miller, S.A., Ghobashi, A.H. and O’Hagan, H.M. (2021) Consensus Molecular Subtyping of Colorectal Cancers Is Influenced by Goblet Cell Content. Cancer Genetics, 254, 34-39.
https://doi.org/10.1016/j.cancergen.2021.01.009
[9] Betge, J., Schneider, N.I., Harbaum, L., Pollheimer, M.J., Lindtner, R.A., Kornprat, P., et al. (2016) MUC1, MUC2, MUC5AC, and MUC6 in Colorectal Cancer: Expression Profiles and Clinical Significance. Virchows Archiv, 469, 255-265.
https://doi.org/10.1007/s00428-016-1970-5
[10] Zhu, G., Pei, L., Xia, H., Tang, Q. and Bi, F. (2021) Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer. Molecular Cancer, 20, Article No. 143.
https://doi.org/10.1186/s12943-021-01441-4
[11] Kuracha, M.R., Thomas, P., Loggie, B.W. and Govindarajan, V. (2017) Bilateral Blockade of MEK-and PI3K-Mediated Pathways Downstream of Mutant KRAS as a Treatment Approach for Peritoneal Mucinous Malignancies. PLOS ONE, 12, e0179510.
https://doi.org/10.1371/journal.pone.0179510
[12] Chiang, J.M., Yeh, C.Y., Changchien, C.R., Chen, J.S., Tang, R. and Chen, J.R. (2010) Mucinous Adenocarcinoma Showing Different Clinicopathological and Molecular Characteristics in Relation to Different Colorectal Cancer Subgroups. International Journal of Colorectal Disease, 25, 941-947.
https://doi.org/10.1007/s00384-010-0958-x
[13] Yan, X., Cheng, Y., Zhang, X., Hu, Y., Huang, H., Ren, J., et al. (2022) NICD3 Regulates the Expression of MUC5AC and MUC2 by Recruiting SMARCA4 and Is Involved in the Differentiation of Mucinous Colorectal Adenocarcinoma. Molecular Oncology, 16, 3509-3532.
https://doi.org/10.1002/1878-0261.13296
[14] Al-Maghrabi, J., Sultana, S. and Gomaa, W. (2019) Low Expression of MUC2 Is Associated with Longer Disease-Free Survival in Patients with Colorectal Carcinoma. Saudi Journal of Gastroenterology, 25, 61-66.
https://doi.org/10.4103/sjg.sjg_199_18
[15] Lindmark, G., Olsson, L., Sitohy, B., Israelsson, A., Blomqvist, J., Kero, S., et al. (2023) qRT-PCR Analysis of CEACAM5, KLK6, SLC35D3, MUC2 and POSTN in Colon Cancer Lymph Nodes—An Improved Method for Assessment of Tumor Stage and Prognosis. International Journal of Cancer, 154, 573-584.
https://doi.org/10.1002/ijc.34718
[16] Ribeirinho-Soares, S., Pádua, D., Amaral, A.L., Valentini, E., Azevedo, D., Marques, C., et al. (2021) Prognostic Significance of MUC2, CDX2 and SOX2 in Stage II Colorectal Cancer Patients. BMC Cancer, 21, Article No. 359.
https://doi.org/10.1186/s12885-021-08070-6
[17] Song, S., Byrd, J.C., Mazurek, N., Liu, K., Koo, J.S. and Bresalier, R.S. (2005) Galectin-3 Modulates MUC2 Mucin Expression in Human Colon Cancer Cells at the Level of Transcription via AP-1 Activation. Gastroenterology, 129, 1581-1591.
https://doi.org/10.1053/j.gastro.2005.09.002
[18] Bernini, A., Spencer, M., Frizelle, S., et al. (2000) Evidence for Colorectal Cancer Micrometastases Using Reverse Transcriptase-Polymerase Chain Reaction Analysis of MUC2 in Lymph Nodes. Cancer Detection and Prevention, 24, 72-79.
[19] Leon-Coria, A., Kumar, M., Workentine, M., Moreau, F., Surette, M. and Chadee, K. (2021) MUC2 Mucin and Nonmucin Microbiota Confer Distinct Innate Host Defense in Disease Susceptibility and Colonic Injury. Cellular and Molecular Gastroenterology and Hepatology, 11, 77-98.
https://doi.org/10.1016/j.jcmgh.2020.07.003
[20] Wu, M., Wu, Y., Li, J., Bao, Y., Guo, Y. and Yang, W. (2018) The Dynamic Changes of Gut Microbiota in MUC2 Deficient Mice. International Journal of Molecular Sciences, 19, Article No. 2809.
https://doi.org/10.3390/ijms19092809
[21] Cobo, E.R., Kissoon-Singh, V., Moreau, F. and Chadee, K. (2015) Colonic MUC2 Mucin Regulates the Expression and Antimicrobial Activity of β-Defensin 2. Mucosal Immunology, 8, 1360-1372.
https://doi.org/10.1038/mi.2015.27
[22] Ma, S., Yeom, J. and Lim, Y.-H. (2020) Dairy Propionibacterium freudenreichii Ameliorates Acute Colitis by Stimulating MUC2 Expression in Intestinal Goblet Cell in a DSS-Induced Colitis Rat Model. Scientific Reports, 10, Article No. 5523.
https://doi.org/10.1038/s41598-020-62497-8
[23] Shi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S.E., et al. (2021) Gut Microbiota Modulation and Anti-Inflammatory Properties of Mixed Lactobacilli in Dextran Sodium Sulfate-Induced Colitis in Mice. Food & Function, 12, 5130-5143.
https://doi.org/10.1039/d1fo00317h
[24] Chang, Y.H., Jeong, C.H., Cheng, W.N., Choi, Y., Shin, D.M., Lee, S., et al. (2021) Quality Characteristics of Yogurts Fermented with Short-Chain Fatty Acid-Producing Probiotics and Their Effects on Mucin Production and Probiotic Adhesion onto Human Colon Epithelial Cells. Journal of Dairy Science, 104, 7415-7425.
https://doi.org/10.3168/jds.2020-19820
[25] Yap, Y.A., McLeod, K.H., McKenzie, C.I., Gavin, P.G., Davalos‐Salas, M., Richards, J.L., et al. (2021) An Acetate‐yielding Diet Imprints an Immune and Anti‐Microbial Programme against Enteric Infection. Clinical & Translational Immunology, 10, e1233.
https://doi.org/10.1002/cti2.1233
[26] He, X., Ye, G., Xu, S., Chen, X., He, X. and Gong, Z. (2023) Effects of Three Different Probiotics of Tibetan Sheep Origin and Their Complex Probiotics on Intestinal Damage, Immunity, and Immune Signaling Pathways of Mice Infected with Clostridium perfringens Type C. Frontiers in Microbiology, 14, Article ID: 1177232.
https://doi.org/10.3389/fmicb.2023.1177232
[27] Johansson, M.E.V. and Hansson, G.C. (2022) Goblet Cells Need Some Stress. Journal of Clinical Investigation, 132, e162030.
https://doi.org/10.1172/jci162030
[28] Grey, M.J., De Luca, H., Ward, D.V., Kreulen, I.A.M., Bugda Gwilt, K., Foley, S.E., et al. (2022) The Epithelial-Specific ER Stress Sensor ERN2/IRE1β Enables Host-Microbiota Crosstalk to Affect Colon Goblet Cell Development. Journal of Clinical Investigation, 132, e153519.
https://doi.org/10.1172/jci153519
[29] Dai, F., Dong, S., Rong, Z., Xuan, Q., Chen, P., Chen, M., et al. (2019) Expression of Inositol-Requiring Enzyme 1β Is Downregulated in Azoxymethane/Dextran Sulfate Sodium-Induced Mouse Colonic Tumors. Experimental and Therapeutic Medicine, 17, 3181-3188.
https://doi.org/10.3892/etm.2019.7317
[30] Tiwari, S., Begum, S., Moreau, F., Gorman, H. and Chadee, K. (2021) Autophagy Is Required during High MUC2 Mucin Biosynthesis in Colonic Goblet Cells to Contend Metabolic Stress. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G489-G499.
https://doi.org/10.1152/ajpgi.00221.2021
[31] Yeom, J., Ma, S. and Lim, Y.H. (2020) Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells. Antioxidants (Basel), 9, Article No. 214.
https://doi.org/10.3390/antiox9030214
[32] Engevik, M.A., Luk, B., Chang-Graham, A.L., Hall, A., Herrmann, B., Ruan, W., et al. (2019) Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio, 10, e01087-19.
https://doi.org/10.1128/mbio.01087-19
[33] Zhang, H., Wang, X., Zhao, L., Zhang, K., Cui, J. and Xu, G. (2024) Biochanin a Ameliorates DSS-Induced Ulcerative Colitis by Improving Colonic Barrier Function and Protects against the Development of Spontaneous Colitis in the MUC2 Deficient Mice. Chemico-Biological Interactions, 395, Article ID: 111014.
https://doi.org/10.1016/j.cbi.2024.111014
[34] Engevik, M.A., Herrmann, B., Ruan, W., Engevik, A.C., Engevik, K.A., Ihekweazu, F., et al. (2021) Bifidobacterium dentium-Derived Y-Glutamylcysteine Suppresses ER-Mediated Goblet Cell Stress and Reduces TNBS-Driven Colonic Inflammation. Gut Microbes, 13, Article ID: 1902717.
https://doi.org/10.1080/19490976.2021.1902717
[35] Wang, R., Moniruzzaman, M., Wong, K.Y., et al. (2021) Gut Microbiota Shape the Inflammatory Response in Mice with an Epithelial Defect. Gut Microbes, 13, 1-18.
[36] Tawiah, A., Cornick, S., Moreau, F., Gorman, H., Kumar, M., Tiwari, S., et al. (2018) High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. The American Journal of Pathology, 188, 1354-1373.
https://doi.org/10.1016/j.ajpath.2018.02.007
[37] Shastri, S., Shinde, T., Perera, A.P., Gueven, N. and Eri, R. (2020) Idebenone Protects against Spontaneous Chronic Murine Colitis by Alleviating Endoplasmic Reticulum Stress and Inflammatory Response. Biomedicines, 8, Article No. 384.
https://doi.org/10.3390/biomedicines8100384
[38] Fernández-Lainez, C., Aan de Stegge, M., Silva-Lagos, L.A., López-Velázquez, G. and de Vos, P. (2023) β (2→1)-β (2→6) Branched Graminan-Type Fructans and β (2→1) Linear Fructans Impact Mucus-Related and Endoplasmic Reticulum Stress-Related Genes in Goblet Cells and Attenuate Inflammatory Responses in a Fructan Dependent Fashion. Food & Function, 14, 1338-1348.
https://doi.org/10.1039/d2fo02710k
[39] Escoula, Q., Bellenger, S., Narce, M. and Bellenger, J. (2019) Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-MUC2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells. Nutrients, 11, Article No. 2179.
https://doi.org/10.3390/nu11092179
[40] Liu, Y., Fang, F., Xiong, Y., Wu, J., Li, X., Li, G., et al. (2022) Reprogrammed Fecal and Mucosa-Associated Intestinal Microbiota and Weakened Mucus Layer in Intestinal Goblet Cell-Specific Piezo1-Deficient Mice. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1035386.
https://doi.org/10.3389/fcimb.2022.1035386
[41] Birchenough, G.M.H., Nyström, E.E.L., Johansson, M.E.V. and Hansson, G.C. (2016) A Sentinel Goblet Cell Guards the Colonic Crypt by Triggering NLRP6-Dependent MUC2 Secretion. Science, 352, 1535-1542.
https://doi.org/10.1126/science.aaf7419
[42] Gonzalez-Perez, V., Martinez-Espinosa, P.L., Sala-Rabanal, M., Bharadwaj, N., Xia, X., Chen, A.C., et al. (2021) Goblet Cell LRRC26 Regulates BK Channel Activation and Protects against Colitis in Mice. Proceedings of the National Academy of Sciences, 118, e2019149118.
https://doi.org/10.1073/pnas.2019149118
[43] Arnold, J.W., Roach, J., Fabela, S., Moorfield, E., Ding, S., Blue, E., et al. (2021) The Pleiotropic Effects of Prebiotic Galacto-Oligosaccharides on the Aging Gut. Microbiome, 9, Article No. 31.
https://doi.org/10.1186/s40168-020-00980-0
[44] Ma, Y.F., Zhou, G.H., Li, Y.Q., Zhu, Y., Yu, X., Zhao, F., et al. (2018) Intake of Fish Oil Specifically Modulates Colonic MUC2 Expression in Middle‐Aged Rats by Suppressing the Glycosylation Process. Molecular Nutrition & Food Research, 62, Article ID: 1700661.
https://doi.org/10.1002/mnfr.201700661
[45] Su, D., Nie, Y., Zhu, A., Chen, Z., Wu, P., Zhang, L., et al. (2016) Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 7, Article No. 498.
https://doi.org/10.3389/fphys.2016.00498
[46] Kajiwara-Kubota, M., Uchiyama, K., Asaeda, K., Kobayashi, R., Hashimoto, H., Yasuda, T., et al. (2023) Partially Hydrolyzed Guar Gum Increased Colonic Mucus Layer in Mice via Succinate-Mediated MUC2 Production. NPJ Science of Food, 7, Article No. 10.
https://doi.org/10.1038/s41538-023-00184-4
[47] Liang, L., Liu, L., Zhou, W., Yang, C., Mai, G., Li, H., et al. (2022) Gut Microbiota-Derived Butyrate Regulates Gut Mucus Barrier Repair by Activating the Macrophage/WNT/ERK Signaling Pathway. Clinical Science, 136, 291-307.
https://doi.org/10.1042/cs20210778
[48] Song, S., Byrd, J.C., Koo, J.S. and Bresalier, R.S. (2005) Bile Acids Induce MUC2 Overexpression in Human Colon Carcinoma Cells. Cancer, 103, 1606-1614.
https://doi.org/10.1002/cncr.21015
[49] Yang, X., Ye, T., Rong, L., Peng, H., Tong, J., Xiao, X., et al. (2023) GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut and Liver, 18, 414-425.
https://doi.org/10.5009/gnl220394
[50] Ma, S., Yeom, J. and Lim, Y.H. (2020) Exogenous NAD+ Stimulates MUC2 Expression in LS 174T Goblet Cells via the PLC-Delta/PTGES/PKC-Delta/ERK/CREB Signaling Pathway. Biomolecules, 10, Article No. 580.
https://doi.org/10.3390/biom10040580
[51] Zhang, J., Lei, H., Hu, X. and Dong, W. (2020) Hesperetin Ameliorates DSS-Induced Colitis by Maintaining the Epithelial Barrier via Blocking RIPK3/MLKL Necroptosis Signaling. European Journal of Pharmacology, 873, Article ID: 172992.
https://doi.org/10.1016/j.ejphar.2020.172992
[52] Zhou, X., Zhang, Y., Hu, M., et al. (2023) Resveratrol Enhances MUC2 Synthesis via the ANRIL-miR-34a Axis to Mitigate IBD. American Journal of Translational Research, 15, 363-372.
[53] Raynaud, C.M., Jabeen, A., Ahmed, E.I., Hubrack, S., Sanchez, A., Sherif, S., et al. (2025) MUC2 Expression Modulates Immune Infiltration in Colorectal Cancer. Frontiers in Immunology, 15, Article ID: 1500374.
https://doi.org/10.3389/fimmu.2024.1500374
[54] He, Y., Shen, X. and Peng, H. (2024) Effects and Mechanisms of the Xianhecao-Huanglian Drug Pair on Autophagy-Mediated Intervention in Acute Inflammatory Bowel Disease via the JAK2/STAT3 Pathway. Biological Procedures Online, 26, Article No. 27.
https://doi.org/10.1186/s12575-024-00242-5
[55] Saxena, A., Mitchell, C., Bogdon, R., Roark, K., Wilson, K., Staley, S., et al. (2024) Aryl Hydrocarbon Receptor Regulates MUC2 Production Independently of IL-22 during Colitis. International Journal of Molecular Sciences, 25, Article No. 2404.
https://doi.org/10.3390/ijms25042404
[56] Kamei, A., Matsuda, A., Nakano, N., et al. (2023) The Protective Role of Conjunctival Goblet Cell Mucin Sialylation. Nature Communications, 14, Article No. 1417.
[57] Yao, Y., Kim, G., Shafer, S., Chen, Z., Kubo, S., Ji, Y., et al. (2022) Mucus Sialylation Determines Intestinal Host-Commensal Homeostasis. Cell, 185, 1172-1188.e28.
https://doi.org/10.1016/j.cell.2022.02.013
[58] Taniguchi, M., Okumura, R., Matsuzaki, T., Nakatani, A., Sakaki, K., Okamoto, S., et al. (2023) Sialylation Shapes Mucus Architecture Inhibiting Bacterial Invasion in the Colon. Mucosal Immunology, 16, 624-641.
https://doi.org/10.1016/j.mucimm.2023.06.004
[59] Wang, X., Khoshaba, R., Shen, Y., Cao, Y., Lin, M., Zhu, Y., et al. (2021) Impaired Barrier Function and Immunity in the Colon of Aldo-Keto Reductase 1B8 Deficient Mice. Frontiers in Cell and Developmental Biology, 9, Article ID: 632805.
https://doi.org/10.3389/fcell.2021.632805
[60] Deng, Q., Yao, Y., Yang, J., Khoshaba, R., Shen, Y., Wang, X., et al. (2022) AKR1B8 Deficiency Drives Severe DSS-Induced Acute Colitis through Invasion of Luminal Bacteria and Activation of Innate Immunity. Frontiers in Immunology, 13, Article ID: 1042549.
https://doi.org/10.3389/fimmu.2022.1042549