|
[1]
|
Liu, Y., Yu, Z., Zhu, L., Ma, S., Luo, Y., Liang, H., et al. (2023) Orchestration of MUC2—The Key Regulatory Target of Gut Barrier and Homeostasis: A Review. International Journal of Biological Macromolecules, 236, Article ID: 123862. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wi, D.H., Cha, J.H. and Jung, Y.S (2021) Mucin in Cancer: A Stealth Cloak for Cancer Cells. BMB Reports, 54, 344-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ratan, C., Cicily K. D, D., Nair, B. and Nath, L.R. (2021) MUC Glycoproteins: Potential Biomarkers and Molecular Targets for Cancer Therapy. Current Cancer Drug Targets, 21, 132-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Stanforth, K.J., Zakhour, M.I., Chater, P.I., Wilcox, M.D., Adamson, B., Robson, N.A., et al. (2024) The MUC2 Gene Product: Polymerisation and Post-Secretory Organisation—Current Models. Polymers (Basel), 16, Article No. 1663. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gallego, P., Garcia-Bonete, M., Trillo-Muyo, S., Recktenwald, C.V., Johansson, M.E.V. and Hansson, G.C. (2023) The Intestinal MUC2 Mucin C-Terminus Is Stabilized by an Extra Disulfide Bond in Comparison to Von Willebrand Factor and Other Gel-Forming Mucins. Nature Communications, 14, Article No. 1969. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Iranmanesh, H., Majd, A., Nazemalhosseini Mojarad, E., Zali, M.R. and Hashemi, M. (2021) Investigating the Relationship between the Expression Level of Mucin Gene Cluster (MUC2, MUC5A, and MUC5B) and Clinicopathological Characterization of Colorectal Cancer. Galen Medical Journal, 10, e2030. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ye, J., Haskey, N., Dadlani, H., Zubaidi, H., Barnett, J.A., Ghosh, S., et al. (2021) Deletion of Mucin 2 Induces Colitis with Concomitant Metabolic Abnormalities in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 320, G791-G803. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Miller, S.A., Ghobashi, A.H. and O’Hagan, H.M. (2021) Consensus Molecular Subtyping of Colorectal Cancers Is Influenced by Goblet Cell Content. Cancer Genetics, 254, 34-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Betge, J., Schneider, N.I., Harbaum, L., Pollheimer, M.J., Lindtner, R.A., Kornprat, P., et al. (2016) MUC1, MUC2, MUC5AC, and MUC6 in Colorectal Cancer: Expression Profiles and Clinical Significance. Virchows Archiv, 469, 255-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhu, G., Pei, L., Xia, H., Tang, Q. and Bi, F. (2021) Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer. Molecular Cancer, 20, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kuracha, M.R., Thomas, P., Loggie, B.W. and Govindarajan, V. (2017) Bilateral Blockade of MEK-and PI3K-Mediated Pathways Downstream of Mutant KRAS as a Treatment Approach for Peritoneal Mucinous Malignancies. PLOS ONE, 12, e0179510. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chiang, J.M., Yeh, C.Y., Changchien, C.R., Chen, J.S., Tang, R. and Chen, J.R. (2010) Mucinous Adenocarcinoma Showing Different Clinicopathological and Molecular Characteristics in Relation to Different Colorectal Cancer Subgroups. International Journal of Colorectal Disease, 25, 941-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yan, X., Cheng, Y., Zhang, X., Hu, Y., Huang, H., Ren, J., et al. (2022) NICD3 Regulates the Expression of MUC5AC and MUC2 by Recruiting SMARCA4 and Is Involved in the Differentiation of Mucinous Colorectal Adenocarcinoma. Molecular Oncology, 16, 3509-3532. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Al-Maghrabi, J., Sultana, S. and Gomaa, W. (2019) Low Expression of MUC2 Is Associated with Longer Disease-Free Survival in Patients with Colorectal Carcinoma. Saudi Journal of Gastroenterology, 25, 61-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lindmark, G., Olsson, L., Sitohy, B., Israelsson, A., Blomqvist, J., Kero, S., et al. (2023) qRT-PCR Analysis of CEACAM5, KLK6, SLC35D3, MUC2 and POSTN in Colon Cancer Lymph Nodes—An Improved Method for Assessment of Tumor Stage and Prognosis. International Journal of Cancer, 154, 573-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ribeirinho-Soares, S., Pádua, D., Amaral, A.L., Valentini, E., Azevedo, D., Marques, C., et al. (2021) Prognostic Significance of MUC2, CDX2 and SOX2 in Stage II Colorectal Cancer Patients. BMC Cancer, 21, Article No. 359. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Song, S., Byrd, J.C., Mazurek, N., Liu, K., Koo, J.S. and Bresalier, R.S. (2005) Galectin-3 Modulates MUC2 Mucin Expression in Human Colon Cancer Cells at the Level of Transcription via AP-1 Activation. Gastroenterology, 129, 1581-1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bernini, A., Spencer, M., Frizelle, S., et al. (2000) Evidence for Colorectal Cancer Micrometastases Using Reverse Transcriptase-Polymerase Chain Reaction Analysis of MUC2 in Lymph Nodes. Cancer Detection and Prevention, 24, 72-79.
|
|
[19]
|
Leon-Coria, A., Kumar, M., Workentine, M., Moreau, F., Surette, M. and Chadee, K. (2021) MUC2 Mucin and Nonmucin Microbiota Confer Distinct Innate Host Defense in Disease Susceptibility and Colonic Injury. Cellular and Molecular Gastroenterology and Hepatology, 11, 77-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, M., Wu, Y., Li, J., Bao, Y., Guo, Y. and Yang, W. (2018) The Dynamic Changes of Gut Microbiota in MUC2 Deficient Mice. International Journal of Molecular Sciences, 19, Article No. 2809. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cobo, E.R., Kissoon-Singh, V., Moreau, F. and Chadee, K. (2015) Colonic MUC2 Mucin Regulates the Expression and Antimicrobial Activity of β-Defensin 2. Mucosal Immunology, 8, 1360-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, S., Yeom, J. and Lim, Y.-H. (2020) Dairy Propionibacterium freudenreichii Ameliorates Acute Colitis by Stimulating MUC2 Expression in Intestinal Goblet Cell in a DSS-Induced Colitis Rat Model. Scientific Reports, 10, Article No. 5523. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Shi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S.E., et al. (2021) Gut Microbiota Modulation and Anti-Inflammatory Properties of Mixed Lactobacilli in Dextran Sodium Sulfate-Induced Colitis in Mice. Food & Function, 12, 5130-5143. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chang, Y.H., Jeong, C.H., Cheng, W.N., Choi, Y., Shin, D.M., Lee, S., et al. (2021) Quality Characteristics of Yogurts Fermented with Short-Chain Fatty Acid-Producing Probiotics and Their Effects on Mucin Production and Probiotic Adhesion onto Human Colon Epithelial Cells. Journal of Dairy Science, 104, 7415-7425. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yap, Y.A., McLeod, K.H., McKenzie, C.I., Gavin, P.G., Davalos‐Salas, M., Richards, J.L., et al. (2021) An Acetate‐yielding Diet Imprints an Immune and Anti‐Microbial Programme against Enteric Infection. Clinical & Translational Immunology, 10, e1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
He, X., Ye, G., Xu, S., Chen, X., He, X. and Gong, Z. (2023) Effects of Three Different Probiotics of Tibetan Sheep Origin and Their Complex Probiotics on Intestinal Damage, Immunity, and Immune Signaling Pathways of Mice Infected with Clostridium perfringens Type C. Frontiers in Microbiology, 14, Article ID: 1177232. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Johansson, M.E.V. and Hansson, G.C. (2022) Goblet Cells Need Some Stress. Journal of Clinical Investigation, 132, e162030. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Grey, M.J., De Luca, H., Ward, D.V., Kreulen, I.A.M., Bugda Gwilt, K., Foley, S.E., et al. (2022) The Epithelial-Specific ER Stress Sensor ERN2/IRE1β Enables Host-Microbiota Crosstalk to Affect Colon Goblet Cell Development. Journal of Clinical Investigation, 132, e153519. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dai, F., Dong, S., Rong, Z., Xuan, Q., Chen, P., Chen, M., et al. (2019) Expression of Inositol-Requiring Enzyme 1β Is Downregulated in Azoxymethane/Dextran Sulfate Sodium-Induced Mouse Colonic Tumors. Experimental and Therapeutic Medicine, 17, 3181-3188. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tiwari, S., Begum, S., Moreau, F., Gorman, H. and Chadee, K. (2021) Autophagy Is Required during High MUC2 Mucin Biosynthesis in Colonic Goblet Cells to Contend Metabolic Stress. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G489-G499. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yeom, J., Ma, S. and Lim, Y.H. (2020) Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells. Antioxidants (Basel), 9, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Engevik, M.A., Luk, B., Chang-Graham, A.L., Hall, A., Herrmann, B., Ruan, W., et al. (2019) Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio, 10, e01087-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, H., Wang, X., Zhao, L., Zhang, K., Cui, J. and Xu, G. (2024) Biochanin a Ameliorates DSS-Induced Ulcerative Colitis by Improving Colonic Barrier Function and Protects against the Development of Spontaneous Colitis in the MUC2 Deficient Mice. Chemico-Biological Interactions, 395, Article ID: 111014. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Engevik, M.A., Herrmann, B., Ruan, W., Engevik, A.C., Engevik, K.A., Ihekweazu, F., et al. (2021) Bifidobacterium dentium-Derived Y-Glutamylcysteine Suppresses ER-Mediated Goblet Cell Stress and Reduces TNBS-Driven Colonic Inflammation. Gut Microbes, 13, Article ID: 1902717. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, R., Moniruzzaman, M., Wong, K.Y., et al. (2021) Gut Microbiota Shape the Inflammatory Response in Mice with an Epithelial Defect. Gut Microbes, 13, 1-18.
|
|
[36]
|
Tawiah, A., Cornick, S., Moreau, F., Gorman, H., Kumar, M., Tiwari, S., et al. (2018) High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. The American Journal of Pathology, 188, 1354-1373. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shastri, S., Shinde, T., Perera, A.P., Gueven, N. and Eri, R. (2020) Idebenone Protects against Spontaneous Chronic Murine Colitis by Alleviating Endoplasmic Reticulum Stress and Inflammatory Response. Biomedicines, 8, Article No. 384. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fernández-Lainez, C., Aan de Stegge, M., Silva-Lagos, L.A., López-Velázquez, G. and de Vos, P. (2023) β (2→1)-β (2→6) Branched Graminan-Type Fructans and β (2→1) Linear Fructans Impact Mucus-Related and Endoplasmic Reticulum Stress-Related Genes in Goblet Cells and Attenuate Inflammatory Responses in a Fructan Dependent Fashion. Food & Function, 14, 1338-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Escoula, Q., Bellenger, S., Narce, M. and Bellenger, J. (2019) Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-MUC2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells. Nutrients, 11, Article No. 2179. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, Y., Fang, F., Xiong, Y., Wu, J., Li, X., Li, G., et al. (2022) Reprogrammed Fecal and Mucosa-Associated Intestinal Microbiota and Weakened Mucus Layer in Intestinal Goblet Cell-Specific Piezo1-Deficient Mice. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1035386. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Birchenough, G.M.H., Nyström, E.E.L., Johansson, M.E.V. and Hansson, G.C. (2016) A Sentinel Goblet Cell Guards the Colonic Crypt by Triggering NLRP6-Dependent MUC2 Secretion. Science, 352, 1535-1542. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gonzalez-Perez, V., Martinez-Espinosa, P.L., Sala-Rabanal, M., Bharadwaj, N., Xia, X., Chen, A.C., et al. (2021) Goblet Cell LRRC26 Regulates BK Channel Activation and Protects against Colitis in Mice. Proceedings of the National Academy of Sciences, 118, e2019149118. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Arnold, J.W., Roach, J., Fabela, S., Moorfield, E., Ding, S., Blue, E., et al. (2021) The Pleiotropic Effects of Prebiotic Galacto-Oligosaccharides on the Aging Gut. Microbiome, 9, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ma, Y.F., Zhou, G.H., Li, Y.Q., Zhu, Y., Yu, X., Zhao, F., et al. (2018) Intake of Fish Oil Specifically Modulates Colonic MUC2 Expression in Middle‐Aged Rats by Suppressing the Glycosylation Process. Molecular Nutrition & Food Research, 62, Article ID: 1700661. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Su, D., Nie, Y., Zhu, A., Chen, Z., Wu, P., Zhang, L., et al. (2016) Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 7, Article No. 498. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kajiwara-Kubota, M., Uchiyama, K., Asaeda, K., Kobayashi, R., Hashimoto, H., Yasuda, T., et al. (2023) Partially Hydrolyzed Guar Gum Increased Colonic Mucus Layer in Mice via Succinate-Mediated MUC2 Production. NPJ Science of Food, 7, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liang, L., Liu, L., Zhou, W., Yang, C., Mai, G., Li, H., et al. (2022) Gut Microbiota-Derived Butyrate Regulates Gut Mucus Barrier Repair by Activating the Macrophage/WNT/ERK Signaling Pathway. Clinical Science, 136, 291-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Song, S., Byrd, J.C., Koo, J.S. and Bresalier, R.S. (2005) Bile Acids Induce MUC2 Overexpression in Human Colon Carcinoma Cells. Cancer, 103, 1606-1614. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yang, X., Ye, T., Rong, L., Peng, H., Tong, J., Xiao, X., et al. (2023) GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut and Liver, 18, 414-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ma, S., Yeom, J. and Lim, Y.H. (2020) Exogenous NAD+ Stimulates MUC2 Expression in LS 174T Goblet Cells via the PLC-Delta/PTGES/PKC-Delta/ERK/CREB Signaling Pathway. Biomolecules, 10, Article No. 580. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, J., Lei, H., Hu, X. and Dong, W. (2020) Hesperetin Ameliorates DSS-Induced Colitis by Maintaining the Epithelial Barrier via Blocking RIPK3/MLKL Necroptosis Signaling. European Journal of Pharmacology, 873, Article ID: 172992. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhou, X., Zhang, Y., Hu, M., et al. (2023) Resveratrol Enhances MUC2 Synthesis via the ANRIL-miR-34a Axis to Mitigate IBD. American Journal of Translational Research, 15, 363-372.
|
|
[53]
|
Raynaud, C.M., Jabeen, A., Ahmed, E.I., Hubrack, S., Sanchez, A., Sherif, S., et al. (2025) MUC2 Expression Modulates Immune Infiltration in Colorectal Cancer. Frontiers in Immunology, 15, Article ID: 1500374. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
He, Y., Shen, X. and Peng, H. (2024) Effects and Mechanisms of the Xianhecao-Huanglian Drug Pair on Autophagy-Mediated Intervention in Acute Inflammatory Bowel Disease via the JAK2/STAT3 Pathway. Biological Procedures Online, 26, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Saxena, A., Mitchell, C., Bogdon, R., Roark, K., Wilson, K., Staley, S., et al. (2024) Aryl Hydrocarbon Receptor Regulates MUC2 Production Independently of IL-22 during Colitis. International Journal of Molecular Sciences, 25, Article No. 2404. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kamei, A., Matsuda, A., Nakano, N., et al. (2023) The Protective Role of Conjunctival Goblet Cell Mucin Sialylation. Nature Communications, 14, Article No. 1417.
|
|
[57]
|
Yao, Y., Kim, G., Shafer, S., Chen, Z., Kubo, S., Ji, Y., et al. (2022) Mucus Sialylation Determines Intestinal Host-Commensal Homeostasis. Cell, 185, 1172-1188.e28. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Taniguchi, M., Okumura, R., Matsuzaki, T., Nakatani, A., Sakaki, K., Okamoto, S., et al. (2023) Sialylation Shapes Mucus Architecture Inhibiting Bacterial Invasion in the Colon. Mucosal Immunology, 16, 624-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wang, X., Khoshaba, R., Shen, Y., Cao, Y., Lin, M., Zhu, Y., et al. (2021) Impaired Barrier Function and Immunity in the Colon of Aldo-Keto Reductase 1B8 Deficient Mice. Frontiers in Cell and Developmental Biology, 9, Article ID: 632805. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Deng, Q., Yao, Y., Yang, J., Khoshaba, R., Shen, Y., Wang, X., et al. (2022) AKR1B8 Deficiency Drives Severe DSS-Induced Acute Colitis through Invasion of Luminal Bacteria and Activation of Innate Immunity. Frontiers in Immunology, 13, Article ID: 1042549. [Google Scholar] [CrossRef] [PubMed]
|