[1]
|
Li, S., Zhang, Y. and Huang, H. (2022) Black Phosphorus-Based Heterostructures for Photocatalysis and Photoelectrochemical Water Splitting. Journal of Energy Chemistry, 67, 745-779. https://doi.org/10.1016/j.jechem.2021.11.023
|
[2]
|
Zhao, G., Hu, J., Long, X., Zou, J., Yu, J. and Jiao, F. (2021) A Critical Review on Black Phosphorus‐Based Photocatalytic CO2 Reduction Application. Small, 17, e2102155. https://doi.org/10.1002/smll.202102155
|
[3]
|
Zhang, G., Chen, D. and Lu, J. (2023) A Review on Black-Phosphorus-Based Composite Heterojunction Photocatalysts for Energy and Environmental Applications. Separation and Purification Technology, 307, Article ID: 122833. https://doi.org/10.1016/j.seppur.2022.122833
|
[4]
|
Zhai, R., Zhang, L., Gu, M., Zhao, X., Zhang, B., Cheng, Y., et al. (2023) A Review of Phosphorus Structures as CO2 Reduction Photocatalysts. Small, 19, e2207840. https://doi.org/10.1002/smll.202207840
|
[5]
|
Zeng, L., Zhang, X., Liu, Y., Yang, X., Wang, J., Liu, Q., et al. (2022) Surface and Interface Control of Black Phosphorus. Chem, 8, 632-662. https://doi.org/10.1016/j.chempr.2021.11.022
|
[6]
|
Yin, T., Long, L., Tang, X., Qiu, M., Liang, W., Cao, R., et al. (2020) Advancing Applications of Black Phosphorus and BP‐Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 7, Article ID: 2001431. https://doi.org/10.1002/advs.202001431
|
[7]
|
Zhu, B., Sun, J., Zhao, Y., Zhang, L. and Yu, J. (2023) Construction of 2D S‐Scheme Heterojunction Photocatalyst. Advanced Materials, 36, e2310600. https://doi.org/10.1002/adma.202310600
|
[8]
|
Gao, W., Zhou, Y., Wu, X., Shen, Q., Ye, J. and Zou, Z. (2020) State‐of‐the‐Art Progress in Diverse Black Phosphorus‐Based Structures: Basic Properties, Synthesis, Stability, Photo‐ and Electrocatalysis‐Driven Energy Conversion. Advanced Functional Materials, 31, Article ID: 2005197. https://doi.org/10.1002/adfm.202005197
|
[9]
|
Qiao, J., Kong, X., Hu, Z., Yang, F. and Ji, W. (2014) High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nature Communications, 5, Article No. 4475. https://doi.org/10.1038/ncomms5475
|
[10]
|
Zhu, X., Zhang, T., Jiang, D., Duan, H., Sun, Z., Zhang, M., et al. (2018) Stabilizing Black Phosphorus Nanosheets via Edge-Selective Bonding of Sacrificial C60 Molecules. Nature Communications, 9, Article No. 4177. https://doi.org/10.1038/s41467-018-06437-1
|
[11]
|
Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., et al. (2017) Black Phosphorus Revisited: A Missing Metal‐Free Elemental Photocatalyst for Visible Light Hydrogen Evolution. Advanced Materials, 29, Article ID: 1605776. https://doi.org/10.1002/adma.201605776
|
[12]
|
Brent, J.R., Savjani, N., Lewis, E.A., Haigh, S.J., Lewis, D.J. and O’Brien, P. (2014) Production of Few-Layer Phosphorene by Liquid Exfoliation of Black Phosphorus. Chemical Communications, 50, 13338-13341. https://doi.org/10.1039/c4cc05752j
|
[13]
|
Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., et al. (2015) From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Advanced Functional Materials, 25, 6996-7002. https://doi.org/10.1002/adfm.201502902
|
[14]
|
Huang, Z., Hou, H., Zhang, Y., Wang, C., Qiu, X. and Ji, X. (2017) Layer‐Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium‐Storage Anode. Advanced Materials, 29, Article ID: 1702372. https://doi.org/10.1002/adma.201702372
|
[15]
|
Ambrosi, A., Sofer, Z. and Pumera, M. (2017) Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie International Edition, 56, 10443-10445. https://doi.org/10.1002/anie.201705071
|
[16]
|
Jia, J., Jang, S.K., Lai, S., Xu, J., Choi, Y.J., Park, J., et al. (2015) Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. ACS Nano, 9, 8729-8736. https://doi.org/10.1021/acsnano.5b04265
|
[17]
|
Zdeg, I., Al‐Shami, A., Tiouichi, G., Absike, H., Chaudhary, V., Neugebauer, P., et al. (2022) Electrical Transport Properties of Layered Black Phosphorus Grown by Chemical Vapor Transport. Crystal Research and Technology, 58, Article ID: 2200164. https://doi.org/10.1002/crat.202200164
|
[18]
|
Zhang, Z., Khurram, M., Sun, Z. and Yan, Q. (2018) Uniform Tellurium Doping in Black Phosphorus Single Crystals by Chemical Vapor Transport. Inorganic Chemistry, 57, 4098-4103. https://doi.org/10.1021/acs.inorgchem.8b00278
|
[19]
|
Macewicz, L., Pyrchla, K., Bogdanowicz, R., Sumanasekera, G. and Jasinski, J.B. (2021) Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons. The Journal of Physical Chemistry Letters, 12, 8347-8354. https://doi.org/10.1021/acs.jpclett.1c02064
|
[20]
|
Tian, B., Tian, B., Smith, B., Scott, M.C., Lei, Q., Hua, R., et al. (2018) Facile Bottom-Up Synthesis of Partially Oxidized Black Phosphorus Nanosheets as Metal-Free Photocatalyst for Hydrogen Evolution. Proceedings of the National Academy of Sciences, 115, 4345-4350. https://doi.org/10.1073/pnas.1800069115
|
[21]
|
Zhang, Y., Wang, H., Luo, Z., Tan, H.T., Li, B., Sun, S., et al. (2016) An Air‐Stable Densely Packed Phosphorene-Graphene Composite toward Advanced Lithium Storage Properties. Advanced Energy Materials, 6, Article ID: 1600453. https://doi.org/10.1002/aenm.201600453
|
[22]
|
Yang, S., Gong, Y., Zhang, J., Zhan, L., Ma, L., Fang, Z., et al. (2013) Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light. Advanced Materials, 25, 2452-2456. https://doi.org/10.1002/adma.201204453
|
[23]
|
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568-571. https://doi.org/10.1126/science.1194975
|
[24]
|
Lin, S., Liu, S., Yang, Z., Li, Y., Ng, T.W., Xu, Z., et al. (2015) Solution‐Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Advanced Functional Materials, 26, 864-871. https://doi.org/10.1002/adfm.201503273
|
[25]
|
Wu, S., Hui, K.S. and Hui, K.N. (2018) 2D Black Phosphorus: From Preparation to Applications for Electrochemical Energy Storage. Advanced Science, 5, Article ID: 1700491. https://doi.org/10.1002/advs.201700491
|
[26]
|
Yang, Y., Hou, H., Zou, G., Shi, W., Shuai, H., Li, J., et al. (2019) Electrochemical Exfoliation of Graphene-Like Two-Dimensional Nanomaterials. Nanoscale, 11, 16-33. https://doi.org/10.1039/c8nr08227h
|
[27]
|
Ambrosi, A. and Pumera, M. (2018) Exfoliation of Layered Materials Using Electrochemistry. Chemical Society Reviews, 47, 7213-7224. https://doi.org/10.1039/c7cs00811b
|
[28]
|
Yang, R., Fan, Y., Mei, L., Shin, H.S., Voiry, D., Lu, Q., et al. (2023) Synthesis of Atomically Thin Sheets by the Intercalation-Based Exfoliation of Layered Materials. Nature Synthesis, 2, 101-118. https://doi.org/10.1038/s44160-022-00232-z
|
[29]
|
Yu, W., Yang, J., Li, J., Zhang, K., Xu, H., Zhou, X., et al. (2021) Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery. Advanced Materials, 33, Article ID: 2102083. https://doi.org/10.1002/adma.202102083
|
[30]
|
Yang, S., Zhang, K., Ricciardulli, A.G., Zhang, P., Liao, Z., Lohe, M.R., et al. (2018) A Delamination Strategy for Thinly Layered Defect‐Free High‐Mobility Black Phosphorus Flakes. Angewandte Chemie International Edition, 57, 4677-4681. https://doi.org/10.1002/anie.201801265
|
[31]
|
Li, J., Chen, C., Liu, S., Lu, J., Goh, W.P., Fang, H., et al. (2018) Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 30, 2742-2749. https://doi.org/10.1021/acs.chemmater.8b00521
|
[32]
|
Wang, N., Mao, N., Wang, Z., Yang, X., Zhou, X., Liu, H., et al. (2020) Electrochemical Delamination of Ultralarge Few‐Layer Black Phosphorus with a Hydrogen‐Free Intercalation Mechanism. Advanced Materials, 33, Article ID: 2005815. https://doi.org/10.1002/adma.202005815
|
[33]
|
Zhang, Y., Rui, X., Tang, Y., Liu, Y., Wei, J., Chen, S., et al. (2016) Wet‐Chemical Processing of Phosphorus Composite Nanosheets for High‐Rate and High‐Capacity Lithium‐Ion Batteries. Advanced Energy Materials, 6, Article ID: 1502409. https://doi.org/10.1002/aenm.201502409
|
[34]
|
Zhu, S., Liang, Q., Xu, Y., Fu, H. and Xiao, X. (2020) Facile Solvothermal Synthesis of Black Phosphorus Nanosheets from Red Phosphorus for Efficient Photocatalytic Hydrogen Evolution. European Journal of Inorganic Chemistry, 2020, 773-779. https://doi.org/10.1002/ejic.202000048
|
[35]
|
Sakthivel, T., Huang, X., Wu, Y. and Rtimi, S. (2020) Recent Progress in Black Phosphorus Nanostructures as Environmental Photocatalysts. Chemical Engineering Journal, 379, Article ID: 122297. https://doi.org/10.1016/j.cej.2019.122297
|
[36]
|
Moradian, S., Badiei, A., Mohammadi Ziarani, G., Mohajer, F., Varma, R.S. and Iravani, S. (2023) Black Phosphorus-Based Photocatalysts: Synthesis, Properties, and Applications. Environmental Research, 237, Article ID: 116910. https://doi.org/10.1016/j.envres.2023.116910
|
[37]
|
Uk Lee, H., Lee, S.C., Won, J., Son, B., Choi, S., Kim, Y., et al. (2015) Stable Semiconductor Black Phosphorus (BP)@Titanium Dioxide (TiO2) Hybrid Photocatalysts. Scientific Reports, 5, Article No. 8691. https://doi.org/10.1038/srep08691
|
[38]
|
Wang, L., Xu, Q., Xu, J. and Weng, J. (2016) Synthesis of Hybrid Nanocomposites of ZIF-8 with Two-Dimensional Black Phosphorus for Photocatalysis. RSC Advances, 6, 69033-69039. https://doi.org/10.1039/c6ra13646j
|
[39]
|
Feng, R., Lei, W., Sui, X., Liu, X., Qi, X., Tang, K., et al. (2018) Anchoring Black Phosphorus Quantum Dots on Molybdenum Disulfide Nanosheets: A 0D/2D Nanohybrid with Enhanced Visible-and NIR-Light Photoactivity. Applied Catalysis B: Environmental, 238, 444-453. https://doi.org/10.1016/j.apcatb.2018.07.052
|
[40]
|
He, C., Qian, H., Li, X., Yan, X., Zuo, S., Qian, J., et al. (2018) Visible-Light-Driven CeO2/Black Phosphorus Heterostructure with Enhanced Photocatalytic Performance. Journal of Materials Science: Materials in Electronics, 30, 593-599. https://doi.org/10.1007/s10854-018-0325-1
|
[41]
|
Krebs, H., Weitz, H. and Worms, K.H. (1955) Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Zeitschrift für anorganische und allgemeine Chemie, 280, 119-133. https://doi.org/10.1002/zaac.19552800110
|
[42]
|
Chen, L., Wang, C., Liu, G., Su, G., Dang, L. and Wei, H. (2023) Cu(II) Harmonize G-C3N4 and Black Phosphorous Together under the Interaction of Surface Charges to Form Unconventional Type-II Photocatalyst BPs/Cu/CNs with Attractive Performance. Chemical Engineering Journal, 463, Article ID: 142500. https://doi.org/10.1016/j.cej.2023.142500
|
[43]
|
Zhang, K., Zhang, Y., Zhang, D., Liu, C., Zhou, X., Yang, H., et al. (2023) Efficient Photocatalytic Water Disinfection by a Novel BP/Biobr S-Scheme Heterojunction Photocatalyst. Chemical Engineering Journal, 468, Article ID: 143581. https://doi.org/10.1016/j.cej.2023.143581
|
[44]
|
Wang, P., Liu, Y., Jiang, N., Jing, R., Li, S., Zhang, Q., et al. (2021) Double S-Scheme AgBr Heterojunction Co-Modified with G-C3N4 and Black Phosphorus Nanosheets Greatly Improves the Photocatalytic Activity and Stability. Journal of Molecular Liquids, 329, Article ID: 115540. https://doi.org/10.1016/j.molliq.2021.115540
|
[45]
|
Zhu, X., Huang, S., Yu, Q., She, Y., Yang, J., Zhou, G., et al. (2020) In-Situ Hydroxyl Modification of Monolayer Black Phosphorus for Stable Photocatalytic Carbon Dioxide Conversion. Applied Catalysis B: Environmental, 269, Article ID: 118760. https://doi.org/10.1016/j.apcatb.2020.118760
|
[46]
|
Gao, W., Bai, X., Gao, Y., Liu, J., He, H., Yang, Y., et al. (2020) Anchoring of Black Phosphorus Quantum Dots Onto WO3 Nanowires to Boost Photocatalytic CO2 Conversion into Solar Fuels. Chemical Communications, 56, 7777-7780. https://doi.org/10.1039/d0cc00805b
|
[47]
|
Zhou, G., Yang, J., Zhu, X., Li, Q., Yu, Q., El-alami, W., et al. (2020) Cryo-Induced Closely Bonded Heterostructure for Effective CO2 Conversion: The Case of Ultrathin BP Nanosheets/G-C3N4. Journal of Energy Chemistry, 49, 89-95. https://doi.org/10.1016/j.jechem.2020.01.020
|
[48]
|
Wang, X., He, J., Li, J., Lu, G., Dong, F., Majima, T., et al. (2020) Immobilizing Perovskite CsPbBr3 Nanocrystals on Black Phosphorus Nanosheets for Boosting Charge Separation and Photocatalytic CO2 Reduction. Applied Catalysis B: Environmental, 277, Article ID: 119230. https://doi.org/10.1016/j.apcatb.2020.119230
|
[49]
|
Bian, S., Wen, M., Wang, J., Yang, N., Chu, P.K. and Yu, X. (2020) Edge-Rich Black Phosphorus for Photocatalytic Nitrogen Fixation. The Journal of Physical Chemistry Letters, 11, 1052-1058. https://doi.org/10.1021/acs.jpclett.9b03507
|
[50]
|
Shen, Z., Yuan, Y., Wang, P., Bai, W., Pei, L., Wu, S., et al. (2020) Few-Layer Black Phosphorus Nanosheets: A Metal-Free Cocatalyst for Photocatalytic Nitrogen Fixation. ACS Applied Materials & Interfaces, 12, 17343-17352. https://doi.org/10.1021/acsami.9b21167
|
[51]
|
Shen, Z., Cheng, M., Yuan, Y., Pei, L., Zhong, J., Guan, J., et al. (2021) Identifying the Role of Interface Chemical Bonds in Activating Charge Transfer for Enhanced Photocatalytic Nitrogen Fixation of Ni2P-Black Phosphorus Photocatalysts. Applied Catalysis B: Environmental, 295, Article ID: 120274. https://doi.org/10.1016/j.apcatb.2021.120274
|
[52]
|
Dong, G., Huang, X. and Bi, Y. (2022) Anchoring Black Phosphorus Quantum Dots on Fe‐Doped W18O49 Nanowires for Efficient Photocatalytic Nitrogen Fixation. Angewandte Chemie International Edition, 61, e202204271. https://doi.org/10.1002/anie.202204271
|
[53]
|
Qiu, P., Xu, C., Zhou, N., Chen, H. and Jiang, F. (2018) Metal-Free Black Phosphorus Nanosheets-Decorated Graphitic Carbon Nitride Nanosheets with CP Bonds for Excellent Photocatalytic Nitrogen Fixation. Applied Catalysis B: Environmental, 221, 27-35. https://doi.org/10.1016/j.apcatb.2017.09.010
|
[54]
|
Feng, R., Wan, K., Sui, X., Zhao, N., Li, H., Lei, W., et al. (2021) Anchoring Single Pt Atoms and Black Phosphorene Dual Co-Catalysts on CdS Nanospheres to Boost Visible-Light Photocatalytic H2 Evolution. Nano Today, 37, Article ID: 101080. https://doi.org/10.1016/j.nantod.2021.101080
|
[55]
|
Yuan, Y., Wang, P., Li, Z., Wu, Y., Bai, W., Su, Y., et al. (2019) The Role of Bandgap and Interface in Enhancing Photocatalytic H2 Generation Activity of 2D-2D Black Phosphorus/MoS2 Photocatalyst. Applied Catalysis B: Environmental, 242, 1-8. https://doi.org/10.1016/j.apcatb.2018.09.100
|
[56]
|
Zhu, M., Kim, S., Mao, L., Fujitsuka, M., Zhang, J., Wang, X., et al. (2017) Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/graphitic Carbon Nitride. Journal of the American Chemical Society, 139, 13234-13242. https://doi.org/10.1021/jacs.7b08416
|
[57]
|
Liu, F., Shi, R., Wang, Z., Weng, Y., Che, C. and Chen, Y. (2019) Direct Z‐Scheme Hetero‐Phase Junction of Black/Red Phosphorus for Photocatalytic Water Splitting. Angewandte Chemie International Edition, 58, 11791-11795. https://doi.org/10.1002/anie.201906416
|
[58]
|
Wang, X., Ma, M., Zhao, X., Jiang, P., Wang, Y., Wang, J., et al. (2023) Phase Engineering of 2D Violet/Black Phosphorus Heterostructure for Enhanced Photocatalytic Hydrogen Evolution. Small Structures, 4, Article ID: 2300123. https://doi.org/10.1002/sstr.202300123
|