[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Tong, Y., Gao, H., Qi, Q., Liu, X., Li, J., Gao, J., et al. (2021) High Fat Diet, Gut Microbiome and Gastrointestinal Cancer. Theranostics, 11, 5889-5910. https://doi.org/10.7150/thno.56157
|
[3]
|
Liu, Y., Baba, Y., Ishimoto, T., Gu, X., Zhang, J., Nomoto, D., et al. (2022) Gut Microbiome in Gastrointestinal Cancer: A Friend or Foe? International Journal of Biological Sciences, 18, 4101-4117. https://doi.org/10.7150/ijbs.69331
|
[4]
|
Mima, K., Kosumi, K., Baba, Y., Hamada, T., Baba, H. and Ogino, S. (2020) The Microbiome, Genetics, and Gastrointestinal Neoplasms: The Evolving Field of Molecular Pathological Epidemiology to Analyze the Tumor-Immune-Microbiome Interaction. Human Genetics, 140, 725-746. https://doi.org/10.1007/s00439-020-02235-2
|
[5]
|
Hyde, A.J., Nassabein, R., AlShareef, A., Armstrong, D., Babak, S., Berry, S., et al. (2019) Eastern Canadian Gastrointestinal Cancer Consensus Conference 2018. Current Oncology, 26, 665-681. https://doi.org/10.3747/co.26.5193
|
[6]
|
Tumino, N., Besi, F., Martini, S., Di Pace, A.L., Munari, E., Quatrini, L., et al. (2022) Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Frontiers in Immunology, 12, Article 803014. https://doi.org/10.3389/fimmu.2021.803014
|
[7]
|
Wang, Y., Jia, A., Bi, Y., Wang, Y. and Liu, G. (2020) Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Cells, 9, Article 1011. https://doi.org/10.3390/cells9041011
|
[8]
|
Wen, J., Xuan, B., Gao, Y., Liu, Y., Wang, L., He, L., et al. (2023) Lnc-17rik Promotes the Immunosuppressive Function of Myeloid-Derived Suppressive Cells in Esophageal Cancer. Cellular Immunology, 385, Article 104676. https://doi.org/10.1016/j.cellimm.2023.104676
|
[9]
|
Moaaz, M., Lotfy, H., Elsherbini, B., Motawea, M. and Fadali, G. (2020) TGF-β Enhances the Anti-Inflammatory Effect of Tumor-Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494. Asian Pacific Journal of Cancer Prevention, 21, 3393-3403. https://doi.org/10.31557/apjcp.2020.21.11.3393
|
[10]
|
Ma, C., Zhang, Q. and Greten, T.F. (2021) MDSCs in Liver Cancer: A Critical Tumor-Promoting Player and a Potential Therapeutic Target. Cellular Immunology, 361, Article 104295. https://doi.org/10.1016/j.cellimm.2021.104295
|
[11]
|
Dong, P., Yan, Y., Fan, Y., Wang, H., Wu, D., Yang, L., et al. (2022) The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technology in Cancer Research & Treatment, 21. https://doi.org/10.1177/15330338221142472
|
[12]
|
Al-Mterin, M.A. and Elkord, E. (2022) Myeloid-Derived Suppressor Cells in Colorectal Cancer: Prognostic Biomarkers and Therapeutic Targets. Exploration of Targeted Anti-Tumor Therapy, 3, 497-510. https://doi.org/10.37349/etat.2022.00097
|
[13]
|
Mojsilovic, S., Mojsilovic, S.S., Bjelica, S. and Santibanez, J.F. (2021) Transforming Growth Factor‐Beta1 and Myeloid‐Derived Suppressor Cells: A Cancerous Partnership. Developmental Dynamics, 251, 85-104. https://doi.org/10.1002/dvdy.339
|
[14]
|
Stephen, J.K., Chen, K.M., Havard, S., Harris, G. and Worsham, M.J. (2012) Promoter Methylation in Head and Neck Tumorigenesis. In: Dumitrescu, R. and Verma, M., Eds., Cancer Epigenetics, Humana Press, 187-206. https://doi.org/10.1007/978-1-61779-612-8_11
|
[15]
|
Li, L., Li, M. and Jia, Q. (2023) Myeloid-Derived Suppressor Cells: Key Immunosuppressive Regulators and Therapeutic Targets in Cancer. Pathology-Research and Practice, 248, Article 154711. https://doi.org/10.1016/j.prp.2023.154711
|
[16]
|
Bayik, D., Lee, J. and Lathia, J.D. (2022) The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. In: Klink, M. and Szulc-Kielbik, I., Eds., Interaction of Immune and Cancer Cells, Springer International Publishing, 189-217. https://doi.org/10.1007/978-3-030-91311-3_7
|
[17]
|
Hofer, F., Di Sario, G., Musiu, C., Sartoris, S., De Sanctis, F. and Ugel, S. (2021) A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 10, Article 2700. https://doi.org/10.3390/cells10102700
|
[18]
|
Umansky, V., Blattner, C., Fleming, V., Hu, X., Gebhardt, C., Altevogt, P., et al. (2016) Myeloid-Derived Suppressor Cells and Tumor Escape from Immune Surveillance. Seminars in Immunopathology, 39, 295-305. https://doi.org/10.1007/s00281-016-0597-6
|
[19]
|
Reuven, O., Mikula, I., Ashkenazi‐Preiser, H., Twaik, N., Ben‐Meir, K., Meirow, Y., et al. (2022) Functional Assays Evaluating Immunosuppression Mediated by Myeloid‐Derived Suppressor Cells. Current Protocols, 2, e557. https://doi.org/10.1002/cpz1.557
|
[20]
|
Beury, D.W., Carter, K.A., Nelson, C., Sinha, P., Hanson, E., Nyandjo, M., et al. (2016) Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2. The Journal of Immunology, 196, 3470-3478. https://doi.org/10.4049/jimmunol.1501785
|
[21]
|
Ju, J., Nam, G., Lee, Y., Jung, M., Chang, H., Kim, W., et al. (2021) IDO1 Scavenges Reactive Oxygen Species in Myeloid-Derived Suppressor Cells to Prevent Graft-versus-Host Disease. Proceedings of the National Academy of Sciences, 118, e2011170118. https://doi.org/10.1073/pnas.2011170118
|
[22]
|
Tang, Y., Zhou, C., Li, Q., Cheng, X., Huang, T., Li, F., et al. (2022) Targeting Depletion of Myeloid-Derived Suppressor Cells Potentiates PD-L1 Blockade Efficacy in Gastric and Colon Cancers. OncoImmunology, 11, Article 2131084. https://doi.org/10.1080/2162402x.2022.2131084
|
[23]
|
Ma, T., Renz, B.W., Ilmer, M., Koch, D., Yang, Y., Werner, J., et al. (2022) Myeloid-Derived Suppressor Cells in Solid Tumors. Cells, 11, Article 310. https://doi.org/10.3390/cells11020310
|
[24]
|
Li, Y., He, H., Jihu, R., Zhou, J., Zeng, R. and Yan, H. (2021) Novel Characterization of Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 9, Article 698532. https://doi.org/10.3389/fcell.2021.698532
|
[25]
|
叶萍萍. 免疫抑制性细胞MDSC、Treg、Ts在肿瘤患者外周血中的水平及其临床意义[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
|
[26]
|
Jiao, Z. (2012) Correlation between Circulating Myeloid-Derived Suppressor Cells and Th17 Cells in Esophageal Cancer. World Journal of Gastroenterology, 18, 5454-5461. https://doi.org/10.3748/wjg.v18.i38.5454
|
[27]
|
Gabitass, R.F., Annels, N.E., Stocken, D.D., Pandha, H.A. and Middleton, G.W. (2011) Elevated Myeloid-Derived Suppressor Cells in Pancreatic, Esophageal and Gastric Cancer Are an Independent Prognostic Factor and Are Associated with Significant Elevation of the Th2 Cytokine Interleukin-13. Cancer Immunology, Immunotherapy, 60, 1419-1430. https://doi.org/10.1007/s00262-011-1028-0
|
[28]
|
Stoffel, E.M., Brand, R.E. and Goggins, M. (2023) Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology, 164, 752-765. https://doi.org/10.1053/j.gastro.2023.02.012
|
[29]
|
Takeuchi, S., Baghdadi, M., Tsuchikawa, T., Wada, H., Nakamura, T., Abe, H., et al. (2015) Chemotherapy-Derived Inflammatory Responses Accelerate the Formation of Immunosuppressive Myeloid Cells in the Tissue Microenvironment of Human Pancreatic Cancer. Cancer Research, 75, 2629-2640. https://doi.org/10.1158/0008-5472.can-14-2921
|
[30]
|
Pergamo, M. and Miller, G. (2016) Myeloid-Derived Suppressor Cells and Their Role in Pancreatic Cancer. Cancer Gene Therapy, 24, 100-105. https://doi.org/10.1038/cgt.2016.65
|
[31]
|
Sharma, V., Aggarwal, A., Jacob, J. and Sahni, D. (2021) Myeloid‐Derived Suppressor Cells: Bridging the Gap between Inflammation and Pancreatic Adenocarcinoma. Scandinavian Journal of Immunology, 93, e13021. https://doi.org/10.1111/sji.13021
|
[32]
|
Zhao, M., Tominaga, Y., Ohuchida, K., Mizumoto, K., Cui, L., Kozono, S., et al. (2011) Significance of Combination Therapy of Zoledronic Acid and Gemcitabine on Pancreatic Cancer. Cancer Science, 103, 58-66. https://doi.org/10.1111/j.1349-7006.2011.02113.x
|
[33]
|
Ajani, J.A., D’Amico, T.A., Bentrem, D.J., Chao, J., Cooke, D., Corvera, C., et al. (2022) Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 20, 167-192. https://doi.org/10.6004/jnccn.2022.0008
|
[34]
|
Jiménez-Cortegana, C., Galassi, C., Klapp, V., Gabrilovich, D.I. and Galluzzi, L. (2022) Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunology Research, 10, 545-557. https://doi.org/10.1158/2326-6066.cir-21-1105
|
[35]
|
Wang, L., Chang, E.W.Y., Wong, S.C., Ong, S., Chong, D.Q.Y. and Ling, K.L. (2013) Increased Myeloid-Derived Suppressor Cells in Gastric Cancer Correlate with Cancer Stage and Plasma S100A8/A9 Proinflammatory Proteins. The Journal of Immunology, 190, 794-804. https://doi.org/10.4049/jimmunol.1202088
|
[36]
|
Kao, K.D., Grasberger, H. and El-Zaatari, M. (2023) The Cxcr2+ Subset of the S100a8+ Gastric Granylocytic Myeloid-Derived Suppressor Cell Population (G-MDSC) Regulates Gastric Pathology. Frontiers in Immunology, 14, Article 1147695. https://doi.org/10.3389/fimmu.2023.1147695
|
[37]
|
王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
|
[38]
|
Lu, C., Rong, D., Zhang, B., Zheng, W., Wang, X., Chen, Z., et al. (2019) Current Perspectives on the Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Challenges and Opportunities. Molecular Cancer, 18, Article No. 130. https://doi.org/10.1186/s12943-019-1047-6
|
[39]
|
Yu, S.J., Ma, C., Heinrich, B., Brown, Z.J., Sandhu, M., Zhang, Q., et al. (2019) Targeting the Crosstalk between Cytokine-Induced Killer Cells and Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma. Journal of Hepatology, 70, 449-457. https://doi.org/10.1016/j.jhep.2018.10.040
|
[40]
|
Baidoun, F. (2021) Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22, 998-1009. https://doi.org/10.2174/18735592mtex9ntk2y
|
[41]
|
Lu, L., Chang, C. and Hsu, C. (2019) Targeting Myeloid-Derived Suppressor Cells in the Treatment of Hepatocellular Carcinoma: Current State and Future Perspectives. Journal of Hepatocellular Carcinoma, 6, 71-84. https://doi.org/10.2147/jhc.s159693
|
[42]
|
Sun, H., Chen, J., Wu, W., Yang, Y., Xu, Y., Yu, X., et al. (2021) Retinoic Acid Synthesis Deficiency Fosters the Generation of Polymorphonuclear Myeloid-Derived Suppressor Cells in Colorectal Cancer. Cancer Immunology Research, 9, 20-33. https://doi.org/10.1158/2326-6066.cir-20-0389
|
[43]
|
Li, K., Shi, H., Zhang, B., Ou, X., Ma, Q., Chen, Y., et al. (2021) Myeloid-Derived Suppressor Cells as Immunosuppressive Regulators and Therapeutic Targets in Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 362. https://doi.org/10.1038/s41392-021-00670-9
|
[44]
|
Aarts, C.E.M. and Kuijpers, T.W. (2018) Neutrophils as Myeloid‐Derived Suppressor Cells. European Journal of Clinical Investigation, 48, e12989. https://doi.org/10.1111/eci.12989
|
[45]
|
Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R.L., Komohara, Y., Decker, S.A., et al. (2011) COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells. Cancer Research, 71, 2664-2674. https://doi.org/10.1158/0008-5472.can-10-3055
|
[46]
|
Noonan, K.A., Ghosh, N., Rudraraju, L., Bui, M. and Borrello, I. (2014) Targeting Immune Suppression with PDE5 Inhibition in End-Stage Multiple Myeloma. Cancer Immunology Research, 2, 725-731. https://doi.org/10.1158/2326-6066.cir-13-0213
|
[47]
|
Draghiciu, O., Lubbers, J., Nijman, H.W. and Daemen, T. (2015) Myeloid Derived Suppressor Cells—An Overview of Combat Strategies to Increase Immunotherapy Efficacy. OncoImmunology, 4, e954829. https://doi.org/10.4161/21624011.2014.954829
|
[48]
|
Safari, E., Ghorghanlu, S., Ahmadi‐khiavi, H., Mehranfar, S., Rezaei, R. and Motallebnezhad, M. (2018) Myeloid‐Derived Suppressor Cells and Tumor: Current Knowledge and Future Perspectives. Journal of Cellular Physiology, 234, 9966-9981. https://doi.org/10.1002/jcp.27923
|
[49]
|
Schwarz, J., Rühle, J., Stephan, K., Dietz, S., Geißert, J., Schoppmeier, U., et al. (2023) HIF‐1α Targeted Deletion in Myeloid Cells Decreases MDSC Accumulation and Alters Microbiome in Neonatal Mice. European Journal of Immunology, 53, Article 2250144. https://doi.org/10.1002/eji.202250144
|
[50]
|
Hossain, F., Al-Khami, A.A., Wyczechowska, D., Hernandez, C., Zheng, L., Reiss, K., et al. (2015) Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunology Research, 3, 1236-1247. https://doi.org/10.1158/2326-6066.cir-15-0036
|
[51]
|
Guo, C., Hu, F., Yi, H., Feng, Z., Li, C., Shi, L., et al. (2014) Myeloid-Derived Suppressor Cells Have a Proinflammatory Role in the Pathogenesis of Autoimmune Arthritis. Annals of the Rheumatic Diseases, 75, 278-285. https://doi.org/10.1136/annrheumdis-2014-205508
|
[52]
|
Dominguez, G.A., Condamine, T., Mony, S., Hashimoto, A., Wang, F., Liu, Q., et al. (2017) Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clinical Cancer Research, 23, 2942-2950. https://doi.org/10.1158/1078-0432.ccr-16-1784
|
[53]
|
Qin, H., Lerman, B., Sakamaki, I., Wei, G., Cha, S.C., Rao, S.S., et al. (2014) Generation of a New Therapeutic Peptide That Depletes Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Nature Medicine, 20, 676-681. https://doi.org/10.1038/nm.3560
|
[54]
|
Feng, P., Yu, C., Chen, K., Luo, C., Wu, S.M., Liu, C., et al. (2018) S100A9+ MDSC and TAM-Mediated EGFR-TKI Resistance in Lung Adenocarcinoma: The Role of RELB. Oncotarget, 9, 7631-7643. https://doi.org/10.18632/oncotarget.25943
|
[55]
|
Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. (2010) 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity. Cancer Research, 70, 3052-3061. https://doi.org/10.1158/0008-5472.can-09-3690
|
[56]
|
Wu, Y., Yi, M., Niu, M., Mei, Q. and Wu, K. (2022) Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Molecular Cancer, 21, Article No. 184. https://doi.org/10.1186/s12943-022-01657-y
|