MDSCs在消化系统肿瘤中的作用及其靶向治疗的研究进展
The Role of MDSCs in Digestive System Tumors and Research Progress in Targeted Therapy
DOI: 10.12677/acm.2024.1492548, PDF, HTML, XML,    科研立项经费支持
作者: 黄丽葶*:桂平市人民医院遗传实验室,广西 桂平;刘姗姗#:桂林医学院附属医院检验科,广西 桂林
关键词: 髓源抑制性细胞(MDSCs)消化系统肿瘤肿瘤微环境靶向治疗Myeloid-Derived Suppressor Cells (MDSCs) Digestive System Tumors Tumor Microenvironment Targeted Therapy
摘要: 消化系统肿瘤在我国的发病率高且存活率低,尽管随着医学的不断发展,目前的治疗手段能够在一定程度上提高和改善患者的生存率及预后,但总的生存率仍没有达到人们预期。肿瘤微环境(TME)由多种免疫细胞组成,其中髓源抑制细胞(MDSCs)是起免疫抑制作用的重要组成部分,它通过抑制机体的免疫细胞如T细胞或者自然杀伤细胞(NK细胞)来帮助肿瘤细胞发生免疫逃逸。研究发现MDSCs的生成、分化、数量及凋亡与消化系统肿瘤的发生发展密切相关,并且靶向MDSCs可作为消化系统肿瘤靶向治疗的潜在靶点,因此本文就MDSCs在消化系统肿瘤中的作用及其靶向治疗的研究做一综述。
Abstract: The incidence rate of digestive system tumors in China is high and the survival rate is low. With the continuous development of medicine, the current treatment methods can improve the survival rate and prognosis of patients, but the overall survival rate still does not meet patient expected. The tumor microenvironment (TME) is composed of various immune cells, myeloid derived suppressor cells (MDSCs) are one kind of important immune suppression cells. They help tumor cells escape by inhibiting immune cells such as T cells or natural killer cells (NK cells). Research has found that the generation, differentiation, quantity, and apoptosis of MDSCs are closely related to the occurrence and development of digestive system tumors, and targeting MDSCs can be a potential point for targeted therapy. Therefore, this paper reviews the role of MDSCs in digestive system tumors and their targeted therapy research.
文章引用:黄丽葶, 刘姗姗. MDSCs在消化系统肿瘤中的作用及其靶向治疗的研究进展[J]. 临床医学进展, 2024, 14(9): 925-933. https://doi.org/10.12677/acm.2024.1492548

1. 引言

根据《2020年全球癌症统计报告:全球185个国家36种癌症发病率和死亡率的估计》的统计数据,我国结直肠癌、胃癌、肝癌和食管癌的发病率与死亡率均高于世界水平[1],这意味着消化系统肿瘤已成为影响我国居民生存的主要社会健康问题。消化系统肿瘤发病的原因主要有生活方式、肠道微生物群、代谢产物异常以及遗传因素等[2]-[4]。目前消化系统肿瘤的治疗手段主要包括手术、化疗、放疗、免疫治疗[5],这些治疗方式在当前的医疗领域已经发展得相对成熟,能够在一定程度上提高患者生存率以及改善预后,但总生存期仍不理想。随着研究的不断深入,人们发现部分消化系统肿瘤因肿瘤微环境(TME)的变化使肿瘤细胞发生化疗抵抗、免疫逃逸等,使治疗变得更困难。肿瘤微环境(TME)由多种免疫细胞组成,髓源抑制细胞(MDSCs)在其中起抑制作用的一员,它可以通过抑制机体的免疫细胞如T细胞或者自然杀伤细胞(NK)来帮助肿瘤细胞免受机体的攻击[6]。MDSCs是由骨髓祖细胞不正常分化产生的未成熟骨髓细胞,在正常机体中的数量非常少,只有当机体处于病理情况时不成熟的髓系细胞(IMC)正常分化受影响转而向MDSCs分化,具有明显的异质性及免疫抑制性,能在抗癌免疫机制中抑制抗肿瘤免疫功能,帮助肿瘤细胞发生免疫逃逸,在肿瘤的发生、发展中起着非常重要的作用[7]。MDSCs在食管癌、胃癌、肝癌、胰腺癌、结直肠癌患者肿瘤组织部位及外周血中的水平比健康人高,可作为消化系统肿瘤预后指标[8]-[12],因此通过研究其在肿瘤微环境的作用机制,可以更好地为消化系统肿瘤的免疫靶向治疗提供扎实的理论依据。

2. 髓源抑制性细胞(MDSCs)在消化系统肿瘤中的免疫抑制机制

骨髓源性抑制性细胞(MDSCs)是骨髓造血过程中造血干细胞(HSC)受到病理性刺激如炎症、肿瘤和自身免疫性疾病等长期影响使分化发生变化而产生的一种异质性的未成熟骨髓细胞群体。与成熟分化的细胞相比,MDSCs缺乏相关的表面标志物[13]-[15],它们分为两大类细胞:多核细胞(PMN-MDSCs)和单核细胞(M-MDSCs)。这两大类MDSCs细胞的形态上分别类似于粒细胞和单核细胞[16],但它们具有各自特有的基因组及生化特性。MDSCs是肿瘤微环境的重要组成部分,它具有多重调节方式起免疫抑制作用帮助肿瘤细胞免受机体伤害[17]。MDSCs通过抑制机体T细胞及自然杀伤细胞(NK)等免疫细胞或诱导调节性T细胞(Tregs)的产生来帮助肿瘤细胞免受伤害和逃逸[18]。MDSCs对T细胞抑制可通过以下机制。L-精氨酸和半胱氨酸是T细胞增殖分化过程中两种重要的氨基酸,MDSCs消耗T细胞所需的氨基酸使T细胞的活化及增殖受阻。MDSCs在肿瘤微环境中高表达精氨酸酶-1 (ARG-1)和诱导型一氧化氮合酶(iNOS),ARG-1和iNOS两种酶共同作用使L-精氨酸分解为其他产物,同时结合产物中NO来使TCR复合物CD3ζ链的表达下调和T细胞增殖停滞[19]。T细胞依靠抗原提呈细胞吸收细胞外的半胱氨酸,MDSCs通过吸收半胱氨酸降低TME中的半胱氨酸水平,从而使T细胞活化受损[20]。MDSCs通过上调NADPH氧化酶活性来驱动活性氧(ROS)的产生,从而抑制T细胞功能,有研究表示使用ROS抑制剂时,可以消除MDSCs对T细胞的抑制[21]。MDSCs可下调CD4+和CD8+T细胞膜表面的L-选择素水平,使T细胞的激活受影响,还可以作用于T细胞表面上程序性细胞死蛋白(PD-1),使T细胞的功能受影响,抗肿瘤能力下降[22]。MDSCs对NK细胞抑制可通过抑制IL-2使NK细胞的活化及穿孔素生成受抑制,降低NK细胞对肿瘤细胞的攻击力,同时MDSCs还通过阻断MDSCs还可以阻断NK细胞分泌IFN-γ,MDSCs产生的NO进一步干扰NK Fc受体,抑制NK细胞的细胞毒性[23]。Treg是T细胞亚群中的一类,但是其功能与T细胞相反,是一组免疫抑制细胞,主要通过释放抑制性细胞因子或通过细胞间接触促进肿瘤的免疫逃逸,TME中的MDSCs通过细胞因子诱导纯真T细胞向Tregs表型分化来促进肿瘤的免疫逃逸[24]。此外MDSCs可促进血管化和转移前龛的形成进而促进肿瘤发展[25]

2.1. 食管癌

食管癌(ECA)患者外周循环的中MDSCs细胞比例增高,其产物Arg1及iNOS水平增高且与IL-6和TNF-α呈正相关,这项早期的研究虽未区分多核细胞(PMN-MDSCs)和单核细胞(M-MDSCs)这两大类MDSCs细胞,但提出MDSCs可通过其代谢产物与细胞因子相关作用促食管癌发生发展[26]。另外MDSCs的抑制作用除了通过代谢产物以外还与外周循环中其他免疫抑制细胞密切相关。有报道发现食管癌患者外周血中的MDSCs和Treg显著升高,MDSCs数量与Treg水平正相关[27]。MDSCs增加与死亡风险增加相关,在多变量分析中,MDSCs含量是生存的独立预后因素。结合食管癌中的MDSCs与Th2、Th17中的IL-13、IL-17细胞因子的关系,推测未来食管癌的治疗上也许可以通过对细胞因子的抑制来抑制MDSCs的水平从而抑制肿瘤生长,对MDSCs抑制策略和指导食管癌治疗上提供重要研究意义。

2.2. 胰腺癌

胰腺癌致死率高预后差,通常早期缺乏典型临床表现,多数患者发现已是晚期,严重影响总存活率。胰腺癌中以胰腺导管腺癌(PDAC)多见[28]。研究发现胰腺导管腺癌可通过粒细胞–巨噬细胞集落刺激因子(GM-CSF)和粒细胞集落刺激因子(G-CSF)刺激MDSCs的分化和迁移[29]。恶性胰腺上皮细胞产生大量GM-CSF,骨髓中髓系祖细胞受刺激分化为MDSCs并迁移到循环中,进一步聚集在脾脏和肿瘤。抑制GM-CSF增加,肿瘤细胞则招募更少的MDSCs,肿瘤进展受阻。不同的集落刺激因子对MDSCs的作用不同,G-CSF主要增加免疫抑制较弱的PMN-MDSCs的数量,GM-CSF优先增加M-MDSCs [30]。为了进一步研究MDSCs在胰腺癌中的作用,研究人员以小鼠模型为例发现MDSCs的积累与疾病的程度密切相关,消除肿瘤相关的MDSCs可致肿瘤退化和肿瘤生长的持续抑制。小鼠模型中MDSCs的缺失与改善的宿主免疫反应有关,可致肿瘤生长延迟、生存率提高和疫苗治疗的有效性提高[31]。胰腺癌治疗方面,有研究发现唑来膦酸可对抗胰腺癌细胞,其作用机制为胰腺癌通过招募大量MDSCs在体外抑制CD8+T细胞,促进肿瘤的生长,唑来膦酸则可以破坏MDSCs向外周的生成、募集进入肿瘤微环境,同时可增加T细胞向肿瘤内聚集,达到抑制肿瘤生长速度,延长胰腺癌患者的生存率[32]

2.3. 胃癌

目前胃癌治疗手段主要是手术和辅助化疗,早期胃癌治疗效果较好,但晚期胃癌患者预后仍较差,这与患者全身免疫调节有关。研究人员认为通过对胃癌患者免疫调节因子的识别及作用机制探索可以帮助提高胃癌患者的疗效[33]。MDSCs作为一种免疫调节因子,对免疫调节具有抑制作用,有助于肿瘤细胞逃逸,而促进肿瘤的生长及转移[34]。Wang L等人[35]通过检测胃癌患者及对照组外周血两种MDSCs发现,免疫表型为CD14-CD11b+MDSCs细胞可以抑制T细胞活化的能力,而健康组中MDSCs对T细胞增殖的抑制不明显。进一步通过体外实验研究其抑制机制,发现MDSCs通过两种方式发挥抑制作用,一是减少CD8+T细胞上TCR-ζ的表达,二是通过增加Arg-1和iNOS的表达,消耗L-精氨酸抑制T细胞功能。另外髓样细胞和肿瘤细胞可产生促炎症异二聚体S100A8/A9,在胃癌中高表达并参与胃癌的分期,与胃癌患者体内的MDSCs表达水平呈正相关[36]。改变S100A8/A9的表达水平,MDSCs的活性发生变化,提示抗S100A8/A9和MDSCs抑制剂联合疗法可能成为一种潜在的治疗胃癌的方法。

2.4. 肝癌

肝癌在我国发病率高,原因多与乙型肝炎病毒及丙型肝炎病毒感染及肝硬化有关,多数肝硬化患者最终都将发展为肝癌,原发性肝癌中以肝细胞癌(HCC)多见[37],总治疗疗效差预后欠佳[38]。Yu SJ [39]等人通过动物实验研究发现过继CIK细胞方式治疗肝癌会增加肿瘤微环境中MDSCs积累,经过CIK细胞治疗后肿瘤微环境中的PMN-MDSCs和M-MDSCs数量均增加。进一步研究发现使用PDE5抑制剂可抑制MDSCs的积累还可以增强CIK细胞在小鼠HCC肿瘤模型中治疗效果。因为PDE5抑制剂可以作用于MDSCs的产物精氨酸酶1 (ARG1)和诱导型一氧化氮合酶(INOS),减低CIK细胞的副作用。目前常见的治疗药物他达拉菲正是PED5抑制剂中的一种,他达拉非与CIK细胞相互协同作用,二者联合使用可以增强对肿瘤生长的抑制,发挥最大疗效。

2.5. 结直肠癌

结直肠癌(CRC)是世界上第三大常见癌症,在癌症死亡原因中排第四[40]。其发病原因与人们的饮食、生活习惯、遗传易感性引起有关,也与肠道微生物及其代谢物组成有关。研究发现大肠癌患者外周血和肿瘤组织中MDSCs显著增加,且外周血MDSCs的比例与淋巴结转移、远处转移、分期相关[41]。另外MDSCs可以根据肿瘤微环境的改变而改变其功能分子的表达参与肿瘤的侵袭及转移。Sun HW [42]等人研究发现人结直肠癌肿瘤表现出维甲酸(RA)合成缺陷,使RA信号减弱和MDSCs积聚。外源性增加RA可以减少PMN-NDSC的生成,其机制是RA可以抑制髓样细胞的糖酵解能力,激活AMP活化蛋白激酶(AMPK)通路,进而减弱髓样细胞的抑制能力。

3. MDSCs在消化系统肿瘤中靶向治疗策略

鉴于MDSCs在消化系统肿瘤发生发展的作用,针对消除MDSCs对肿瘤的抑制活性的靶向治疗研究取得了一定成效[43]。靶向治疗策略主要包括五类:(1) 抑制MDSCs的扩张和募集;(2) 促进MDSCs向成熟髓系细胞分化;(3) 抑制MDSCs免疫抑制功能;(4) 抑制MDSCs代谢;(5) 直接消耗MDSCs。

3.1. 抑制MDSCs的生成、扩张、募集

MDSCs生成和扩张与肿瘤释放的介质或其受体有关,如M-CSF、G-CSF、GM-CSF、LI-6、VEGF-A等,通过使用这些介质或受体的抑制剂或中和抗体时,可阻断MDSC的扩张。化疗药物5-氟尿嘧啶和吉西他滨可直接减少外周血中的MDSCs和抑制MDSCs的扩张[44]。抑制MDSCs的募集是指抑制MDSCs向肿瘤微环境渗透,MDSCs的募集与肿瘤残留的衍生物有关,如IFN-γ、IL-4、CXCL1、CXCL2、CXCR2配体和CXCL5,这些衍生物可诱导MDSCs向肿瘤微环境中趋化。趋化因子CXCR2在G-MDSCs细胞表达,使用CXCR2的抑制剂或抗CXCL2、CXCR2的单克隆抗体时,可以抑制MDSCs浸润,说明使用抑制剂或抗趋化因子的方法可以在一定程度上抑制MDSCs的募集。

3.2. 抑制MDSCs免疫抑制功能

直接抑制MDSCs免疫抑制功能的靶向治疗将会是未来新的治疗方式。使用COX-2拮抗剂可促进细胞毒性T细胞(CTL)的恢复,这类拮抗剂通过PGE2、CCL2和CXCL12抑制MDSCs的激活而发挥作用[45]。此外使用磷酸二酯酶5 (PDE-5)抑制剂,一般包括伐地那非、西地那非和他达拉非等[46],可增强肿瘤微环境中T细胞增殖和细胞毒性T细胞的浸润,恢复TCR复合物中ζ链的表达,减少iNOS和Arg1等的表达,进而抑制MDSCs的免疫抑制活性,在一定程度上恢复机体部分免疫功能。

3.3. 促进MDSCs向成熟髓系细胞分化

促进MDSCs向成熟髓系细胞分化可以通过使用全反式维甲酸(ATRA)实现[47],ATRA通过上调谷胱甘肽合酶的表达,从而促进MDSCs分化为成熟髓系细胞;另外ATRA可消除树突细胞群体中的未成熟髓系,恢复树突细胞的抗原提呈递能力,使肿瘤特异性T细胞反应和髓系/淋巴系DC比率得到纠正[48]

3.4. 抑制MDSCs代谢

MDSCs代谢有L-精氨酸代谢、糖酵解、脂质代谢。研究发现在缺氧环境下,缺氧诱导因子-α (HIF-1α)诱导iNOS和Arg1表达进而影响MDSCs的L-精氨酸代谢,小鼠暴露在缺氧环境下,MDSCs可转化为巨噬细胞[49]。另一种重要的MDSCs代谢是有氧糖酵解,产生的乳酸与肿瘤相关巨噬细胞中VEGF和Arg1转录有关,参与激活HIF-1α信号通路,说明阻断MDSCs的糖酵解代谢途径也是抑制MDSCs的一种方法。此外研究发现MDSCs的脂质代谢在结肠癌、肾癌、乳腺导管癌患者均很旺盛[50],小鼠使用依托莫西阻断脂质代谢功能时,可阻断小鼠MDSCs的免疫抑制功能,由此通过抑制MDSCs的代谢途径来达到MDSCs的靶向治疗。

3.5. 直接消耗MDSCs

目前消耗MDSCs的方式有抗MDSC特异性标记物的抗体、酪氨酸激酶抑制剂(TKIs)和一些细胞毒性抗癌药物,较有效的是抗MDSC特异性标记物的抗体。研究发现抗R-1单抗可延缓肿瘤的生长并增强小鼠体内的CD8+T细胞功能,抗TNF相关凋亡诱导配体(TRAIL)死亡受体R2的单克隆抗体DS-8273a可对MDSCs选择性消耗[51] [52]。此外也有研究发现特异性靶向MDSCs的多肽可能比使用抗R-1单抗更有优势,因在小鼠对照实验中使用靶向肽的实验组小鼠PMN-MDSCs和M-MDSCs去除得更完全[53]。酪氨酸激酶抑制剂(TKIs)主要用于抑制癌细胞的存活、增殖、分化、迁移及血管生成,其代表种类有尼罗替尼、伊布替尼、舒尼替尼,TKIs可抑制MDSCs体内的布鲁顿酪氨酸激酶(BTK)磷酸化而达到抑制MDSCs的生成,并可增加患外周血中NK细胞及记忆T细胞数量[54]。最后细胞毒性抗癌药物吉西他滨及5-氟尿嘧啶[55]被证实不仅可特异性减少MDSCs数量,还可以维持CD4+T细胞、CD8+T细胞、NK细胞、巨噬细胞和B细胞等免疫细胞的数量。以上靶向治疗是通过消耗MDSCs的数量来达到抑制MDSCs的免疫抑制作用。

4. 结语与前景

随着免疫检查点抑制剂治疗在抗肿瘤临床应用中逐渐取得成效,研究人员不断探索相关的生物标志物用于预测免疫治疗效果和预后。MDSCs是肿瘤微环境的重要组成部分,在抗肿瘤免疫抑制上发挥重要作用,并且与消化系统肿瘤患者预后及存活率、临床分期、甚至肿瘤的侵袭及转移等有关[56]。因此靶向MDSCs用于预测消化系统肿瘤对化疗和免疫治疗等产生耐药及免疫逃逸等能力前景较好,但MDSCs在肿瘤微环境中扩增的机制是一个庞大而复杂的体系网络,实际应用还需不断探索和研究,争取早日将研究应用于临床,实现个体化、精准化治疗。

基金项目

桂林市科学研究与技术开发计划项目20190218-5-4。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Tong, Y., Gao, H., Qi, Q., Liu, X., Li, J., Gao, J., et al. (2021) High Fat Diet, Gut Microbiome and Gastrointestinal Cancer. Theranostics, 11, 5889-5910.
https://doi.org/10.7150/thno.56157
[3] Liu, Y., Baba, Y., Ishimoto, T., Gu, X., Zhang, J., Nomoto, D., et al. (2022) Gut Microbiome in Gastrointestinal Cancer: A Friend or Foe? International Journal of Biological Sciences, 18, 4101-4117.
https://doi.org/10.7150/ijbs.69331
[4] Mima, K., Kosumi, K., Baba, Y., Hamada, T., Baba, H. and Ogino, S. (2020) The Microbiome, Genetics, and Gastrointestinal Neoplasms: The Evolving Field of Molecular Pathological Epidemiology to Analyze the Tumor-Immune-Microbiome Interaction. Human Genetics, 140, 725-746.
https://doi.org/10.1007/s00439-020-02235-2
[5] Hyde, A.J., Nassabein, R., AlShareef, A., Armstrong, D., Babak, S., Berry, S., et al. (2019) Eastern Canadian Gastrointestinal Cancer Consensus Conference 2018. Current Oncology, 26, 665-681.
https://doi.org/10.3747/co.26.5193
[6] Tumino, N., Besi, F., Martini, S., Di Pace, A.L., Munari, E., Quatrini, L., et al. (2022) Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Frontiers in Immunology, 12, Article 803014.
https://doi.org/10.3389/fimmu.2021.803014
[7] Wang, Y., Jia, A., Bi, Y., Wang, Y. and Liu, G. (2020) Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Cells, 9, Article 1011.
https://doi.org/10.3390/cells9041011
[8] Wen, J., Xuan, B., Gao, Y., Liu, Y., Wang, L., He, L., et al. (2023) Lnc-17rik Promotes the Immunosuppressive Function of Myeloid-Derived Suppressive Cells in Esophageal Cancer. Cellular Immunology, 385, Article 104676.
https://doi.org/10.1016/j.cellimm.2023.104676
[9] Moaaz, M., Lotfy, H., Elsherbini, B., Motawea, M. and Fadali, G. (2020) TGF-β Enhances the Anti-Inflammatory Effect of Tumor-Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494. Asian Pacific Journal of Cancer Prevention, 21, 3393-3403.
https://doi.org/10.31557/apjcp.2020.21.11.3393
[10] Ma, C., Zhang, Q. and Greten, T.F. (2021) MDSCs in Liver Cancer: A Critical Tumor-Promoting Player and a Potential Therapeutic Target. Cellular Immunology, 361, Article 104295.
https://doi.org/10.1016/j.cellimm.2021.104295
[11] Dong, P., Yan, Y., Fan, Y., Wang, H., Wu, D., Yang, L., et al. (2022) The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technology in Cancer Research & Treatment, 21.
https://doi.org/10.1177/15330338221142472
[12] Al-Mterin, M.A. and Elkord, E. (2022) Myeloid-Derived Suppressor Cells in Colorectal Cancer: Prognostic Biomarkers and Therapeutic Targets. Exploration of Targeted Anti-Tumor Therapy, 3, 497-510.
https://doi.org/10.37349/etat.2022.00097
[13] Mojsilovic, S., Mojsilovic, S.S., Bjelica, S. and Santibanez, J.F. (2021) Transforming Growth Factor‐Beta1 and Myeloid‐Derived Suppressor Cells: A Cancerous Partnership. Developmental Dynamics, 251, 85-104.
https://doi.org/10.1002/dvdy.339
[14] Stephen, J.K., Chen, K.M., Havard, S., Harris, G. and Worsham, M.J. (2012) Promoter Methylation in Head and Neck Tumorigenesis. In: Dumitrescu, R. and Verma, M., Eds., Cancer Epigenetics, Humana Press, 187-206.
https://doi.org/10.1007/978-1-61779-612-8_11
[15] Li, L., Li, M. and Jia, Q. (2023) Myeloid-Derived Suppressor Cells: Key Immunosuppressive Regulators and Therapeutic Targets in Cancer. Pathology-Research and Practice, 248, Article 154711.
https://doi.org/10.1016/j.prp.2023.154711
[16] Bayik, D., Lee, J. and Lathia, J.D. (2022) The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. In: Klink, M. and Szulc-Kielbik, I., Eds., Interaction of Immune and Cancer Cells, Springer International Publishing, 189-217.
https://doi.org/10.1007/978-3-030-91311-3_7
[17] Hofer, F., Di Sario, G., Musiu, C., Sartoris, S., De Sanctis, F. and Ugel, S. (2021) A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 10, Article 2700.
https://doi.org/10.3390/cells10102700
[18] Umansky, V., Blattner, C., Fleming, V., Hu, X., Gebhardt, C., Altevogt, P., et al. (2016) Myeloid-Derived Suppressor Cells and Tumor Escape from Immune Surveillance. Seminars in Immunopathology, 39, 295-305.
https://doi.org/10.1007/s00281-016-0597-6
[19] Reuven, O., Mikula, I., Ashkenazi‐Preiser, H., Twaik, N., Ben‐Meir, K., Meirow, Y., et al. (2022) Functional Assays Evaluating Immunosuppression Mediated by Myeloid‐Derived Suppressor Cells. Current Protocols, 2, e557.
https://doi.org/10.1002/cpz1.557
[20] Beury, D.W., Carter, K.A., Nelson, C., Sinha, P., Hanson, E., Nyandjo, M., et al. (2016) Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2. The Journal of Immunology, 196, 3470-3478.
https://doi.org/10.4049/jimmunol.1501785
[21] Ju, J., Nam, G., Lee, Y., Jung, M., Chang, H., Kim, W., et al. (2021) IDO1 Scavenges Reactive Oxygen Species in Myeloid-Derived Suppressor Cells to Prevent Graft-versus-Host Disease. Proceedings of the National Academy of Sciences, 118, e2011170118.
https://doi.org/10.1073/pnas.2011170118
[22] Tang, Y., Zhou, C., Li, Q., Cheng, X., Huang, T., Li, F., et al. (2022) Targeting Depletion of Myeloid-Derived Suppressor Cells Potentiates PD-L1 Blockade Efficacy in Gastric and Colon Cancers. OncoImmunology, 11, Article 2131084.
https://doi.org/10.1080/2162402x.2022.2131084
[23] Ma, T., Renz, B.W., Ilmer, M., Koch, D., Yang, Y., Werner, J., et al. (2022) Myeloid-Derived Suppressor Cells in Solid Tumors. Cells, 11, Article 310.
https://doi.org/10.3390/cells11020310
[24] Li, Y., He, H., Jihu, R., Zhou, J., Zeng, R. and Yan, H. (2021) Novel Characterization of Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 9, Article 698532.
https://doi.org/10.3389/fcell.2021.698532
[25] 叶萍萍. 免疫抑制性细胞MDSC、Treg、Ts在肿瘤患者外周血中的水平及其临床意义[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
[26] Jiao, Z. (2012) Correlation between Circulating Myeloid-Derived Suppressor Cells and Th17 Cells in Esophageal Cancer. World Journal of Gastroenterology, 18, 5454-5461.
https://doi.org/10.3748/wjg.v18.i38.5454
[27] Gabitass, R.F., Annels, N.E., Stocken, D.D., Pandha, H.A. and Middleton, G.W. (2011) Elevated Myeloid-Derived Suppressor Cells in Pancreatic, Esophageal and Gastric Cancer Are an Independent Prognostic Factor and Are Associated with Significant Elevation of the Th2 Cytokine Interleukin-13. Cancer Immunology, Immunotherapy, 60, 1419-1430.
https://doi.org/10.1007/s00262-011-1028-0
[28] Stoffel, E.M., Brand, R.E. and Goggins, M. (2023) Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology, 164, 752-765.
https://doi.org/10.1053/j.gastro.2023.02.012
[29] Takeuchi, S., Baghdadi, M., Tsuchikawa, T., Wada, H., Nakamura, T., Abe, H., et al. (2015) Chemotherapy-Derived Inflammatory Responses Accelerate the Formation of Immunosuppressive Myeloid Cells in the Tissue Microenvironment of Human Pancreatic Cancer. Cancer Research, 75, 2629-2640.
https://doi.org/10.1158/0008-5472.can-14-2921
[30] Pergamo, M. and Miller, G. (2016) Myeloid-Derived Suppressor Cells and Their Role in Pancreatic Cancer. Cancer Gene Therapy, 24, 100-105.
https://doi.org/10.1038/cgt.2016.65
[31] Sharma, V., Aggarwal, A., Jacob, J. and Sahni, D. (2021) Myeloid‐Derived Suppressor Cells: Bridging the Gap between Inflammation and Pancreatic Adenocarcinoma. Scandinavian Journal of Immunology, 93, e13021.
https://doi.org/10.1111/sji.13021
[32] Zhao, M., Tominaga, Y., Ohuchida, K., Mizumoto, K., Cui, L., Kozono, S., et al. (2011) Significance of Combination Therapy of Zoledronic Acid and Gemcitabine on Pancreatic Cancer. Cancer Science, 103, 58-66.
https://doi.org/10.1111/j.1349-7006.2011.02113.x
[33] Ajani, J.A., D’Amico, T.A., Bentrem, D.J., Chao, J., Cooke, D., Corvera, C., et al. (2022) Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 20, 167-192.
https://doi.org/10.6004/jnccn.2022.0008
[34] Jiménez-Cortegana, C., Galassi, C., Klapp, V., Gabrilovich, D.I. and Galluzzi, L. (2022) Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunology Research, 10, 545-557.
https://doi.org/10.1158/2326-6066.cir-21-1105
[35] Wang, L., Chang, E.W.Y., Wong, S.C., Ong, S., Chong, D.Q.Y. and Ling, K.L. (2013) Increased Myeloid-Derived Suppressor Cells in Gastric Cancer Correlate with Cancer Stage and Plasma S100A8/A9 Proinflammatory Proteins. The Journal of Immunology, 190, 794-804.
https://doi.org/10.4049/jimmunol.1202088
[36] Kao, K.D., Grasberger, H. and El-Zaatari, M. (2023) The Cxcr2+ Subset of the S100a8+ Gastric Granylocytic Myeloid-Derived Suppressor Cell Population (G-MDSC) Regulates Gastric Pathology. Frontiers in Immunology, 14, Article 1147695.
https://doi.org/10.3389/fimmu.2023.1147695
[37] 王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
[38] Lu, C., Rong, D., Zhang, B., Zheng, W., Wang, X., Chen, Z., et al. (2019) Current Perspectives on the Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Challenges and Opportunities. Molecular Cancer, 18, Article No. 130.
https://doi.org/10.1186/s12943-019-1047-6
[39] Yu, S.J., Ma, C., Heinrich, B., Brown, Z.J., Sandhu, M., Zhang, Q., et al. (2019) Targeting the Crosstalk between Cytokine-Induced Killer Cells and Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma. Journal of Hepatology, 70, 449-457.
https://doi.org/10.1016/j.jhep.2018.10.040
[40] Baidoun, F. (2021) Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22, 998-1009.
https://doi.org/10.2174/18735592mtex9ntk2y
[41] Lu, L., Chang, C. and Hsu, C. (2019) Targeting Myeloid-Derived Suppressor Cells in the Treatment of Hepatocellular Carcinoma: Current State and Future Perspectives. Journal of Hepatocellular Carcinoma, 6, 71-84.
https://doi.org/10.2147/jhc.s159693
[42] Sun, H., Chen, J., Wu, W., Yang, Y., Xu, Y., Yu, X., et al. (2021) Retinoic Acid Synthesis Deficiency Fosters the Generation of Polymorphonuclear Myeloid-Derived Suppressor Cells in Colorectal Cancer. Cancer Immunology Research, 9, 20-33.
https://doi.org/10.1158/2326-6066.cir-20-0389
[43] Li, K., Shi, H., Zhang, B., Ou, X., Ma, Q., Chen, Y., et al. (2021) Myeloid-Derived Suppressor Cells as Immunosuppressive Regulators and Therapeutic Targets in Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 362.
https://doi.org/10.1038/s41392-021-00670-9
[44] Aarts, C.E.M. and Kuijpers, T.W. (2018) Neutrophils as Myeloid‐Derived Suppressor Cells. European Journal of Clinical Investigation, 48, e12989.
https://doi.org/10.1111/eci.12989
[45] Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R.L., Komohara, Y., Decker, S.A., et al. (2011) COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells. Cancer Research, 71, 2664-2674.
https://doi.org/10.1158/0008-5472.can-10-3055
[46] Noonan, K.A., Ghosh, N., Rudraraju, L., Bui, M. and Borrello, I. (2014) Targeting Immune Suppression with PDE5 Inhibition in End-Stage Multiple Myeloma. Cancer Immunology Research, 2, 725-731.
https://doi.org/10.1158/2326-6066.cir-13-0213
[47] Draghiciu, O., Lubbers, J., Nijman, H.W. and Daemen, T. (2015) Myeloid Derived Suppressor Cells—An Overview of Combat Strategies to Increase Immunotherapy Efficacy. OncoImmunology, 4, e954829.
https://doi.org/10.4161/21624011.2014.954829
[48] Safari, E., Ghorghanlu, S., Ahmadi‐khiavi, H., Mehranfar, S., Rezaei, R. and Motallebnezhad, M. (2018) Myeloid‐Derived Suppressor Cells and Tumor: Current Knowledge and Future Perspectives. Journal of Cellular Physiology, 234, 9966-9981.
https://doi.org/10.1002/jcp.27923
[49] Schwarz, J., Rühle, J., Stephan, K., Dietz, S., Geißert, J., Schoppmeier, U., et al. (2023) HIF‐1α Targeted Deletion in Myeloid Cells Decreases MDSC Accumulation and Alters Microbiome in Neonatal Mice. European Journal of Immunology, 53, Article 2250144.
https://doi.org/10.1002/eji.202250144
[50] Hossain, F., Al-Khami, A.A., Wyczechowska, D., Hernandez, C., Zheng, L., Reiss, K., et al. (2015) Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunology Research, 3, 1236-1247.
https://doi.org/10.1158/2326-6066.cir-15-0036
[51] Guo, C., Hu, F., Yi, H., Feng, Z., Li, C., Shi, L., et al. (2014) Myeloid-Derived Suppressor Cells Have a Proinflammatory Role in the Pathogenesis of Autoimmune Arthritis. Annals of the Rheumatic Diseases, 75, 278-285.
https://doi.org/10.1136/annrheumdis-2014-205508
[52] Dominguez, G.A., Condamine, T., Mony, S., Hashimoto, A., Wang, F., Liu, Q., et al. (2017) Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clinical Cancer Research, 23, 2942-2950.
https://doi.org/10.1158/1078-0432.ccr-16-1784
[53] Qin, H., Lerman, B., Sakamaki, I., Wei, G., Cha, S.C., Rao, S.S., et al. (2014) Generation of a New Therapeutic Peptide That Depletes Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Nature Medicine, 20, 676-681.
https://doi.org/10.1038/nm.3560
[54] Feng, P., Yu, C., Chen, K., Luo, C., Wu, S.M., Liu, C., et al. (2018) S100A9+ MDSC and TAM-Mediated EGFR-TKI Resistance in Lung Adenocarcinoma: The Role of RELB. Oncotarget, 9, 7631-7643.
https://doi.org/10.18632/oncotarget.25943
[55] Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. (2010) 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity. Cancer Research, 70, 3052-3061.
https://doi.org/10.1158/0008-5472.can-09-3690
[56] Wu, Y., Yi, M., Niu, M., Mei, Q. and Wu, K. (2022) Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Molecular Cancer, 21, Article No. 184.
https://doi.org/10.1186/s12943-022-01657-y