[1]
|
Gimple, R.C., Bhargava, S., Dixit, D. and Rich, J.N. (2019) Glioblastoma Stem Cells: Lessons from the Tumor Hierarchy in a Lethal Cancer. Genes & Development, 33, 591-609. https://doi.org/10.1101/gad.324301.119
|
[2]
|
Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., et al. (2023) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro-Oncology, 25, iv1-iv99. https://doi.org/10.1093/neuonc/noad149
|
[3]
|
Rautajoki, K.J., Jaatinen, S., Hartewig, A., Tiihonen, A.M., Annala, M., Salonen, I., et al. (2023) Genomic Characterization of IDH-Mutant Astrocytoma Progression to Grade 4 in the Treatment Setting. Acta Neuropathologica Communications, 11, Article No. 176. https://doi.org/10.1186/s40478-023-01669-9
|
[4]
|
Vaz-Salgado, M.A., Villamayor, M., Albarrán, V., Alía, V., Sotoca, P., Chamorro, J., et al. (2023) Recurrent Glioblastoma: A Review of the Treatment Options. Cancers, 15, Article 4279. https://doi.org/10.3390/cancers15174279
|
[5]
|
Iturrioz-Rodríguez, N., Sampron, N. and Matheu, A. (2023) Current Advances in Temozolomide Encapsulation for the Enhancement of Glioblastoma Treatment. Theranostics, 13, 2734-2756. https://doi.org/10.7150/thno.82005
|
[6]
|
Wen, P.Y. and Kesari, S. (2008) Malignant Gliomas in Adults. New England Journal of Medicine, 359, 492-507. https://doi.org/10.1056/nejmra0708126
|
[7]
|
Wolbers, J.G. (2014) Novel Strategies in Glioblastoma Surgery Aim at Safe, Supra-Maximum Resection in Conjunction with Local Therapies. Chinese Journal of Cancer, 33, 8-15. https://doi.org/10.5732/cjc.013.10219
|
[8]
|
Youngblood, M.W., Stupp, R. and Sonabend, A.M. (2021) Role of Resection in Glioblastoma Management. Neurosurgery Clinics of North America, 32, 9-22. https://doi.org/10.1016/j.nec.2020.08.002
|
[9]
|
Muir, M., Gopakumar, S., Traylor, J., Lee, S. and Rao, G. (2020) Glioblastoma Multiforme: Novel Therapeutic Targets. Expert Opinion on Therapeutic Targets, 24, 605-614. https://doi.org/10.1080/14728222.2020.1762568
|
[10]
|
Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996) Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radical Biology and Medicine, 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
|
[11]
|
Sun, Q., Liu, Q., Zhou, X., Wang, X., Li, H., Zhang, W., et al. (2022) Flavonoids Regulate Tumor-Associated Macrophages—From Structure-Activity Relationship to Clinical Potential (Review). Pharmacological Research, 184, Article 106419. https://doi.org/10.1016/j.phrs.2022.106419
|
[12]
|
Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
|
[13]
|
Yassin, N.Y.S., AbouZid, S.F., El-Kalaawy, A.M., Ali, T.M., Almehmadi, M.M. and Ahmed, O.M. (2022) Silybum marianum Total Extract, Silymarin and Silibinin Abate Hepatocarcinogenesis and Hepatocellular Carcinoma Growth via Modulation of the HGF/c-Met, Wnt/β-Catenin, and PI3K/Akt/mTOR Signaling Pathways. Biomedicine & Pharmacotherapy, 145, Article 112409. https://doi.org/10.1016/j.biopha.2021.112409
|
[14]
|
Kim, S., Choo, G., Yoo, E., Woo, J., Han, S., Lee, J., et al. (2019) Silymarin Induces Inhibition of Growth and Apoptosis through Modulation of the MAPK Signaling Pathway in AGS Human Gastric Cancer Cells. Oncology Reports, 42, 1904-1914. https://doi.org/10.3892/or.2019.7295
|
[15]
|
Yu, H., Chen, L., Cheng, K., Li, Y., Yeh, C. and Cheng, J. (2011) Silymarin Inhibits Cervical Cancer Cell through an Increase of Phosphatase and Tensin Homolog. Phytotherapy Research, 26, 709-715. https://doi.org/10.1002/ptr.3618
|
[16]
|
Chen, B., Li, X., Wu, L., Zhou, D., Song, Y., Zhang, L., et al. (2022) Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-Catenin/Zeb1 Signaling Pathway. Frontiers in Pharmacology, 13, Article 963614. https://doi.org/10.3389/fphar.2022.963614
|
[17]
|
Zhai, K., Mazurakova, A., Koklesova, L., Kubatka, P. and Büsselberg, D. (2021) Flavonoids Synergistically Enhance the Anti-Glioblastoma Effects of Chemotherapeutic Drugs. Biomolecules, 11, Article 1841. https://doi.org/10.3390/biom11121841
|
[18]
|
Ravi, V.M., Will, P., Kueckelhaus, J., Sun, N., Joseph, K., Salié, H., et al. (2022) Spatially Resolved Multi-Omics Deciphers Bidirectional Tumor-Host Interdependence in Glioblastoma. Cancer Cell, 40, 639-655.e13. https://doi.org/10.1016/j.ccell.2022.05.009
|
[19]
|
Wu, L., Wu, W., Zhang, J., Zhao, Z., Li, L., Zhu, M., et al. (2022) Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discovery, 12, 2820-2837. https://doi.org/10.1158/2159-8290.cd-22-0196
|
[20]
|
Bikfalvi, A., da Costa, C.A., Avril, T., Barnier, J., Bauchet, L., Brisson, L., et al. (2023) Challenges in Glioblastoma Research: Focus on the Tumor Microenvironment. Trends in Cancer, 9, 9-27. https://doi.org/10.1016/j.trecan.2022.09.005
|
[21]
|
Skog, J., Würdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Curry, W.T., et al. (2008) Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 10, 1470-1476. https://doi.org/10.1038/ncb1800
|
[22]
|
Parat, M.-O. and Riggins, G.J. (2012) Caveolin-1, Caveolae, and Glioblastoma. Neuro-Oncology, 14, 679-688. https://doi.org/10.1093/neuonc/nos079
|
[23]
|
Lambrechts, D., Wauters, E., Boeckx, B., Aibar, S., Nittner, D., Burton, O., et al. (2018) Phenotype Molding of Stromal Cells in the Lung Tumor Microenvironment. Nature Medicine, 24, 1277-1289. https://doi.org/10.1038/s41591-018-0096-5
|
[24]
|
Tao, W., Chu, C., Zhou, W., Huang, Z., Zhai, K., Fang, X., et al. (2020) Dual Role of WISP1 in Maintaining Glioma Stem Cells and Tumor-Supportive Macrophages in Glioblastoma. Nature Communications, 11, Article No. 3015. https://doi.org/10.1038/s41467-020-16827-z
|
[25]
|
Zhai, K., Huang, Z., Huang, Q., Tao, W., Fang, X., Zhang, A., et al. (2021) Pharmacological Inhibition of BACE1 Suppresses Glioblastoma Growth by Stimulating Macrophage Phagocytosis of Tumor Cells. Nature Cancer, 2, 1136-1151. https://doi.org/10.1038/s43018-021-00267-9
|
[26]
|
Yang, F., He, Z., Duan, H., Zhang, D., Li, J., Yang, H., et al. (2021) Synergistic Immunotherapy of Glioblastoma by Dual Targeting of IL-6 and CD40. Nature Communications, 12, Article No. 3424. https://doi.org/10.1038/s41467-021-23832-3
|
[27]
|
Kenig, S., Alonso, M.B.D., Mueller, M.M. and Lah, T.T. (2010) Glioblastoma and Endothelial Cells Cross-Talk, Mediated by SDF-1, Enhances Tumour Invasion and Endothelial Proliferation by Increasing Expression of Cathepsins B, S, and MMP-9. Cancer Letters, 289, 53-61. https://doi.org/10.1016/j.canlet.2009.07.014
|
[28]
|
Joseph, J.V., Magaut, C.R., Storevik, S., Geraldo, L.H., Mathivet, T., Latif, M.A., et al. (2021) TGF-β Promotes Microtube Formation in Glioblastoma through Thrombospondin 1. Neuro-Oncology, 24, 541-553. https://doi.org/10.1093/neuonc/noab212
|
[29]
|
Pepper, M.S., Vassalli, J.-D., Orci, L. and Montesano, R. (1993) Biphasic Effect of Transforming Growth Factor-β1 on in Vitro Angiogenesis. Experimental Cell Research, 204, 356-363. https://doi.org/10.1006/excr.1993.1043
|
[30]
|
Seoane, J. and Gomis, R.R. (2017) TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 9, a022277. https://doi.org/10.1101/cshperspect.a022277
|
[31]
|
Su, X., Yang, Y., Guo, C., Zhang, R., Sun, S., Wang, Y., et al. (2021) NOX4-Derived ROS Mediates TGF-β1-Induced Metabolic Reprogramming during Epithelial-Mesenchymal Transition through the PI3K/AKT/HIF-1α Pathway in Glioblastoma. Oxidative Medicine and Cellular Longevity, 2021, Article 5549047. https://doi.org/10.1155/2021/5549047
|
[32]
|
Seystahl, K., Papachristodoulou, A., Burghardt, I., Schneider, H., Hasenbach, K., Janicot, M., et al. (2017) Biological Role and Therapeutic Targeting of TGF-β3 in Glioblastoma. Molecular Cancer Therapeutics, 16, 1177-1186. https://doi.org/10.1158/1535-7163.mct-16-0465
|
[33]
|
Peleli, M., Moustakas, A. and Papapetropoulos, A. (2020) Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. International Journal of Molecular Sciences, 21, Article 7371. https://doi.org/10.3390/ijms21197371
|
[34]
|
Seystahl, K., Tritschler, I., Szabo, E., Tabatabai, G. and Weller, M. (2014) Differential Regulation of TGF-β-Induced, ALK-5-Mediated VEGF Release by SMAD2/3 versus SMAD1/5/8 Signaling in Glioblastoma. Neuro-Oncology, 17, 254-265. https://doi.org/10.1093/neuonc/nou218
|
[35]
|
Freitas, S., Costa, S., Azevedo, C., Carvalho, G., Freire, S., Barbosa, P., et al. (2010) Flavonoids Inhibit Angiogenic Cytokine Production by Human Glioma Cells. Phytotherapy Research, 25, 916-921. https://doi.org/10.1002/ptr.3338
|
[36]
|
Ouanouki, A., Lamy, S. and Annabi, B. (2016) Anthocyanidins Inhibit Epithelial-Mesenchymal Transition through a TGFβ/Smad2 Signaling Pathway in Glioblastoma Cells. Molecular Carcinogenesis, 56, 1088-1099. https://doi.org/10.1002/mc.22575
|
[37]
|
Gao, X., Xia, X., Li, F., Zhang, M., Zhou, H., Wu, X., et al. (2021) Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR-STAT3 Signalling. Nature Cell Biology, 23, 278-291. https://doi.org/10.1038/s41556-021-00639-4
|
[38]
|
Fang, R., Chen, X., Zhang, S., Shi, H., Ye, Y., Shi, H., et al. (2021) EGFR/SRC/ERK-Stabilized YTHDF2 Promotes Cholesterol Dysregulation and Invasive Growth of Glioblastoma. Nature Communications, 12, Article No. 177. https://doi.org/10.1038/s41467-020-20379-7
|
[39]
|
Weller, M., Butowski, N., Tran, D., Recht, L., Lim, M., Hirte, H., et al. (2016) ATIM-03. Act IV: An International, Double-Blind, Phase 3 Trial of Rindopepimut in Newly Diagnosed, EGFRvIII-Expressing Glioblastoma. Neuro-Oncology, 18, vi17-vi18. https://doi.org/10.1093/neuonc/now212.068
|
[40]
|
An, Z., Aksoy, O., Zheng, T., Fan, Q. and Weiss, W.A. (2018) Epidermal Growth Factor Receptor and Egfrviii in Glioblastoma: Signaling Pathways and Targeted Therapies. Oncogene, 37, 1561-1575. https://doi.org/10.1038/s41388-017-0045-7
|
[41]
|
Gao, M., Fu, Y., Zhou, W., Gui, G., Lal, B., Li, Y., et al. (2021) EGFR Activates a Taz-Driven Oncogenic Program in Glioblastoma. Cancer Research, 81, 3580-3592. https://doi.org/10.1158/0008-5472.can-20-2773
|
[42]
|
Thorburn, A. (2007) Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Pathway Signaling. Journal of Thoracic Oncology, 2, 461-465. https://doi.org/10.1097/jto.0b013e31805fea64
|
[43]
|
Park, D., Ha, I.J., Park, S., Choi, M., Lim, S., Kim, S., et al. (2016) Morusin Induces TRAIL Sensitization by Regulating EGFR and DR5 in Human Glioblastoma Cells. Journal of Natural Products, 79, 317-323. https://doi.org/10.1021/acs.jnatprod.5b00919
|
[44]
|
Penar, P.L., Khoshyomn, S., Bhushan, A. and Tritton, T.R. (1997) Inhibition of Epidermal Growth Factor Receptor-Associated Tyrosine Kinase Blocks Glioblastoma Invasion of the Brain. Neurosurgery, 40, 141-151. https://doi.org/10.1227/00006123-199701000-00032
|
[45]
|
Gu, R., Zhang, X., Zhang, G., Tao, T., Yu, H., Liu, L., et al. (2017) Probing the Bi-Directional Interaction between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochemical Research, 42, 1478-1487. https://doi.org/10.1007/s11064-017-2204-1
|
[46]
|
da Silva, A.B., Cerqueira Coelho, P.L., das Neves Oliveira, M., Oliveira, J.L., Oliveira Amparo, J.A., da Silva, K.C., et al. (2020) The Flavonoid Rutin and Its Aglycone Quercetin Modulate the Microglia Inflammatory Profile Improving Antiglioma Activity. Brain, Behavior, and Immunity, 85, 170-185. https://doi.org/10.1016/j.bbi.2019.05.003
|
[47]
|
Chen, L., Ackerman, R. and Guo, A.M. (2012) 20-HETE in neovascularization. Prostaglandins & Other Lipid Mediators, 98, 63-68. https://doi.org/10.1016/j.prostaglandins.2011.12.005
|
[48]
|
Wang, C., Li, Y., Chen, H., Zhang, J., Zhang, J., Qin, T., et al. (2017) Inhibition of CYP4A by a Novel Flavonoid FLA-16 Prolongs Survival and Normalizes Tumor Vasculature in Glioma. Cancer Letters, 402, 131-141. https://doi.org/10.1016/j.canlet.2017.05.030
|