黄酮类化合物通过调节肿瘤微环境抑制胶质母细胞瘤相关研究进展
Progress in Research on Flavonoids in Inhibiting Glioblastoma by Regulating Tumor Microenvironment
DOI: 10.12677/acm.2024.14102670, PDF, HTML, XML,   
作者: 陈人立:绍兴文理学院医学院,浙江 绍兴;亓旭晨*:浙江大学医学院附属邵逸夫医院神经外科,浙江 杭州;绍兴市人民医院神经外科,浙江 绍兴
关键词: 胶质母细胞瘤肿瘤微环境肿瘤相关巨噬细胞黄酮类化合物细胞因子Glioblastoma Tumor Microenvironment Tumor-Associated Macrophages Flavonoids Cytokines
摘要: 胶质母细胞瘤(Glioblastoma, GBM)是脑部原发性恶性肿瘤中最常见、也是恶性程度最高的类型之一。GBM患者的预后极差,即使在标准治疗下,中位生存时间也往往不足18个月。因此,长期以来GBM一直是中枢神经系统肿瘤领域研究的热点。免疫抑制是GBM发生发展的关键环节之一,肿瘤微环境(Tumor Microenvironment, TME)异常在其中发挥了重要的作用。通过逆转TME中异常表达的细胞因子和生长受体等,可以抑制GBM的增殖和侵袭能力,并降低其恶性程度。近年来,黄酮类化合物对GBM细胞的抑制作用及其分子机制得到了深入研究,其中黄酮类化合物通过改变GBM细胞的TME发挥重要作用。研究表明,黄酮类化合物可以在遗传物质水平上降低异常细胞因子及生长受体的表达改变TME,转化免疫抑制环境,并将肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAMs)转化为具有肿瘤抑制功能的正常巨噬细胞。本文旨在探讨黄酮类化合物通过调控TME对GBM的抑制作用,为GBM的研究提供新的思路。
Abstract: Glioblastoma (GBM) is one of the most common and highly malignant types of primary brain tumors. Patients with glioblastoma have a very poor prognosis, with a median survival time often less than 18 months even with standard treatment. Therefore, glioblastoma has long been a research focus in the field of central nervous system tumors. Immunosuppression is one of the key aspects in the development and progression of glioblastoma, with abnormalities in the tumor microenvironment playing a significant role. By reversing the abnormal expression of cytokines and growth receptors within the tumor microenvironment (TME), the proliferation and invasive capabilities of glioblastoma can be suppressed, reducing its malignancy. In recent years, the inhibitory effects and molecular mechanisms of flavonoids on glioblastoma cells have been extensively researched. Flavonoids play a significant role in modifying the TME of glioblastoma cells. Studies have demonstrated that flavonoids can reduce the expression of abnormal cytokines and growth receptors at the genetic level, altering the TME, transforming the immunosuppressive environment, and transforming tumor-associated macrophages (TAMs) into normal macrophages with tumor-suppressing capabilities. This article aims to explore the inhibitory effects of flavonoids on glioblastoma through the modulation of the TME, offering new perspectives for glioblastoma research.
文章引用:陈人立, 亓旭晨. 黄酮类化合物通过调节肿瘤微环境抑制胶质母细胞瘤相关研究进展[J]. 临床医学进展, 2024, 14(10): 391-397. https://doi.org/10.12677/acm.2024.14102670

1. 引言

胶质母细胞瘤(Glioblastoma, GBM)是侵袭性最强的IV级胶质细胞瘤,也是恶性程度最高的脑部原发性恶性胶质瘤[1]。据统计,GBM发病率占所有中枢神经系统恶性脑肿瘤的50.9% [2]。目前,GBM患者最有效的治疗方法是在尽可能不损伤大脑功能区的前提下,通过手术最大限度地切除肿瘤,术后结合放疗和替莫唑胺(Temozolomide, TMZ)化疗[3]。尽管将TMZ纳入标准治疗提高了GBM患者的总生存率,但长期接受TMZ治疗的GBM患者5年生存率仍低于10% [4],中位生存期仅为15~18个月[5]。预后不良及肿瘤细胞复发的原因众多,不仅限于:(1) 由于GBM细胞快速增殖和高度浸润性生长,肿瘤难以与正常脑组织完全分离,导致肿块边界不清,完全手术切除难以实现[6]。研究发现,大多数GBM患者即使在肿瘤边缘对正常脑组织进行了扩大切除后,仍出现肿瘤复发[7]。且扩大切除脑组织易导致患者语言、运动、感觉等多种功能受损,对患者的受益并不明显[8]。(2) 血脑屏障的存在和肿瘤快速增殖导致GBM肿瘤内部血管化不足及肿瘤微环境(Tumor Microenvironment, TME)异常,使得化疗药物难以到达靶点部位。(3) GBM细胞具有明显的肿瘤异质性,同一患者的GBM肿瘤内常有多种亚克隆细胞,这也是临床GBM复发以及发生TMZ耐药的主要问题[9]。应用单一药物进行化学治疗往往导致肿瘤变异、耐受性增强和复发率增加。因此,为了寻找更有效的治疗方法,改变肿瘤微环境、寻找新的治疗靶点及改善TMZ耐药在GBM治疗中尤为重要。

黄酮类化合物[10]是一类以两个苯环上的酚羟基(A环和B环)通过三个互相联系的中心碳原子组成的C6-C3-C6单元为基础结构的衍生化合物。作为一种天然化合物,其广泛存在于我们日常食用的水果、蔬菜和谷物等多种食品中[11]。流行病学研究表明,长期摄入富含黄酮类化合物的食物可降低罹患慢性病尤其是肿瘤的风险[12]。根据中央3个碳原子的氧化程度、B环的连接位置等特点,以及结合不同的功能基团,黄酮类化合物通过多种途径发挥抗癌作用[13]-[15],其抗癌作用不仅与癌症的早期发生有关,还与癌症的进展和扩散相关[16]。它可以调节癌细胞生长和侵袭的关键信号通路[14],以及肿瘤进展和炎症状态改善相关基因的表达。此外,它在提高常规化疗药物的抗癌作用方面具有明显的潜力[17]。基于这些已证实的抗癌活性,本文总结了黄酮类化合物通过改变肿瘤微环境发挥抗GBM的作用及相关原理,为临床治疗GBM提供新的理论依据。

2. 胶质母细胞瘤的肿瘤微环境特点

GBM肿瘤周围的免疫抑制性TME是胶质细胞瘤发生恶性进展和出现治疗抵抗的重要原因[18] [19]。GBM细胞通过分泌多种趋化因子、细胞因子和生长因子,与其周围的小胶质细胞、巨噬细胞和调节性T细胞构成TME [20]。研究发现,GBM细胞的一个显著特征是它们能够与TME中的邻近细胞形成细胞质连续体[21],从而将肿瘤相关遗传因素和蛋白质引入正常细胞,改变它们的表型并保护其他正遭受免疫系统或化疗、放疗攻击的肿瘤细胞[22]。肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAMs)是TME中的关键免疫细胞,其丰度及类型与大多数恶性肿瘤(包括GBM)的不良预后有关。TAM在功能上可分为促肿瘤作用(pTAM)和抑肿瘤作用(sTAM)类型[23],每种类型包括几个亚群。大多数TAM是pTAM,它们促进GBM细胞的恶性生长和治疗抵抗。pTAM常表现为M2型巨噬细胞样表型,表达包括CD163、ARG1在内的标志物[24]。相比之下,sTAM表现出M1型巨噬细胞的特性,并表达M1特异性标志物。最近的研究表明,pTAM在TME中发挥免疫抑制作用,并对当前的免疫疗法产生负面影响[25]

研究证实[26]-[28],GBM细胞可以合成和分泌白细胞介素-10 (IL-10)、白细胞介素-6 (IL-6)、基质细胞衍生因子-1 (SDF-1)、转化生长因子-β (TGF-β)和白细胞介素-1β (IL-1β)等免疫调节细胞因子,促进其免疫逃逸和化疗耐药等恶性进程。这些免疫相关细胞因子在GBM中具有显著改变,与肿瘤分级、增殖和临床侵袭性密切相关。

2.1. 黄酮类化合物和GBM肿瘤微环境中的细胞因子

TGF-β是一种多肽类生长因子,调节多种常见的生理和病理过程,包括血管生成、细胞增殖、伤口愈合、免疫和癌症。其每个亚型都有独特的作用,这取决于细胞类型、生长条件、分化状态和其他生长因子的存在。例如TGF-β1在体外血管生成中起双向作用。高浓度的TGF-β1可以抑制内皮细胞侵袭和毛细血管管腔形成,而低浓度的TGF-β1可以增强内皮细胞侵袭和毛细血管管腔形成[29]。在体内,内皮细胞对TGF-β1的反应可能受血管生成过程中细胞表型和周围基质组成变化的调控。TGF-β在肿瘤发生中的作用复杂而矛盾。它在正常和肿瘤早期阶段中发挥抑制作用。然而,随着肿瘤恶性程度进展,TGF-β的抑癌功能逐渐减弱并消失,并最终使TGF-β成为促癌因子[30]。TEM中异常增加的TGF-β是GBM的致癌因子之一,其支持GBM细胞生长,增强GBM侵袭能力并促进肿瘤周围血管生成,产生免疫抑制微环境[22]。上皮间质转化(Epithelial-Mesenchymal Transition, EMT)是GBM细胞恶性程度升高的核心机制。TGF-β可通过多种途径诱导EMT相关转录因子的表达增加[31]。TGF-β作为一种血管生成因子,可以直接诱导血管生成,也可以通过增加VEGF、PDGF等血管生成蛋白和细胞因子间接诱导血管生成[29]。因此,在GBM细胞的自身分泌循环中,TGF-β、TGF-βR的表达增加与胶质细胞瘤的肿瘤分级成正比[32]

血管生成是从现有血管系统中形成新血管的过程,是多种生理和病理过程的基础,包括肿瘤生长和转移。肿瘤必须产生新的血管供应,才能生长到超过临界大小并发生转移[33]。GBM是典型的促血管生成肿瘤,表达大量的血管生成因子,其中VEGF和IGF-β在GBM诱导的新生血管形成中发挥重要作用[34],贝伐单抗是一种常用的抗新生血管形成药物,通过抑制VEGF的作用来阻止肿瘤血管的形成。然而,研究发现黄酮类化合物芦丁可以有效地降低GBM细胞中IGF-β及VEGF的分泌[35]。相比于贝伐单抗单一的抗VEGF作用,芦丁作为一种潜在的抗肿瘤新生血管形成药物,具有同时抑制IGF-β和VEGF的优势。Smad信号通路在TGF-β诱导的EMT中发挥重要作用[28],在Ouanouki的研究中,黄酮类化合物花青素被发现可以显著降低Smad2的磷酸化水平[36],从而减少TGF-β相关mRNA表达,并降低TGF-β的分泌。体外试验中,应用花青素处理U87细胞后,TGF-β的分泌显著减少,同时抑制肿瘤细胞ERK相关通路的活性,从而抑制肿瘤细胞的EMT过程,减弱其侵袭性。

2.2. 黄酮类化合物和GBM相关受体

表皮生长因子受体(EGFR)是一种细胞表面酪氨酸激酶型受体,在GBM细胞中高度表达,并在GBM的侵袭过程中发挥关键作用[37]。配体依赖性EGFR激活可以转导多种信号通路,包括Ras/MAPK通路、PI3K/AKT通路和磷脂酶C/蛋白激酶C信号级联等。经典EGFR信号传导对多种细胞功能至关重要,如生长、增殖、分化和运动。例如,EGFR/SRC/ERK信号通路可导致YTHDF2位于39位的丝氨酸和381位的苏氨酸磷酸化,从而稳定YTHDF2蛋白。YTHDF2进一步促进细胞胆固醇调节异常,增强GBM细胞发生、增殖和侵袭能力[38]。此外,EGFR变异型III (EGFRvIII)是最常见的EGFR变异体[39]。EGFRvIII的表达水平越高,标志着GBM的临床表型恶性程度越高[40]。EGF通过EGFR-ERK和EGFR-STAT3信号转导诱导转录因子TAZ,且EGFRvIII突变的组成性活化导致TAZ的EGF非依赖性超活化[41]。在GBM干细胞样细胞中,TAZ的过度活化可以诱导外源性有丝分裂原非依赖性生长,并促进GBM细胞侵袭、放射抗性和致癌能力。

肿瘤坏死因子相关凋亡诱导配体(TRAIL)是一种具备选择性杀死肿瘤细胞能力的抗癌剂[42],具有较高的抗癌前景。然而,由于许多癌症对TRAIL具有抗性,因此克服肿瘤细胞对TRAIL的抗药性尤为重要。黄酮类化合物桑葚素[43]处理GBM细胞后,可随浓度及时间依赖性地增加膜表面死亡受体5 (DR5)表达,并降低XIAP和survivin这两种抗凋亡蛋白的表达,还可以通过下调EGFR的表达抑制EGFR/PDGFR-STAT3信号通路。在桑葚素与TRAIL共同处理GBM细胞时,桑葚素能够有效抑制EGFR/PDGFR-STAT3通路,从而改善GBM细胞对TRAIL的抗性,并增强TRAIL对GBM细胞的凋亡作用。根据Penar等人[44]研究表明,黄酮类化合物金雀异黄素可以有效降低GBM细胞中EGFR相关的酪氨酸磷酸化程度。在对EGFR高亲和力配体结合结构域单克隆抗体和抗非活性结构域抗体的GBM细胞中,金雀异黄素表现出良好的抑制作用,并降低了GBM细胞的侵袭能力。

2.3. 黄酮类化合物和TAMs

小胶质细胞是GBM发生和发展中的重要免疫效应细胞,随着肿瘤进展,其对GBM的抑制作用逐渐转变为促进肿瘤的生长、增殖及侵袭能力[45]。在Alessandra Bispo da Silva等人[46]的研究中,通过在共培养小胶质细胞和胶质瘤细胞的实验中应用黄酮类化合物芦丁及槲皮素,观察到这些黄酮类化合物对小胶质细胞介导的炎症反应和生长因子的调节作用。研究结果显示,芦丁及槲皮素可下调肝癌源性生长因子(HDGF)、IGF和胶质细胞源性神经营养因子(GDNF)等生长因子的表达,其中HDGF表达降低显著抑制了胶质瘤细胞的增殖、迁移、侵袭和肿瘤发生。同时,这两种黄酮类化合物还通过上调TNF、CCL2、CCL5和CX3CL1的表达以及下调IL-10的表达,逆转了小胶质细胞的促癌作用,使小胶质细胞重新发挥抗GBM细胞的作用,从而有助于减少胶质瘤细胞的生长和迁移。

CYP-4家族在催化各种脂肪酸羟基化中发挥重要作用,其中20-HETE是花生四烯酸通过CYP4A羟基化后的主要产物,也是VEGF介导的血管生成的重要介质[47]。近期研究表明,CYP4A可能是GBM血管生成的一个有前景的治疗靶点。黄酮类化合物FLA-16通过降低CYP4A的表达,抑制M2型巨噬细胞中的PI3K/Akt信号通路激活,减少TAMs和EPCs衍生的VEGF和TGF-β的分泌,从而抑制GBM细胞生长、繁殖以及侵袭能力,并使GBM肿瘤中的血管正常化[48]

3. 结论

GBM是目前脑部原发性恶性肿瘤中恶性程度高、易复发且预后差的肿瘤之一。在抗GBM的标准治疗方案中,TMZ是目前不可或缺的化疗药物。然而,由于GBM细胞可通过多种方式对TMZ产生耐药性,导致接受标准治疗的患者生存时间短且治疗副作用较多。因此,开发新的抗GBM药物迫在眉睫。伴随着近年来黄酮类化合物的抗胶质细胞瘤的作用受到越来越多的关注,其抗GBM的分子机制得到了进一步研究,它具有多角度、多靶点、多功效的优点,能够在体内和体外有效抑制GBM的增殖、转移、侵袭和改善预后。本文探讨了黄酮类化合物通过影响胶质瘤细胞周围的肿瘤微环境发挥抗GBM作用。此外,黄酮类化合物作为天然物质,具有相对较小的副作用。然而,其抗GBM机制仍需进一步研究。目前,学者们通过化学修饰、纳米颗粒输送以及合成制剂等多种方法,努力克服血脑屏障对黄酮类化合物的影响,并提高其生物利用度。此外,黄酮类化合物还能提高化疗药物的敏感性,是一种极具前景的抗癌药物。

NOTES

*通讯作者。

参考文献

[1] Gimple, R.C., Bhargava, S., Dixit, D. and Rich, J.N. (2019) Glioblastoma Stem Cells: Lessons from the Tumor Hierarchy in a Lethal Cancer. Genes & Development, 33, 591-609.
https://doi.org/10.1101/gad.324301.119
[2] Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., et al. (2023) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro-Oncology, 25, iv1-iv99.
https://doi.org/10.1093/neuonc/noad149
[3] Rautajoki, K.J., Jaatinen, S., Hartewig, A., Tiihonen, A.M., Annala, M., Salonen, I., et al. (2023) Genomic Characterization of IDH-Mutant Astrocytoma Progression to Grade 4 in the Treatment Setting. Acta Neuropathologica Communications, 11, Article No. 176.
https://doi.org/10.1186/s40478-023-01669-9
[4] Vaz-Salgado, M.A., Villamayor, M., Albarrán, V., Alía, V., Sotoca, P., Chamorro, J., et al. (2023) Recurrent Glioblastoma: A Review of the Treatment Options. Cancers, 15, Article 4279.
https://doi.org/10.3390/cancers15174279
[5] Iturrioz-Rodríguez, N., Sampron, N. and Matheu, A. (2023) Current Advances in Temozolomide Encapsulation for the Enhancement of Glioblastoma Treatment. Theranostics, 13, 2734-2756.
https://doi.org/10.7150/thno.82005
[6] Wen, P.Y. and Kesari, S. (2008) Malignant Gliomas in Adults. New England Journal of Medicine, 359, 492-507.
https://doi.org/10.1056/nejmra0708126
[7] Wolbers, J.G. (2014) Novel Strategies in Glioblastoma Surgery Aim at Safe, Supra-Maximum Resection in Conjunction with Local Therapies. Chinese Journal of Cancer, 33, 8-15.
https://doi.org/10.5732/cjc.013.10219
[8] Youngblood, M.W., Stupp, R. and Sonabend, A.M. (2021) Role of Resection in Glioblastoma Management. Neurosurgery Clinics of North America, 32, 9-22.
https://doi.org/10.1016/j.nec.2020.08.002
[9] Muir, M., Gopakumar, S., Traylor, J., Lee, S. and Rao, G. (2020) Glioblastoma Multiforme: Novel Therapeutic Targets. Expert Opinion on Therapeutic Targets, 24, 605-614.
https://doi.org/10.1080/14728222.2020.1762568
[10] Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996) Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radical Biology and Medicine, 20, 933-956.
https://doi.org/10.1016/0891-5849(95)02227-9
[11] Sun, Q., Liu, Q., Zhou, X., Wang, X., Li, H., Zhang, W., et al. (2022) Flavonoids Regulate Tumor-Associated Macrophages—From Structure-Activity Relationship to Clinical Potential (Review). Pharmacological Research, 184, Article 106419.
https://doi.org/10.1016/j.phrs.2022.106419
[12] Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34.
https://doi.org/10.1146/annurev.nutr.22.111401.144957
[13] Yassin, N.Y.S., AbouZid, S.F., El-Kalaawy, A.M., Ali, T.M., Almehmadi, M.M. and Ahmed, O.M. (2022) Silybum marianum Total Extract, Silymarin and Silibinin Abate Hepatocarcinogenesis and Hepatocellular Carcinoma Growth via Modulation of the HGF/c-Met, Wnt/β-Catenin, and PI3K/Akt/mTOR Signaling Pathways. Biomedicine & Pharmacotherapy, 145, Article 112409.
https://doi.org/10.1016/j.biopha.2021.112409
[14] Kim, S., Choo, G., Yoo, E., Woo, J., Han, S., Lee, J., et al. (2019) Silymarin Induces Inhibition of Growth and Apoptosis through Modulation of the MAPK Signaling Pathway in AGS Human Gastric Cancer Cells. Oncology Reports, 42, 1904-1914.
https://doi.org/10.3892/or.2019.7295
[15] Yu, H., Chen, L., Cheng, K., Li, Y., Yeh, C. and Cheng, J. (2011) Silymarin Inhibits Cervical Cancer Cell through an Increase of Phosphatase and Tensin Homolog. Phytotherapy Research, 26, 709-715.
https://doi.org/10.1002/ptr.3618
[16] Chen, B., Li, X., Wu, L., Zhou, D., Song, Y., Zhang, L., et al. (2022) Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-Catenin/Zeb1 Signaling Pathway. Frontiers in Pharmacology, 13, Article 963614.
https://doi.org/10.3389/fphar.2022.963614
[17] Zhai, K., Mazurakova, A., Koklesova, L., Kubatka, P. and Büsselberg, D. (2021) Flavonoids Synergistically Enhance the Anti-Glioblastoma Effects of Chemotherapeutic Drugs. Biomolecules, 11, Article 1841.
https://doi.org/10.3390/biom11121841
[18] Ravi, V.M., Will, P., Kueckelhaus, J., Sun, N., Joseph, K., Salié, H., et al. (2022) Spatially Resolved Multi-Omics Deciphers Bidirectional Tumor-Host Interdependence in Glioblastoma. Cancer Cell, 40, 639-655.e13.
https://doi.org/10.1016/j.ccell.2022.05.009
[19] Wu, L., Wu, W., Zhang, J., Zhao, Z., Li, L., Zhu, M., et al. (2022) Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discovery, 12, 2820-2837.
https://doi.org/10.1158/2159-8290.cd-22-0196
[20] Bikfalvi, A., da Costa, C.A., Avril, T., Barnier, J., Bauchet, L., Brisson, L., et al. (2023) Challenges in Glioblastoma Research: Focus on the Tumor Microenvironment. Trends in Cancer, 9, 9-27.
https://doi.org/10.1016/j.trecan.2022.09.005
[21] Skog, J., Würdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Curry, W.T., et al. (2008) Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 10, 1470-1476.
https://doi.org/10.1038/ncb1800
[22] Parat, M.-O. and Riggins, G.J. (2012) Caveolin-1, Caveolae, and Glioblastoma. Neuro-Oncology, 14, 679-688.
https://doi.org/10.1093/neuonc/nos079
[23] Lambrechts, D., Wauters, E., Boeckx, B., Aibar, S., Nittner, D., Burton, O., et al. (2018) Phenotype Molding of Stromal Cells in the Lung Tumor Microenvironment. Nature Medicine, 24, 1277-1289.
https://doi.org/10.1038/s41591-018-0096-5
[24] Tao, W., Chu, C., Zhou, W., Huang, Z., Zhai, K., Fang, X., et al. (2020) Dual Role of WISP1 in Maintaining Glioma Stem Cells and Tumor-Supportive Macrophages in Glioblastoma. Nature Communications, 11, Article No. 3015.
https://doi.org/10.1038/s41467-020-16827-z
[25] Zhai, K., Huang, Z., Huang, Q., Tao, W., Fang, X., Zhang, A., et al. (2021) Pharmacological Inhibition of BACE1 Suppresses Glioblastoma Growth by Stimulating Macrophage Phagocytosis of Tumor Cells. Nature Cancer, 2, 1136-1151.
https://doi.org/10.1038/s43018-021-00267-9
[26] Yang, F., He, Z., Duan, H., Zhang, D., Li, J., Yang, H., et al. (2021) Synergistic Immunotherapy of Glioblastoma by Dual Targeting of IL-6 and CD40. Nature Communications, 12, Article No. 3424.
https://doi.org/10.1038/s41467-021-23832-3
[27] Kenig, S., Alonso, M.B.D., Mueller, M.M. and Lah, T.T. (2010) Glioblastoma and Endothelial Cells Cross-Talk, Mediated by SDF-1, Enhances Tumour Invasion and Endothelial Proliferation by Increasing Expression of Cathepsins B, S, and MMP-9. Cancer Letters, 289, 53-61.
https://doi.org/10.1016/j.canlet.2009.07.014
[28] Joseph, J.V., Magaut, C.R., Storevik, S., Geraldo, L.H., Mathivet, T., Latif, M.A., et al. (2021) TGF-β Promotes Microtube Formation in Glioblastoma through Thrombospondin 1. Neuro-Oncology, 24, 541-553.
https://doi.org/10.1093/neuonc/noab212
[29] Pepper, M.S., Vassalli, J.-D., Orci, L. and Montesano, R. (1993) Biphasic Effect of Transforming Growth Factor-β1 on in Vitro Angiogenesis. Experimental Cell Research, 204, 356-363.
https://doi.org/10.1006/excr.1993.1043
[30] Seoane, J. and Gomis, R.R. (2017) TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 9, a022277.
https://doi.org/10.1101/cshperspect.a022277
[31] Su, X., Yang, Y., Guo, C., Zhang, R., Sun, S., Wang, Y., et al. (2021) NOX4-Derived ROS Mediates TGF-β1-Induced Metabolic Reprogramming during Epithelial-Mesenchymal Transition through the PI3K/AKT/HIF-1α Pathway in Glioblastoma. Oxidative Medicine and Cellular Longevity, 2021, Article 5549047.
https://doi.org/10.1155/2021/5549047
[32] Seystahl, K., Papachristodoulou, A., Burghardt, I., Schneider, H., Hasenbach, K., Janicot, M., et al. (2017) Biological Role and Therapeutic Targeting of TGF-β3 in Glioblastoma. Molecular Cancer Therapeutics, 16, 1177-1186.
https://doi.org/10.1158/1535-7163.mct-16-0465
[33] Peleli, M., Moustakas, A. and Papapetropoulos, A. (2020) Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. International Journal of Molecular Sciences, 21, Article 7371.
https://doi.org/10.3390/ijms21197371
[34] Seystahl, K., Tritschler, I., Szabo, E., Tabatabai, G. and Weller, M. (2014) Differential Regulation of TGF-β-Induced, ALK-5-Mediated VEGF Release by SMAD2/3 versus SMAD1/5/8 Signaling in Glioblastoma. Neuro-Oncology, 17, 254-265.
https://doi.org/10.1093/neuonc/nou218
[35] Freitas, S., Costa, S., Azevedo, C., Carvalho, G., Freire, S., Barbosa, P., et al. (2010) Flavonoids Inhibit Angiogenic Cytokine Production by Human Glioma Cells. Phytotherapy Research, 25, 916-921.
https://doi.org/10.1002/ptr.3338
[36] Ouanouki, A., Lamy, S. and Annabi, B. (2016) Anthocyanidins Inhibit Epithelial-Mesenchymal Transition through a TGFβ/Smad2 Signaling Pathway in Glioblastoma Cells. Molecular Carcinogenesis, 56, 1088-1099.
https://doi.org/10.1002/mc.22575
[37] Gao, X., Xia, X., Li, F., Zhang, M., Zhou, H., Wu, X., et al. (2021) Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR-STAT3 Signalling. Nature Cell Biology, 23, 278-291.
https://doi.org/10.1038/s41556-021-00639-4
[38] Fang, R., Chen, X., Zhang, S., Shi, H., Ye, Y., Shi, H., et al. (2021) EGFR/SRC/ERK-Stabilized YTHDF2 Promotes Cholesterol Dysregulation and Invasive Growth of Glioblastoma. Nature Communications, 12, Article No. 177.
https://doi.org/10.1038/s41467-020-20379-7
[39] Weller, M., Butowski, N., Tran, D., Recht, L., Lim, M., Hirte, H., et al. (2016) ATIM-03. Act IV: An International, Double-Blind, Phase 3 Trial of Rindopepimut in Newly Diagnosed, EGFRvIII-Expressing Glioblastoma. Neuro-Oncology, 18, vi17-vi18.
https://doi.org/10.1093/neuonc/now212.068
[40] An, Z., Aksoy, O., Zheng, T., Fan, Q. and Weiss, W.A. (2018) Epidermal Growth Factor Receptor and Egfrviii in Glioblastoma: Signaling Pathways and Targeted Therapies. Oncogene, 37, 1561-1575.
https://doi.org/10.1038/s41388-017-0045-7
[41] Gao, M., Fu, Y., Zhou, W., Gui, G., Lal, B., Li, Y., et al. (2021) EGFR Activates a Taz-Driven Oncogenic Program in Glioblastoma. Cancer Research, 81, 3580-3592.
https://doi.org/10.1158/0008-5472.can-20-2773
[42] Thorburn, A. (2007) Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Pathway Signaling. Journal of Thoracic Oncology, 2, 461-465.
https://doi.org/10.1097/jto.0b013e31805fea64
[43] Park, D., Ha, I.J., Park, S., Choi, M., Lim, S., Kim, S., et al. (2016) Morusin Induces TRAIL Sensitization by Regulating EGFR and DR5 in Human Glioblastoma Cells. Journal of Natural Products, 79, 317-323.
https://doi.org/10.1021/acs.jnatprod.5b00919
[44] Penar, P.L., Khoshyomn, S., Bhushan, A. and Tritton, T.R. (1997) Inhibition of Epidermal Growth Factor Receptor-Associated Tyrosine Kinase Blocks Glioblastoma Invasion of the Brain. Neurosurgery, 40, 141-151.
https://doi.org/10.1227/00006123-199701000-00032
[45] Gu, R., Zhang, X., Zhang, G., Tao, T., Yu, H., Liu, L., et al. (2017) Probing the Bi-Directional Interaction between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochemical Research, 42, 1478-1487.
https://doi.org/10.1007/s11064-017-2204-1
[46] da Silva, A.B., Cerqueira Coelho, P.L., das Neves Oliveira, M., Oliveira, J.L., Oliveira Amparo, J.A., da Silva, K.C., et al. (2020) The Flavonoid Rutin and Its Aglycone Quercetin Modulate the Microglia Inflammatory Profile Improving Antiglioma Activity. Brain, Behavior, and Immunity, 85, 170-185.
https://doi.org/10.1016/j.bbi.2019.05.003
[47] Chen, L., Ackerman, R. and Guo, A.M. (2012) 20-HETE in neovascularization. Prostaglandins & Other Lipid Mediators, 98, 63-68.
https://doi.org/10.1016/j.prostaglandins.2011.12.005
[48] Wang, C., Li, Y., Chen, H., Zhang, J., Zhang, J., Qin, T., et al. (2017) Inhibition of CYP4A by a Novel Flavonoid FLA-16 Prolongs Survival and Normalizes Tumor Vasculature in Glioma. Cancer Letters, 402, 131-141.
https://doi.org/10.1016/j.canlet.2017.05.030