[1]
|
Patel, S., Srivastava, S., Singh, M.R. and Singh, D. (2019) Mechanistic Insight into Diabetic Wounds: Pathogenesis, Molecular Targets and Treatment Strategies to Pace Wound Healing. Biomedicine & Pharmacotherapy, 112, Article ID: 108615. https://doi.org/10.1016/j.biopha.2019.108615
|
[2]
|
Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093. https://doi.org/10.1021/acs.accounts.0c00864
|
[3]
|
Kranke, P., Bennett, M.H., Martyn-St James, M., Schnabel, A., Debus, S.E. and Weibel, S. (2015) Hyperbaric Oxygen Therapy for Chronic Wounds. Cochrane Database of Systematic Reviews, 2015, CD004123. https://doi.org/10.1002/14651858.cd004123.pub4
|
[4]
|
Boateng, J. and Catanzano, O. (2015) Advanced Therapeutic Dressings for Effective Wound Healing—A Review. Journal of Pharmaceutical Sciences, 104, 3653-3680. https://doi.org/10.1002/jps.24610
|
[5]
|
Jiang, M., Jiang, X., Li, H., Zhang, C., Zhang, Z., Wu, C., et al. (2023) The Role of Mesenchymal Stem Cell-Derived Evs in Diabetic Wound Healing. Frontiers in Immunology, 14, Article ID: 1136098. https://doi.org/10.3389/fimmu.2023.1136098
|
[6]
|
Chen, R., Hao, Z., Wang, Y., Zhu, H., Hu, Y., Chen, T., et al. (2022) Mesenchymal Stem Cell-Immune Cell Interaction and Related Modulations for Bone Tissue Engineering. Stem Cells International, 2022, Article ID: 7153584. https://doi.org/10.1155/2022/7153584
|
[7]
|
Li, T., Xia, M., Gao, Y., Chen, Y. and Xu, Y. (2015) Human Umbilical Cord Mesenchymal Stem Cells: An Overview of Their Potential in Cell-Based Therapy. Expert Opinion on Biological Therapy, 15, 1293-1306. https://doi.org/10.1517/14712598.2015.1051528
|
[8]
|
Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. https://doi.org/10.5966/sctm.2014-0267
|
[9]
|
Zhuang, L., Xia, W., Chen, D., Ye, Y., Hu, T., Li, S., et al. (2020) Exosomal LncRNA-NEAT1 Derived from MIF-Treated Mesenchymal Stem Cells Protected against Doxorubicin-Induced Cardiac Senescence through Sponging miR-221-3p. Journal of Nanobiotechnology, 18, Article No. 157. https://doi.org/10.1186/s12951-020-00716-0
|
[10]
|
Xue, C., Shen, Y., Li, X., Li, B., Zhao, S., Gu, J., et al. (2018) Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis through the PKA Signaling Pathway. Stem Cells and Development, 27, 456-465. https://doi.org/10.1089/scd.2017.0296
|
[11]
|
Fisher, G.J., Wang, Z., Datta, S.C., Varani, J., Kang, S. and Voorhees, J.J. (1997) Pathophysiology of Premature Skin Aging Induced by Ultraviolet Light. New England Journal of Medicine, 337, 1419-1429. https://doi.org/10.1056/nejm199711133372003
|
[12]
|
Waller, J.M. and Maibach, H.I. (2005) Age and Skin Structure and Function, a Quantitative Approach (I): Blood Flow, Ph, Thickness, and Ultrasound Echogenicity. Skin Research and Technology, 11, 221-235. https://doi.org/10.1111/j.0909-725x.2005.00151.x
|
[13]
|
Proksch, E., Brandner, J.M. and Jensen, J. (2008) The Skin: An Indispensable Barrier. Experimental Dermatology, 17, 1063-1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x
|
[14]
|
Kremer, M. and Burkemper, N. (2024) Aging Skin and Wound Healing. Clinics in Geriatric Medicine, 40, 1-10. https://doi.org/10.1016/j.cger.2023.06.001
|
[15]
|
Ashcroft, G.S., Mills, S.J. and Ashworth, J.J. (2002) Ageing and Wound Healing. Biogerontology, 3, 337-345. https://doi.org/10.1023/a:1021399228395
|
[16]
|
Senzel, L., Gnatenko, D.V. and Bahou, W.F. (2009) The Platelet Proteome. Current Opinion in Hematology, 16, 329-333. https://doi.org/10.1097/moh.0b013e32832e9dc6
|
[17]
|
Wilgus, T.A., Roy, S. and McDaniel, J.C. (2013) Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Advances in Wound Care, 2, 379-388. https://doi.org/10.1089/wound.2012.0383
|
[18]
|
Shams, F., Moravvej, H., Hosseinzadeh, S., Mostafavi, E., Bayat, H., Kazemi, B., et al. (2022) Overexpression of VEGF in Dermal Fibroblast Cells Accelerates the Angiogenesis and Wound Healing Function: In Vitro and in Vivo Studies. Scientific Reports, 12, Article No. 18529. https://doi.org/10.1038/s41598-022-23304-8
|
[19]
|
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003) VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia. The Journal of Cell Biology, 161, 1163-1177. https://doi.org/10.1083/jcb.200302047
|
[20]
|
Yates, C.C., Krishna, P., Whaley, D., Bodnar, R., Turner, T. and Wells, A. (2010) Lack of CXC Chemokine Receptor 3 Signaling Leads to Hypertrophic and Hypercellular Scarring. The American Journal of Pathology, 176, 1743-1755. https://doi.org/10.2353/ajpath.2010.090564
|
[21]
|
Rittié, L., Farr, E.A., Orringer, J.S., Voorhees, J.J. and Fisher, G.J. (2016) Reduced Cell Cohesiveness of Outgrowths from Eccrine Sweat Glands Delays Wound Closure in Elderly Skin. Aging Cell, 15, 842-852. https://doi.org/10.1111/acel.12493
|
[22]
|
Gosain, A. and DiPietro, L.A. (2004) Aging and Wound Healing. World Journal of Surgery, 28, 321-326. https://doi.org/10.1007/s00268-003-7397-6
|
[23]
|
Thomas, D.R. (2001) Age-Related Changes in Wound Healing. Drugs & Aging, 18, 607-620. https://doi.org/10.2165/00002512-200118080-00005
|
[24]
|
Wu, J., Chen, L., Sun, S., Li, Y. and Ran, X. (2022) Mesenchymal Stem Cell-Derived Exosomes: The Dawn of Diabetic Wound Healing. World Journal of Diabetes, 13, 1066-1095. https://doi.org/10.4239/wjd.v13.i12.1066
|
[25]
|
Lin, C.M., Gu, J., Zhang, Y., et al. (2012) Effect of UC-MSCs on Inflammation and Thrombosis of the Rats with Collagen Type II Induced Arthritis. Chinese Journal of Hematology, 33, 215-219.
|
[26]
|
Alexander, M., Hu, R., Runtsch, M.C., Kagele, D.A., Mosbruger, T.L., Tolmachova, T., et al. (2015) Exosome-Delivered MicroRNAs Modulate the Inflammatory Response to Endotoxin. Nature Communications, 6, Article No. 7321. https://doi.org/10.1038/ncomms8321
|
[27]
|
Li, X., Liu, L., Yang, J., Yu, Y., Chai, J., Wang, L., et al. (2016) Exosome Derived from Human Umbilical Cord Mesenchymal Stem Cell Mediates miR-181c Attenuating Burn-Induced Excessive Inflammation. EBioMedicine, 8, 72-82. https://doi.org/10.1016/j.ebiom.2016.04.030
|
[28]
|
Ti, D., Hao, H., Fu, X. and Han, W. (2016) Mesenchymal Stem Cells-Derived Exosomal MicroRNAs Contribute to Wound Inflammation. Science China Life Sciences, 59, 1305-1312. https://doi.org/10.1007/s11427-016-0240-4
|
[29]
|
Wang, X., Abraham, S., McKenzie, J.A.G., Jeffs, N., Swire, M., Tripathi, V.B., et al. (2013) LRG1 Promotes Angiogenesis by Modulating Endothelial TGF-β Signalling. Nature, 499, 306-311. https://doi.org/10.1038/nature12345
|
[30]
|
Zhang, Y., Zhang, P., Gao, X., Chang, L., Chen, Z. and Mei, X. (2021) Preparation of Exosomes Encapsulated Nanohydrogel for Accelerating Wound Healing of Diabetic Rats by Promoting Angiogenesis. Materials Science and Engineering: C, 120, Article ID: 111671. https://doi.org/10.1016/j.msec.2020.111671
|
[31]
|
Liu, J., Yan, Z., Yang, F., Huang, Y., Yu, Y., Zhou, L., et al. (2020) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Cutaneous Wound Healing by Enhancing Angiogenesis through Delivering Angiopoietin-2. Stem Cell Reviews and Reports, 17, 305-317. https://doi.org/10.1007/s12015-020-09992-7
|
[32]
|
Shi, H., Xu, X., Zhang, B., Xu, J., Pan, Z., Gong, A., et al. (2017) 3,3’-Diindolylmethane Stimulates Exosomal Wnt11 Autocrine Signaling in Human Umbilical Cord Mesenchymal Stem Cells to Enhance Wound Healing. Theranostics, 7, 1674-1688. https://doi.org/10.7150/thno.18082
|
[33]
|
Zhang, S., Chen, L., Zhang, G. and Zhang, B. (2020) Umbilical Cord-Matrix Stem Cells Induce the Functional Restoration of Vascular Endothelial Cells and Enhance Skin Wound Healing in Diabetic Mice via the Polarized Macrophages. Stem Cell Research & Therapy, 11, Article No. 39. https://doi.org/10.1186/s13287-020-1561-x
|
[34]
|
Song, Y., Dou, H., Li, X., Zhao, X., Li, Y., Liu, D., et al. (2017) Exosomal miR-146a Contributes to the Enhanced Therapeutic Efficacy of Interleukin-1β-Primed Mesenchymal Stem Cells against Sepsis. Stem Cells, 35, 1208-1221. https://doi.org/10.1002/stem.2564
|
[35]
|
Nie, W., Huang, X., Zhao, L., Wang, T., Zhang, D., Xu, T., et al. (2023) Exosomal miR-17-92 Derived from Human Mesenchymal Stem Cells Promotes Wound Healing by Enhancing Angiogenesis and Inhibiting Endothelial Cell Ferroptosis. Tissue and Cell, 83, Article ID: 102124. https://doi.org/10.1016/j.tice.2023.102124
|
[36]
|
Miranda, J.P., Filipe, E., Fernandes, A.S., Almeida, J.M., Martins, J.P., De La Fuente, A., et al. (2015) The Human Umbilical Cord Tissue-Derived MSC Population Ucx®promotes Early Motogenic Effects on Keratinocytes and Fibroblasts and G-Csf-Mediated Mobilization of BM-MSCS When Transplanted in Vivo. Cell Transplantation, 24, 865-877. https://doi.org/10.3727/096368913x676231
|
[37]
|
Lai, Y., Liu, X.H., Zeng, Y., et al. (2012) Interleukin-8 Induces the Endothelial Cell Migration through the Rac1/RhoA-p38MAPK Pathway. European Review for Medical and Pharmacological Sciences, 16, 630-638.
|
[38]
|
Fong, C., Tam, K., Cheyyatraivendran, S., Gan, S., Gauthaman, K., Armugam, A., et al. (2013) Human Wharton’s Jelly Stem Cells and Its Conditioned Medium Enhance Healing of Excisional and Diabetic Wounds. Journal of Cellular Biochemistry, 115, 290-302. https://doi.org/10.1002/jcb.24661
|
[39]
|
Nissen, N.N., Polverini, P.J., Koch, A.E., et al. (1998) Vascular Endothelial Growth Factor Mediates Angiogenic Activity during the Proliferative Phase of Wound Healing. The American Journal of Pathology, 152, 1445-1452.
|
[40]
|
Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., et al. (2015) HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells, 33, 2158-2168. https://doi.org/10.1002/stem.1771
|
[41]
|
Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223. https://doi.org/10.1098/rsob.200223
|
[42]
|
Hu, J., Chen, Y., Huang, Y. and Su, Y. (2020) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Suppress Dermal Fibroblasts-Myofibroblats Transition via Inhibiting the TGF-β1/Smad2/3 Signaling Pathway. Experimental and Molecular Pathology, 115, Article ID: 104468. https://doi.org/10.1016/j.yexmp.2020.104468
|
[43]
|
Li, M., Zhang, H., Wang, X., Chen, Z., Lin, X. and Zhu, W. (2021) Mesenchymal Stem Cell-Derived Exosomes Ameliorate Dermal Fibrosis in a Murine Model of Bleomycin-Induced Scleroderma. Stem Cells and Development, 30, 981-990. https://doi.org/10.1089/scd.2021.0112
|
[44]
|
Zhang, B., Shi, Y., Gong, A., Pan, Z., Shi, H., Yang, H., et al. (2016) HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP during Cutaneous Regeneration. Stem Cells, 34, 2485-2500. https://doi.org/10.1002/stem.2432
|
[45]
|
Ding, D., Chang, Y., Shyu, W. and Lin, S. (2015) Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplantation, 24, 339-347. https://doi.org/10.3727/096368915x686841
|
[46]
|
Hoang, D.H., Nguyen, T.D., Nguyen, H., Nguyen, X., Do, P.T.X., Dang, V.D., et al. (2020) Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated from Bone Marrow, Adipose Tissue and Umbilical Cord under Serum-and Xeno-Free Condition. Frontiers in Molecular Biosciences, 7, Article No. 119. https://doi.org/10.3389/fmolb.2020.00119
|
[47]
|
Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2019) Human Umbilical Cord Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717. https://doi.org/10.1002/jcp.29004
|
[48]
|
Yan, C., Xv, Y., Lin, Z., Endo, Y., Xue, H., Hu, Y., et al. (2022) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Accelerate Diabetic Wound Healing via Ameliorating Oxidative Stress and Promoting Angiogenesis. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 829868. https://doi.org/10.3389/fbioe.2022.829868
|