[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
|
[3]
|
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2023版) [J]. 中华肿瘤杂志, 2023, 45(7): 539-574.
|
[4]
|
Qi, J., He, P., Yao, H., Song, R., Ma, C., Cao, M., et al. (2019) Cancer Risk among Patients with Type 2 Diabetes: A Real‐World Study in Shanghai, China. Journal of Diabetes, 11, 878-883. https://doi.org/10.1111/1753-0407.12926
|
[5]
|
Tsilidis, K.K., Kasimis, J.C., Lopez, D.S., Ntzani, E.E. and Ioannidis, J.P.A. (2015) Type 2 Diabetes and Cancer: Umbrella Review of Meta-Analyses of Observational Studies. BMJ, 350, g7607. https://doi.org/10.1136/bmj.g7607
|
[6]
|
Kim, D. and Scherer, P.E. (2021) Obesity, Diabetes, and Increased Cancer Progression. Diabetes & Metabolism Journal, 45, 799-812. https://doi.org/10.4093/dmj.2021.0077
|
[7]
|
Wang, N., Tang, H., Liu, F. and Hong, Q. (2020) Prolonged Progression-Free Survival and Overall Survival Are Associated with Diabetes Mellitus but Inversely Associated with Levels of Blood Glucose in Patients with Lung Cancer. Chinese Medical Journal, 133, 786-791. https://doi.org/10.1097/cm9.0000000000000739
|
[8]
|
Brancher, S., Støer, N.C., Weiderpass, E., Damhuis, R.A.M., Johannesen, T.B., Botteri, E., et al. (2020) Metformin Use and Lung Cancer Survival: A Population-Based Study in Norway. British Journal of Cancer, 124, 1018-1025. https://doi.org/10.1038/s41416-020-01186-9
|
[9]
|
任婧, 肖新华. 对钠-葡萄糖共转运蛋白2抑制剂获益机制的再认识[J]. 中华糖尿病杂志, 2023, 15(7): 656-661.
|
[10]
|
O’Hara, D.V., Lam, C.S.P., McMurray, J.J.V., Yi, T.W., Hocking, S., Dawson, J., et al. (2024) Applications of SGLT2 Inhibitors beyond Glycaemic Control. Nature Reviews Nephrology, 20, 513-529. https://doi.org/10.1038/s41581-024-00836-y
|
[11]
|
Zheng, J., Lu, J., Qi, J., Yang, Q., Zhao, H., Liu, H., et al. (2024) The Effect of SGLT2 Inhibition on Prostate Cancer: Mendelian Randomization and Observational Analysis Using Electronic Healthcare and Cohort Data. Cell Reports Medicine, 5, Article ID: 101688. https://doi.org/10.1016/j.xcrm.2024.101688
|
[12]
|
Alblowy, A.H., Maan, N. and Ibrahim, A.A. (2023) Optimal Control Strategies for SGLT2 Inhibitors as a Novel Anti-Tumor Agent and Their Effect on Human Breast Cancer Cells with the Effect of Time Delay and Hyperglycemia. Computers in Biology and Medicine, 166, Article ID: 107552. https://doi.org/10.1016/j.compbiomed.2023.107552
|
[13]
|
Xie, Z., Wang, F., Lin, L., Duan, S., Liu, X., Li, X., et al. (2020) An SGLT2 Inhibitor Modulates SHH Expression by Activating AMPK to Inhibit the Migration and Induce the Apoptosis of Cervical Carcinoma Cells. Cancer Letters, 495, 200-210. https://doi.org/10.1016/j.canlet.2020.09.005
|
[14]
|
Wang, Y., Yang, L., Mao, L., Zhang, L., Zhu, Y., Xu, Y., et al. (2022) SGLT2 Inhibition Restrains Thyroid Cancer Growth via G1/S Phase Transition Arrest and Apoptosis Mediated by DNA Damage Response Signaling Pathways. Cancer Cell International, 22, Article No. 74. https://doi.org/10.1186/s12935-022-02496-z
|
[15]
|
Nakano, D., Kawaguchi, T., Iwamoto, H., Hayakawa, M., Koga, H. and Torimura, T. (2020) Effects of Canagliflozin on Growth and Metabolic Reprograming in Hepatocellular Carcinoma Cells: Multi-Omics Analysis of Metabolomics and Absolute Quantification Proteomics (IMPAQT). PLOS ONE, 15, e0232283. https://doi.org/10.1371/journal.pone.0232283
|
[16]
|
Xu, D., Zhou, Y., Xie, X., He, L., Ding, J., Pang, S., et al. (2020) Inhibitory Effects of Canagliflozin on Pancreatic Cancer Are Mediated via the Downregulation of Glucose Transporter1 and Lactate Dehydrogenase A. International Journal of Oncology, 57, 1223-1233. https://doi.org/10.3892/ijo.2020.5120
|
[17]
|
Hung, M., Chen, Y., Chen, L., Chu, P., Hsieh, F., Tsai, M., et al. (2019) Canagliflozin Inhibits Growth of Hepatocellular Carcinoma via Blocking Glucose-Influx-Induced β-Catenin Activation. Cell Death & Disease, 10, Article No. 420. https://doi.org/10.1038/s41419-019-1646-6
|
[18]
|
Cui, C., Zhou, X., Zhang, W., Qu, Y. and Ke, X. (2018) Is β-Catenin a Druggable Target for Cancer Therapy? Trends in Biochemical Sciences, 43, 623-634. https://doi.org/10.1016/j.tibs.2018.06.003
|
[19]
|
Kaji, K., Nishimura, N., Seki, K., Sato, S., Saikawa, S., Nakanishi, K., et al. (2017) Sodium Glucose Cotransporter 2 Inhibitor Canagliflozin Attenuates Liver Cancer Cell Growth and Angiogenic Activity by Inhibiting Glucose Uptake. International Journal of Cancer, 142, 1712-1722. https://doi.org/10.1002/ijc.31193
|
[20]
|
Dutka, M., Bobiński, R., Francuz, T., Garczorz, W., Zimmer, K., Ilczak, T., et al. (2022) SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers, 14, Article 5811. https://doi.org/10.3390/cancers14235811
|
[21]
|
Wu, W., Zhang, Z., Jing, D., Huang, X., Ren, D., Shao, Z., et al. (2022) SGLT2 Inhibitor Activates the STING/IRF3/IFN-β Pathway and Induces Immune Infiltration in Osteosarcoma. Cell Death & Disease, 13, Article No. 523. https://doi.org/10.1038/s41419-022-04980-w
|
[22]
|
Anastasio, C., Donisi, I., Del Vecchio, V., Colloca, A., Mele, L., Sardu, C., et al. (2024) SGLT2 Inhibitor Promotes Mitochondrial Dysfunction and ER-Phagy in Colorectal Cancer Cells. Cellular & Molecular Biology Letters, 29, Article No. 80. https://doi.org/10.1186/s11658-024-00599-1
|
[23]
|
Ding, L., Chen, X., Zhang, W., Dai, X., Guo, H., Pan, X., et al. (2023) Canagliflozin Primes Antitumor Immunity by Triggering PD-L1 Degradation in Endocytic Recycling. Journal of Clinical Investigation, 133, e154754. https://doi.org/10.1172/jci154754
|
[24]
|
Okada, J., Yamada, E., Saito, T., Yokoo, H., Osaki, A., Shimoda, Y., et al. (2020) Dapagliflozin Inhibits Cell Adhesion to Collagen I and IV and Increases Ectodomain Proteolytic Cleavage of DDR1 by Increasing ADAM10 Activity. Molecules, 25, Article 495. https://doi.org/10.3390/molecules25030495
|
[25]
|
Zhou, J., Zhu, J., Yu, S., Ma, H., Chen, J., Ding, X., et al. (2020) Sodium-Glucose Co-Transporter-2 (SGLT-2) Inhibition Reduces Glucose Uptake to Induce Breast Cancer Cell Growth Arrest through AMPK-mTOR Pathway. Biomedicine & Pharmacotherapy, 132, Article ID: 110821. https://doi.org/10.1016/j.biopha.2020.110821
|
[26]
|
Lymperopoulos, A., Borges, J.I., Cora, N. and Sizova, A. (2021) Sympatholytic Mechanisms for the Beneficial Cardiovascular Effects of SGLT2 Inhibitors: A Research Hypothesis for Dapagliflozin’s Effects in the Adrenal Gland. International Journal of Molecular Sciences, 22, Article No. 7684. https://doi.org/10.3390/ijms22147684
|
[27]
|
Chang, A., Botteri, E., Gillis, R.D., Löfling, L., Le, C.P., Ziegler, A.I., et al. (2023) Beta-Blockade Enhances Anthracycline Control of Metastasis in Triple-Negative Breast Cancer. Science Translational Medicine, 15, eadf1147. https://doi.org/10.1126/scitranslmed.adf1147
|
[28]
|
Villani, L.A., Smith, B.K., Marcinko, K., Ford, R.J., Broadfield, L.A., Green, A.E., et al. (2016) The Diabetes Medication Canagliflozin Reduces Cancer Cell Proliferation by Inhibiting Mitochondrial Complex-I Supported Respiration. Molecular Metabolism, 5, 1048-1056. https://doi.org/10.1016/j.molmet.2016.08.014
|
[29]
|
Biziotis, O., Tsakiridis, E.E., Ali, A., Ahmadi, E., Wu, J., Wang, S., et al. (2023) Canagliflozin Mediates Tumor Suppression Alone and in Combination with Radiotherapy in Non‐Small Cell Lung Cancer (NSCLC) through Inhibition of HIF‐1α. Molecular Oncology, 17, 2235-2256. https://doi.org/10.1002/1878-0261.13508
|
[30]
|
Scafoglio, C.R., Villegas, B., Abdelhady, G., Bailey, S.T., Liu, J., Shirali, A.S., et al. (2018) Sodium-Glucose Transporter 2 Is a Diagnostic and Therapeutic Target for Early-Stage Lung Adenocarcinoma. Science Translational Medicine, 10, eaat5933. https://doi.org/10.1126/scitranslmed.aat5933
|
[31]
|
Yamamoto, L., Yamashita, S., Nomiyama, T., Kawanami, T., Hamaguchi, Y., Shigeoka, T., et al. (2021) Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin Attenuates Lung Cancer Cell Proliferation in Vitro. Diabetology International, 12, 389-398. https://doi.org/10.1007/s13340-021-00494-6
|
[32]
|
Saggese, P., Pandey, A., Alcaraz, M., Fung, E., Hall, A., Yanagawa, J., et al. (2023) Glucose Deprivation Promotes Pseudohypoxia and Dedifferentiation in Lung Adenocarcinoma. Cancer Research, 84, 305-327. https://doi.org/10.1158/0008-5472.can-23-1148
|
[33]
|
Hsieh, M., Choe, J.H., Gadhvi, J., Kim, Y.J., Arguez, M.A., Palmer, M., et al. (2019) P63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 28, 1860-1878.e9. https://doi.org/10.1016/j.celrep.2019.07.027
|
[34]
|
Luo, J., Hendryx, M. and Dong, Y. (2023) Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Non-Small Cell Lung Cancer Survival. British Journal of Cancer, 128, 1541-1547. https://doi.org/10.1038/s41416-023-02177-2
|
[35]
|
Xiao, Y., Yang, W. and Wang, M. (2024) SGLT2 Inhibitors May Reduce Non-Small Cell Lung Cancer and Not Increase Various Neoplasms Including Several Skin Cancers. Endocrine. https://doi.org/10.1007/s12020-024-03914-0
|
[36]
|
Shapiro, S.B., Yin, H., Yu, O.H.Y. and Azoulay, L. (2024) Sodium‐Glucose Cotransporter‐2 Inhibitors and the Risk of Lung Cancer among Patients with Type 2 Diabetes. British Journal of Clinical Pharmacology, 90, 1365-1370. https://doi.org/10.1111/bcp.16039
|