[1]
|
叶学东. 踔厉奋发勇毅前行坚定不移推进磷石膏利用高质量发展[J]. 磷肥与复肥, 2023, 38(5): 1-3.
|
[2]
|
吴浩, 韩超南, 汤昱. 我国磷石膏资源化利用研究进展[J]. 现代化工, 2023, 43(3): 18-21.
|
[3]
|
刘珊, 吴丰辉, 瞿广飞, 等. 磷石膏堆存过程中重金属的迁移转化及其生态效应[J]. 生态毒理学报, 2022, 17(4): 302-314.
|
[4]
|
Lv, X. and Xiang, L. (2022) The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials, 12, Article No. 3021. https://doi.org/10.3390/nano12173021
|
[5]
|
Silva, L.F.O., Oliveira, M.L.S., Crissien, T.J., Santosh, M., Bolivar, J., Shao, L., et al. (2022) A Review on the Environmental Impact of Phosphogypsum and Potential Health Impacts through the Release of Nanoparticles. Chemosphere, 286, Article ID: 131513. https://doi.org/10.1016/j.chemosphere.2021.131513
|
[6]
|
Cao, W., Yi, W., Peng, J., Li, G. and Yin, S. (2022) Preparation of Anhydrite from Phosphogypsum: Influence of Phosphorus and Fluorine Impurities on the Performances. Construction and Building Materials, 318, Article ID: 126021. https://doi.org/10.1016/j.conbuildmat.2021.126021
|
[7]
|
Cui, S., Fu, Y., Zhou, B., Li, J., He, W., Yu, Y., et al. (2021) Transfer Characteristic of Fluorine from Atmospheric Dry Deposition, Fertilizers, Pesticides, and Phosphogypsum into Soil. Chemosphere, 278, Article ID: 130432. https://doi.org/10.1016/j.chemosphere.2021.130432
|
[8]
|
严超, 彭秋桂, 朱淼, 等. 磷石膏综合利用及除杂方法综述[J]. 磷肥与复肥, 2023, 38(2): 27-33.
|
[9]
|
Wang, J., Dong, F., Wang, Z., Yang, F., Du, M., Fu, K., et al. (2020) A Novel Method for Purification of Phosphogypsum. Physicochemical Problems of Mineral Processing, 56, 975-983. https://doi.org/10.37190/ppmp/127854
|
[10]
|
沈维云, 郑光明, 孙桦林, 等. 磷石膏提纯增白实验研究[J]. 磷肥与复肥, 2022, 37(2): 5-6.
|
[11]
|
方竹堃. 磷石膏高效水洗净化处理技术[J]. 云南化工, 2023, 50(2): 114-116.
|
[12]
|
Fang, J., Ge, Y., Chen, Z., Xing, B., Bao, S., Yong, Q., et al. (2022) Flotation Purification of Waste High-Silica Phosphogypsum. Journal of Environmental Management, 320, Article ID: 115824. https://doi.org/10.1016/j.jenvman.2022.115824
|
[13]
|
Zhang, H., Chai, W. and Cao, Y. (2022) Flotation Separation of Quartz from Gypsum Using Benzyl Quaternary Ammonium Salt as Collector. Applied Surface Science, 576, Article ID: 151834. https://doi.org/10.1016/j.apsusc.2021.151834
|
[14]
|
许晴莹, 杨鼎宜, 吕伟, 等. 球磨时间对磷石膏基胶凝材料性能影响研究[J]. 无机盐工业, 2022, 54(5): 101-108.
|
[15]
|
Wu, L., Tao, Z., Zhao, Z., Ghafar, W.A., Tao, Y., Liao, S., et al. (2022) Effect of Ball Milling Time on the Performance of Phosphorous Building Gypsum. Advances in Civil Engineering, 2022, Article ID: 7670057. https://doi.org/10.1155/2022/7670057
|
[16]
|
谢恩鑫, 苏宏东, 邓辉. 改性磷石膏在普通硅酸盐水泥中的应用[J]. 水泥技术, 2023(2): 93-96.
|
[17]
|
Zhang, W., Zhao, L., Xue, M., Duan, X., Feng, C. and Zhu, J. (2023) Effect of Oxalic Acid Pretreatment on the Mechanical Properties and Microstructure of Phosphogypsum. Construction and Building Materials, 362, Article ID: 129631. https://doi.org/10.1016/j.conbuildmat.2022.129631
|
[18]
|
周武, 李杨, 冯伟光, 等. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542.
|
[19]
|
Mashifana, T.P. (2019) Chemical Treatment of Phosphogypsum and Its Potential Application for Building and Construction. Procedia Manufacturing, 35, 641-648. https://doi.org/10.1016/j.promfg.2019.06.007
|
[20]
|
顾青山, 林喜华, 赵士豪, 等. 不同预处理工艺对磷石膏性能的影响[J]. 无机盐工业, 2022, 54(4): 17-23.
|
[21]
|
方官涛, 敖先权, 刘境, 等. 磷石膏煅烧过程中添加剂对其杂质和白度影响[J]. 非金属矿, 2019, 42(4): 10-12.
|
[22]
|
钟雯. 不同预处理方式对磷石膏中残留的磷和氟的影响[J]. 居业, 2021(8): 203-204.
|
[23]
|
夏举佩. 磷石膏用作建筑材料的瓶颈与关键技术[J]. 磷肥与复肥, 2020, 35(11): 6.
|
[24]
|
Liu, S., Wang, L. and Yu, B. (2019) Effect of Modified Phosphogypsum on the Hydration Properties of the Phosphogypsum-Based Supersulfated Cement. Construction and Building Materials, 214, 9-16. https://doi.org/10.1016/j.conbuildmat.2019.04.052
|
[25]
|
Chen, M., Liu, P., Kong, D., Wang, Y., Wang, J., Huang, Y., et al. (2022) Influencing Factors of Mechanical and Thermal Conductivity of Foamed Phosphogypsum-Based Composite Cementitious Materials. Construction and Building Materials, 346, Article ID: 128462. https://doi.org/10.1016/j.conbuildmat.2022.128462
|
[26]
|
欧志兵, 杨文娟, 何宾宾. 国内外磷石膏综合利用现状[J]. 云南化工, 2021, 48(11): 6-9.
|
[27]
|
胡勇, 龚小梅, 张豪, 等. 蒸压改性磷石膏作为水泥缓凝剂的研究[J]. 建材发展导向, 2021, 19(16): 9-11.
|
[28]
|
吴秀俊, 武汶逵, 谭桂蓉, 等. 磷石膏水泥缓凝剂的试验与应用(二) [J]. 建材发展导向, 2020, 18(20): 18-22.
|
[29]
|
Li, B., Li, L., Chen, X., Ma, Y. and Zhou, M. (2022) Modification of Phosphogypsum Using Circulating Fluidized Bed Fly Ash and Carbide Slag for Use as Cement Retarder. Construction and Building Materials, 338, Article ID: 127630. https://doi.org/10.1016/j.conbuildmat.2022.127630
|
[30]
|
Zhou, J., Li, X., Zhao, Y., Shu, Z., Wang, Y., Zhang, Y., et al. (2020) Preparation of Paper-Free and Fiber-Free Plasterboard with High Strength Using Phosphogypsum. Construction and Building Materials, 243, Article ID: 118091. https://doi.org/10.1016/j.conbuildmat.2020.118091
|
[31]
|
Wang, Q. and Jia, R. (2019) A Novel Gypsum-Based Self-Leveling Mortar Produced by Phosphorus Building Gypsum. Construction and Building Materials, 226, 11-20. https://doi.org/10.1016/j.conbuildmat.2019.07.289
|
[32]
|
安娜娜, 刘方, 朱健, 等. 竹材对磷石膏型生态砖性能的影响及评价[J]. 应用化工, 2023, 52(5): 1441-1446.
|
[33]
|
吴超, 杨林, 李玮, 等. 轻质抹灰磷建筑石膏性能影响机制研究[J]. 硅酸盐通报, 2021, 40(2): 565-572.
|
[34]
|
Tian, T., Zhang, C., Zhu, F., Yuan, S., Guo, Y. and Xue, S. (2021) Effect of Phosphogypsum on Saline-Alkalinity and Aggregate Stability of Bauxite Residue. Transactions of Nonferrous Metals Society of China, 31, 1484-1495. https://doi.org/10.1016/s1003-6326(21)65592-9
|
[35]
|
Gong, X., Liu, J., Sun, Z. and Li, F. (2020) Effects of Phosphogypsum and Calcined Phosphogypsum Content on the Basic Physical and Mechanical Properties of Portland Cement Mortar. Journal of Testing and Evaluation, 48, 3539-3549. https://doi.org/10.1520/jte20180380
|
[36]
|
马瑜, 李北星, 杨洋. 改性磷石膏球作缓凝剂对水泥性能的影响[J]. 水泥, 2020(5): 9-14.
|
[37]
|
Wu, F., Jin, C., Qu, G., Liu, Y., Wang, C., Chen, B., et al. (2022) Enhancement of Phosphogypsum Mechanical Block with the Addition of Iron and Aluminum Salts. Journal of Building Engineering, 52, Article ID: 104397. https://doi.org/10.1016/j.jobe.2022.104397
|
[38]
|
Oubaha, S., Hakkou, R., Taha, Y., Mghazli, M.O. and Benzaazoua, M. (2022) Elaboration of Compressed Earth Blocks Based on Phosphogypsum and Phosphate Mining By-Products. Journal of Building Engineering, 62, Article ID: 105423. https://doi.org/10.1016/j.jobe.2022.105423
|
[39]
|
Wang, Q., Cui, Y. and Xue, J. (2020) Study on the Improvement of the Waterproof and Mechanical Properties of Hemihydrate Phosphogypsum-Based Foam Insulation Materials. Construction and Building Materials, 230, Article ID: 117014. https://doi.org/10.1016/j.conbuildmat.2019.117014
|
[40]
|
Kandil, A.T., Cheira, M.F., Gado, H.S., Soliman, M.H. and Akl, H.M. (2017) Ammonium Sulfate Preparation from Phosphogypsum Waste. Journal of Radiation Research and Applied Sciences, 10, 24-33. https://doi.org/10.1016/j.jrras.2016.11.001
|
[41]
|
杨红艳, 欧阳俊瑶, 夏蝶, 等. 添加CaSO4·2H2O为晶种制备磷石膏半水硫酸钙晶须[J]. 人工晶体学报, 2022, 51(2): 309-315.
|
[42]
|
朱鹏程, 彭操. 磷石膏水热法制备硫酸钙晶须试验研究[J]. 云南化工, 2021, 48(3): 49-51.
|
[43]
|
黄旭, 黄健, 牛韵雅, 等. 磷石膏制备的耐热半水硫酸钙晶须表面疏水改性研究[J]. 硅酸盐通报, 2019, 38(7): 2021-2027.
|
[44]
|
Tan, H., Dong, F., Bian, L., He, X. and Liu, J. (2017) Preparation of Anhydrous Calcium Sulfate Whiskers from Phosphogypsum in H2O-H2SO4 Autoclave-Free Hydrothermal System. Materials Transactions, 58, 1111-1117. https://doi.org/10.2320/matertrans.m2017042
|
[45]
|
Salo, M., Knauf, O., Mäkinen, J., Yang, X. and Koukkari, P. (2020) Integrated Acid Leaching and Biological Sulfate Reduction of Phosphogypsum for REE Recovery. Minerals Engineering, 155, Article ID: 106408. https://doi.org/10.1016/j.mineng.2020.106408
|
[46]
|
Wu, S., Zhao, L., Wang, L., Huang, X., Zhang, Y., Feng, Z., et al. (2019) Simultaneous Recovery of Rare Earth Elements and Phosphorus from Phosphate Rock by Phosphoric Acid Leaching and Selective Precipitation: Towards Green Process. Journal of Rare Earths, 37, 652-658. https://doi.org/10.1016/j.jre.2018.09.012
|
[47]
|
Ding, W., Chen, Q., Sun, H. and Peng, T. (2019) Modified Mineral Carbonation of Phosphogypsum for CO2 Sequestration. Journal of CO2 Utilization, 34, 507-515. https://doi.org/10.1016/j.jcou.2019.08.002
|
[48]
|
张天毅, 胡宏, 何兵兵, 等. 磷石膏制硫酸铵与副产碳酸钙工艺研究[J]. 化工矿物与加工, 2017, 46(2): 31-34.
|
[49]
|
Li, S., Malik, M. and Azimi, G. (2022) Leaching of Rare Earth Elements from Phosphogypsum Using Mineral Acids. In: Lazou, A., et al., Eds., REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I), Springer International Publishing, 267-274. https://doi.org/10.1007/978-3-030-92563-5_28
|
[50]
|
Mukaba, J., Eze, C.P., Pereao, O. and Petrik, L.F. (2021) Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. Minerals, 11, Article No. 1051. https://doi.org/10.3390/min11101051
|
[51]
|
展争艳, 顾生芳, 展成业. 施用磷石膏对甘肃引黄灌区重度盐碱地改良效果研究[J]. 环境保护与循环经济, 2021, 41(3): 61-64.
|
[52]
|
姜焕焕, 李嘉钦, 陈刚, 等. 解磷微生物及其在盐碱土中的应用研究进展[J]. 土壤, 2021, 53(6): 1125-1131.
|
[53]
|
Vizirskaya, M., Sheydgen, A., Akanova, N., Zhdanov, V., Tihonova, M. and Buzylev, A. (2020) Agroecological Efficiency of Periodic Use of Neutralized Phosphogypsum in Rice Crops. E3S Web of Conferences, 175, Article No. 07004. https://doi.org/10.1051/e3sconf/202017507004
|
[54]
|
Efremova, S.Y., Akanova, N.I., Sharkov, T.A. and Yakhkind, M.I. (2020) Efficiency of the Use of Neutralized Phosphogypsum, Phosphorite Processing Waste, in Agriculture. Environmental Quality Management, 30, 5-11. https://doi.org/10.1002/tqem.21707
|
[55]
|
Sagna, Y.P., Diedhiou, S., Goudiaby, A.O.K., Diatta, Y., Diallo, M.D., Ndoye, I., et al. (2023) Do Phosphogypsum Combined with Organic Amendments Improve Rice Growth in a Saline Environment? Current Journal of Applied Science and Technology, 42, 52-61. https://doi.org/10.9734/cjast/2023/v42i354236
|
[56]
|
韩科峰, 李火良, 斯林林, 等. 生物有机肥对葡萄产量及经济效益的影响[J]. 浙江农业科学, 2022, 63(8): 1782-1784.
|
[57]
|
Panda, L., Kumar, M. and Pradhan, A. (2022) Leaching of Sulphate from Biochar and Phosphogypsum-Biochar for the Treatment of Acidic Red Soil. Asian Journal of Water, Environment and Pollution, 19, 23-29. https://doi.org/10.3233/ajw220035
|
[58]
|
严建立, 章明奎, 王道泽. 磷石膏与石灰石粉配施对新垦红壤耕地的改良效果[J]. 农学学报, 2022, 12(7): 33-37.
|
[59]
|
Melgaço, L.A.d.O., Quites, N.C. and Leão, V.A. (2020) Phosphogypsum as Sulfate Source for Sulphate-Reducing Bacteria in a Continuous Fluidized-Bed Reactor. Engenharia Sanitaria e Ambiental, 25, 157-165. https://doi.org/10.1590/s1413-4152202020180007
|
[60]
|
Zhantasov, K., Ziyat, A., Sarypbekova, N., Kirgizbayeva, K., Iztleuov, G., Zhantasov, M., et al. (2022) Ecologically Friendly, Slow-Release Granular Fertilizers with Phosphogypsum. Polish Journal of Environmental Studies, 31, 2935-2942. https://doi.org/10.15244/pjoes/144099
|
[61]
|
Samet, M., Karray, F., Mhiri, N., Kamoun, L., Sayadi, S. and Gargouri-Bouzid, R. (2019) Effect of Phosphogypsum Addition in the Composting Process on the Physico-Chemical Proprieties and the Microbial Diversity of the Resulting Compost Tea. Environmental Science and Pollution Research, 26, 21404-21415. https://doi.org/10.1007/s11356-019-05327-3
|