新型生物疗法在糖尿病足溃疡治疗中的研究进展
Research Progress of Novel Biological Therapies in the Treatment of Diabetic Foot Ulcers
DOI: 10.12677/acm.2024.14112938, PDF, HTML, XML,    科研立项经费支持
作者: 高金金, 孙 甫*:西安医学院研究生院,西安;西安医学院第一附属医院骨科,西安;杨玉林, 郭文博:西安医学院研究生院,西安
关键词: 糖尿病足溃疡生长因子外泌体生物组织工程Diabetic Foot Ulcer Growth Factors Exosomes Biological Tissue Engineering
摘要: 糖尿病足溃疡是长病程糖尿病患者中最常见且最棘手的并发症,比正常伤口更难愈合,容易恶化,严重者可导致截肢。DFU的愈合机制目前尚不清晰,高糖环境、血管病变、神经病变、微生物感染、异常炎症反应等综合因素共同促成糖尿病创面。各种细胞因子的应用、外泌体中的生物分子、基质金属蛋白酶及其抑制剂、外科应用胫骨横向骨搬移术及新型生物组织工程技术等为DFU的愈合提供了新的方向。本文献将新型生物疗法在DFU治疗上的进展、不足及期望做出了总结,以望生物疗法成为未来治疗DFU的新策略。
Abstract: Diabetic foot ulcer is the most common and troublesome complication in diabetic patients with a long course. It is more difficult to heal and easy to deteriorate than normal wounds, and can lead to amputation in severe cases. The healing mechanism of DFU is still unclear, and the comprehensive factors such as high glucose environment, vascular lesions, neuropathy, microbial infection, and abnormal inflammatory response jointly contribute to the diabetic wound. The application of various cell factors, biological molecules in exosomes, MMP and their inhibitors, surgical applications of TTT, and new Biological tissue engineering techniques provide a new direction for the healing of DFU. This literature summarizes the progress, deficiencies and expectations of new biological therapy in DFU treatment, and hopes that biological therapy will become a new strategy for treating DFU in the future.
文章引用:高金金, 杨玉林, 郭文博, 孙甫. 新型生物疗法在糖尿病足溃疡治疗中的研究进展[J]. 临床医学进展, 2024, 14(11): 727-733. https://doi.org/10.12677/acm.2024.14112938

1. 引言

糖尿病是一组由遗传和环境因素引起的胰岛素分泌不足或对靶器官敏感性下降的一系列代谢性疾病。糖尿病已成为严重威胁人类健康的公共卫生问题之一。根据第9版糖尿病地图集,国际糖尿病联合会估计,2019年全球糖尿病患病率估计为9.3% (4.63亿人),预计2030年将增加25%,到2045年将增加51% [1]。糖尿病足溃疡(DFU)是糖尿病最常见和最棘手的并发症。研究发现,大约30%的糖尿病患者在其一生中可出现DFU [2],这类伤口存在愈合时间长、治疗时间长、管理困难、费用高、反复发作、致残率/死亡率高等问题,给患者造成了沉重的身体、心理和经济负担[3] [4]。糖尿病足溃疡每年影响全世界约1860万人,其中约四分之一的中重度感染患者最终导致下肢截肢,5年死亡率约为30% [5]

DFU的常规标准伤口治疗包括:局部伤口护理,手术清创,敷料保持伤口湿润环境,佩戴卸载装置,血管评估,控制感染和降低血糖指数。此外,糖尿病足的多学科协作治疗正成为DFU治疗的支柱。一些辅助治疗也发挥着重要作用,非手术清创剂应用(水凝胶自溶清创、酶清创、生物外科和机械清创)、局部敷料(如海藻酸盐凝胶、蜂蜜敷料)、氧气疗法、负压伤口疗法、能量疗法(电刺激、冲击波疗法、电磁疗法、激光疗法)、全身疗法等等。然而,对于难治性伤口,DFUs的治疗效果仍不理想。随着组织工程技术的迅速发展,新型生物疗法治疗逐渐广泛应用于各个学科,为难治性DFU的愈合提供了新的方向。

2. DFU愈合的病理生理机制

皮肤组织损伤后的正常创面愈合依赖于一个动态的生理反应链,包括止血、炎症、细胞增殖、血管生成和组织重塑。慢性创面意味着皮肤组织不能按照生理步骤和规则进行修复,导致创面在一定的时间内不能愈合,随后出现感染和细菌耐药,创面逐渐加深[6]。DFU是一种难以愈合的慢性伤口,在高糖环境下,血管病变、神经病变、微生物感染、持续炎症反应等综合因素共同促成糖尿病创面,且伤口经久不愈[7]。高血糖和胰岛素抵抗可引起各种细胞功能受损,包括角质形成细胞和成纤维细胞的蛋白质合成异常和内皮功能障碍,进而影响增殖、迁移及再上皮化等过程。此外高血糖还可通过线粒体的反应、细胞内抗氧化防御系统异常、脂质过氧化、自由基发生酶的活化、糖基化和随后的信号转导、白激酶C途径等途径,产生过量的活性氧诱导糖尿病伤口愈合延迟[7]。在神经病变的发病机制中,高血糖除了引起神经元的氧化应激外,可通过多条途径,如多元醇途径、己糖胺途径、氧化应激、晚期糖基化终产物(AGEs)途径、PARP途径、NF-κB途径等损害神经[8]。糖尿病患者的伤口因高糖存在极易受到微生物感染,可波及肌肉、肌腱、骨髓腔等部位,严重时可危及生命。在感染伤口的有害微生物中,金黄色葡萄球菌和链球菌一直占据主导地位[9]。炎症反应使中性粒细胞被激活到达炎症部位,不断地分泌各种蛋白酶来消灭微生物同时破坏组织,这是由于这种刺激持续存在才导致慢性伤口持久不愈。此外,在DFU中,促进炎症的M1巨噬细胞取代促进组织修复的M2巨噬细胞占据主导作用,加强对伤口组织消化[10]

3. 新型生物疗法

3.1. 生长因子

正常伤口愈合的过程是由多种细胞因子和生长因子来共同实现并进行调节的,糖尿病足创面的一个显著特点是局部生长因子及细胞因子缺乏,导致微环境代谢失衡、信号传递失调、血管生成停滞、细胞增殖及基因表达调控异常,进而创面愈合延迟或不愈合[11]。近年来,涉及生长因子(GFs)的伤口治疗获得了很大的关注。两项随机、双盲对照试验证明,重组人表皮生长因子(rhEGF)的每天两次喷雾治疗[12]或每周3次局部注射[13],均给DFU患者带来更快的愈合效果。有研究表明,rhEG的应用对创面的腐肉减少也起到明显作用[14]。此外,不同剂量的肝细胞生长因子(NL003)在治疗溃疡愈合方面疗效明显,亦可显著降低患者的疼痛程度[15]

局部应用或皮内注射GFs作用于创面,由于蛋白质水解和不稳定性,仅具有短期生物活性,GFs结合到类似细胞外基质的水凝胶、功能化支架、海绵或颗粒等生物材料的递送系统中,不但提供蛋白水解保护和结构支持,对持续维持GFs的生物活性提供了保障[16]。此外,使用病毒和非病毒载体递送治疗性基因,能够调节单个或组合生长因子基因释放,使表达基因直接到创面,实现糖尿病创面中GFs水平的增加,直到伤口愈合[17],为DFU的治愈提供了新的希望及前景。

3.2. 外泌体

外泌体是细胞外囊泡的一种,直径约40~160 nm (平均约100 nm),可将核酸、蛋白质、代谢物传递到受体细胞中,有效地改变了受体细胞生物学的各个方面,这种改变在一定程度上影响着疾病的发生发展。外泌体从多种细胞中释放,包括脂肪细胞、肠上皮细胞、神经元、成纤维细胞和肿瘤细胞,也存在于许多生物液体中,如滑液、母乳、血液、尿液、唾液、羊水和恶性腹水积液。研究表明,外泌体在细胞间信号传导、炎症反应、凝血功能、血管生成、细胞增殖分化、抗原呈递、细胞凋亡等生物过程中发挥着重要作用[18]。不同功能作用的外泌体取决于细胞起源和产生外泌体时所在细胞及组织的状态。因此,正确选择外泌体的类型和来源,对外泌体在糖尿病创面中的应用具有重要意义。

间充质干细胞衍生的外泌体(MSC-Exos)除了具备MSCs自我更新能力强、免疫原性低、免疫调节能力强等特点,在抑制体内炎症方面更有效,同时避免了肿瘤形成的风险[19]。研究表明,MSC-Exos中的circHIPK3、miR-125b-5p、HPGDS分子及分泌蛋白,可通过抑制细胞凋亡、降低炎症反应、抗衰老等方面,促进细胞增殖、迁移、肌肉损伤修复、血管形成[20]-[23]。一项动物试验表明,MSC条件培养基给药可以逆转糖尿病多发神经病变的初始阶段,减少神经的慢性炎症反应,加速伤口愈合过程[24]。Zhang等[25]研究发现局部和静脉同时给予人脐带间充质干细胞(hUC-MSCs)治疗,DFU组安全性良好,创面愈合时间明显缩短及3年内无截肢存在。富血小板血浆(PRP)是一种大家熟知的高浓度血小板自体衍生物,具有免疫调节、止血、伤口修复等作用,被广泛应用于各个临床领域。研究表明,富血小板血浆来源的外泌体(PRP-Exos)通过抑制凋亡可预防骨坏死[26]和促进慢性伤口再上皮化方面的有益作用[27]。Tao等人[27]证实,PRP-Exos通过激活Yes-associated protein (YAP)有效促进慢性皮肤伤口的再上皮化。最新研究验证了PRP-exos可以显著增加DFU成纤维细胞中MALAT1的表达,降低miR-374a-5p的表达,提高DFU成纤维细胞的活力,抑制细胞焦亡[28]

慢性伤口治疗要求外泌体作用于伤口的效应更持久,然而外泌体因在应用部位迅速清除而给伤口治疗提出了新的挑战[29]。因此,将外泌体与生物材料结合,既延长外泌体在创面的滞留时间,又不影响其生物活性,已成为开发外泌体治疗方法的研究热点。外泌体联合FHE水凝胶、壳聚糖/丝水凝胶海绵、FHE水凝胶、PF-127热敏水凝胶等等,不但提高生物利用的稳定性及利用率,而且较单一利用显示出更高效、更快的伤口愈合[30]-[32]

3.3. 基质金属蛋白酶(Matrix Metalloproteinase, MMP)

基质金属蛋白酶由各种免疫细胞(包括巨噬细胞和中性粒细胞)和重建细胞(如成纤维细胞)分泌,可降解ECM的各种组分,将受损的上皮细胞切开,从而使嗜中性粒细胞和巨噬细胞进入伤口进行修复。MMP可参与创伤修复的各种任务,如去除碎屑组织、调节角质形成细胞迁移和血管生成[33]。虽然基质金属蛋白酶的存在对伤口愈合至关重要,但一些基质金属蛋白酶的水平长期异常升高会引起细胞外基质的降解从而导致伤口愈合困难[34]。最新的研究表明,高水平的MMP-1、2、9会延缓糖尿病足溃疡的愈合,而高表达的MMP-8会促进伤口愈合[35]。同时,li G等人证实,DFU患者中的MMP-9/TIMP-1比值升高提示DFU创面愈合不良,亦可诱导血管内皮生长因子表达的降低[36]

调节MMP活性的一个重要机制是通过与基质金属蛋白酶抑制剂(TIMP)的结合。MMPs和TIMPs活性之间的不平衡可能导致组织损伤、修复功能异常,从而导致正常伤口愈合机制失调。故选择性地TIMP将为DFU的治疗提供重要策略。Nguyen等[37]揭示了一种新的选择性和有效性抑制剂(R)-ND-336,在糖尿病伤口愈合的小鼠模型中显示良好的效果,且其正在进行新药的试验性研究,有望作为治疗DFU的一线治疗药物。

3.4. 胫骨横向骨搬移术(Tibial Transverse Transport, TTT)

由于糖尿病足溃疡涉及骨骼、神经、血管组织、肌肉和皮肤,治疗的目标是使多个组织再生。胫骨横向骨搬移技术是 Ilizarov技术的延伸,根据张力–应力法则发展而来的一种治疗方式[38]。此技术通过增加血管内皮生长因子、刺激细胞增殖、增强免疫调节、加强血管灌注及生成,加速促进DFU的愈合,且术后复发及截肢率明显下降[39]。最新的一项试点研究,证明TTT有效缓解DFU的疼痛,促进周围神经恢复,对改善患者预后有积极作用[40]

在使用TTT治疗糖尿病足创面愈合时,并发症问题一直备受关注,如胫骨骨折、切口感染、截肢等。Fan等人在研究结果强调TTT手术带来的并发症不可忽视,在纳入30例糖尿病足行TTT,3例患者因感染加重而接受了截肢手术,2例患者术后发生胫骨骨折,5例患者发生针位感染[41]。过去由于缺乏统一的标准,导致在应用、功效上存在差异,并发症的报道让医生和患者对这种治疗产生了怀疑。《胫骨横向骨搬移技术治疗糖尿病足的专家共识(2020)》的发表是TTT技术的一个里程碑,进一步指导今后的临床应用,使所提供的结论更加可靠、文献数据更有可比性。

3.5. 生物组织工程技术

随着组织工程技术的快速发展,将细胞、生长因子和支架结合起来,为慢性伤口创造更复杂的皮肤替代品,其中包括:皮肤生物3D打印、皮肤自组装、器官发生、皮肤组织结构的预血管化等新方法。通过各种生物打印方法恢复皮肤的适当分层、成分及血管网络可以增强多种细胞类型的增殖和迁移,从而产生更好的愈合效果[42] [43]。相较于浇筑水泥似的皮肤3D打印技术,模块化组织工程则像砖块一样在细胞中制造出显微组织构建模块,更有利于伤口愈合。在皮肤产品中添加血管系统,及时将营养和氧气输送到远端伤口处。最近用于预血管化皮肤结构的策略包括3D打印和地形图像化[43]。对于临床应用,Qin [44]等人最近报道了一种从外周血中收集的CD34+细胞产生内皮祖细胞的培养系统,可作为血管内皮细胞来源。

4. 总结与展望

综上所述,糖尿病对全球人类健康造成了严重威胁,其并发症与视觉、肾脏、神经、血管等多系统有关。糖尿病足溃疡是其最严重的并发症之一,因其难愈合,给患者带来巨大的心理和经济压力。糖尿病足的治疗是一项复杂、艰难的任务,目前尚无有效的治愈方法。各种不同的新型生物疗法为DFU患者的治疗带来更多的希望,但也带来了巨大的挑战。细胞因子和外泌体的应用因易被清除,而影响其生物活性,故找到合适高效的生物材料支架,才能更有效地促进伤口愈合的过程。基质金属蛋白酶抑制剂的研究也处于试验阶段。TTT在统一标准后,在临床仍有待进一步观察与论证。因此,在未来开发更实惠、更优质、更高效的生物制剂及产品,将是创面愈合研究的热点。

基金项目

陕西省教育厅专项科研计划项目(编号:18JK0667)西安医学院第一附属医院院内配套经费(编号:XYFYPT-2020-05)。

NOTES

*通讯作者。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[2] Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093.
https://doi.org/10.1021/acs.accounts.0c00864
[3] Bowling, F.L., Rashid, S.T. and Boulton, A.J.M. (2015) Preventing and Treating Foot Complications Associated with Diabetes Mellitus. Nature Reviews Endocrinology, 11, 606-616.
https://doi.org/10.1038/nrendo.2015.130
[4] Kerr, M., Rayman, G. and Jeffcoate, W.J. (2014) Cost of Diabetic Foot Disease to the National Health Service in England. Diabetic Medicine, 31, 1498-1504.
https://doi.org/10.1111/dme.12545
[5] Armstrong, D.G., Tan, T., Boulton, A.J.M. and Bus, S.A. (2023) Diabetic Foot Ulcers: A Review. JAMA, 330, 62-75.
https://doi.org/10.1001/jama.2023.10578
[6] Dissemond, J., Bültemann, A., Gerber, V., Jäger, B., Kröger, K. and Münter, C. (2017) Diagnosis and Treatment of Chronic Wounds: Current Standards of Germany’s Initiative for Chronic Wounds e. V. Journal of Wound Care, 26, 727-732.
https://doi.org/10.12968/jowc.2017.26.12.727
[7] Zheng, S., Wan, X., Kambey, P.A., Luo, Y., Hu, X., Liu, Y., et al. (2023) Therapeutic Role of Growth Factors in Treating Diabetic Wound. World Journal of Diabetes, 14, 364-395.
https://doi.org/10.4239/wjd.v14.i4.364
[8] Dewanjee, S., Das, S., Das, A.K., Bhattacharjee, N., Dihingia, A., Dua, T.K., et al. (2018) Molecular Mechanism of Diabetic Neuropathy and Its Pharmacotherapeutic Targets. European Journal of Pharmacology, 833, 472-523.
https://doi.org/10.1016/j.ejphar.2018.06.034
[9] Radzieta, M., Sadeghpour-Heravi, F., Peters, T.J., Hu, H., Vickery, K., Jeffries, T., et al. (2021) A Multiomics Approach to Identify Host-Microbe Alterations Associated with Infection Severity in Diabetic Foot Infections: A Pilot Study. npj Biofilms and Microbiomes, 7, Article No. 29.
https://doi.org/10.1038/s41522-021-00202-x
[10] Sindrilaru, A. and Scharffetter-Kochanek, K. (2013) Disclosure of the Culprits: Macrophages—Versatile Regulators of Wound Healing. Advances in Wound Care, 2, 357-368.
https://doi.org/10.1089/wound.2012.0407
[11] Zubair, M. and Ahmad, J. (2019) Role of Growth Factors and Cytokines in Diabetic Foot Ulcer Healing: A Detailed Review. Reviews in Endocrine and Metabolic Disorders, 20, 207-217.
https://doi.org/10.1007/s11154-019-09492-1
[12] Park, K.H., Han, S.H., Hong, J.P., Han, S., Lee, D., Kim, B.S., et al. (2018) Topical Epidermal Growth Factor Spray for the Treatment of Chronic Diabetic Foot Ulcers: A Phase III Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial. Diabetes Research and Clinical Practice, 142, 335-344.
https://doi.org/10.1016/j.diabres.2018.06.002
[13] Gomez‐Villa, R., Aguilar‐Rebolledo, F., Lozano‐Platonoff, A., Teran‐Soto, J.M., Fabian‐Victoriano, M.R., Kresch‐Tronik, N.S., et al. (2014) Efficacy of Intralesional Recombinant Human Epidermal Growth Factor in Diabetic Foot Ulcers in Mexican Patients: A Randomized Double‐Blinded Controlled Trial. Wound Repair and Regeneration, 22, 497-503.
https://doi.org/10.1111/wrr.12187
[14] Oliveira, B.C., de Oliveira, B.G.R.B., Deutsch, G., Pessanha, F.S. and de Castilho, S.R. (2021) Effectiveness of a Synthetic Human Recombinant Epidermal Growth Factor in Diabetic Patients Wound Healing: Pilot, Double‐Blind, Randomized Clinical Controlled Trial. Wound Repair and Regeneration, 29, 920-926.
https://doi.org/10.1111/wrr.12969
[15] Gu, Y., Cui, S., Wang, Q., Liu, C., Jin, B., Guo, W., et al. (2019) A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Hepatocyte Growth Factor in the Treatment of Critical Limb Ischemia. Molecular Therapy, 27, 2158-2165.
https://doi.org/10.1016/j.ymthe.2019.10.017
[16] Berry-Kilgour, C., Cabral, J. and Wise, L. (2021) Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Advances in Wound Care, 10, 596-622.
https://doi.org/10.1089/wound.2020.1183
[17] Laiva, A.L., O’Brien, F.J. and Keogh, M.B. (2017) Innovations in Gene and Growth Factor Delivery Systems for Diabetic Wound Healing. Journal of Tissue Engineering and Regenerative Medicine, 12, e296-e312.
https://doi.org/10.1002/term.2443
[18] Gurunathan, S., Kang, M., Jeyaraj, M., Qasim, M. and Kim, J. (2019) Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells, 8, Article 307.
https://doi.org/10.3390/cells8040307
[19] Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., et al. (2018) Mesenchymal Stem Cells-Derived Exosomes Are More Immunosuppressive than Microparticles in Inflammatory Arthritis. Theranostics, 8, 1399-1410.
https://doi.org/10.7150/thno.21072
[20] Liang, Z., Lin, S., Pan, N., Zhong, G., Qiu, Z., Kuang, S., et al. (2022) UCMSCs‐Derived Exosomal circHIPK3 Promotes Ulcer Wound Angiogenesis of Diabetes Mellitus via miR‐20b‐5p/Nrf2/VEGFA Axis. Diabetic Medicine, 40, e14968.
https://doi.org/10.1111/dme.14968
[21] Guo, J., Yang, X., Chen, J., Wang, C., Sun, Y., Yan, C., et al. (2023) Exosomal miR-125b-5p Derived from Adipose-Derived Mesenchymal Stem Cells Enhance Diabetic Hindlimb Ischemia Repair via Targeting Alkaline Ceramidase 2. Journal of Nanobiotechnology, 21, Article No. 189.
https://doi.org/10.1186/s12951-023-01954-8
[22] Wang, B., Pang, M., Song, Y., Wang, H., Qi, P., Bai, S., et al. (2022) Human Fetal Mesenchymal Stem Cells Secretome Promotes Scarless Diabetic Wound Healing through Heat‐Shock Protein Family. Bioengineering & Translational Medicine, 8, e10354.
https://doi.org/10.1002/btm2.10354
[23] Ouyang, L., Qiu, D., Fu, X., Wu, A., Yang, P., Yang, Z., et al. (2022) Overexpressing HPGDS in Adipose-Derived Mesenchymal Stem Cells Reduces Inflammatory State and Improves Wound Healing in Type 2 Diabetic Mice. Stem Cell Research & Therapy, 13, Article No. 395.
https://doi.org/10.1186/s13287-022-03082-w
[24] De Gregorio, C., Contador, D., Díaz, D., Cárcamo, C., Santapau, D., Lobos-Gonzalez, L., et al. (2020) Human Adipose-Derived Mesenchymal Stem Cell-Conditioned Medium Ameliorates Polyneuropathy and Foot Ulceration in Diabetic BKS db/db Mice. Stem Cell Research & Therapy, 11, Article No. 168.
https://doi.org/10.1186/s13287-020-01680-0
[25] Zhang, C., Huang, L., Wang, X., Zhou, X., Zhang, X., Li, L., et al. (2022) Topical and Intravenous Administration of Human Umbilical Cord Mesenchymal Stem Cells in Patients with Diabetic Foot Ulcer and Peripheral Arterial Disease: A Phase I Pilot Study with a 3-Year Follow-Up. Stem Cell Research & Therapy, 13, Article No. 451.
https://doi.org/10.1186/s13287-022-03143-0
[26] Tao, S., Yuan, T., Rui, B., Zhu, Z., Guo, S. and Zhang, C. (2017) Exosomes Derived from Human Platelet-Rich Plasma Prevent Apoptosis Induced by Glucocorticoid-Associated Endoplasmic Reticulum Stress in Rat Osteonecrosis of the Femoral Head via the AKT/Bad/Bcl-2 Signal Pathway. Theranostics, 7, 733-750.
https://doi.org/10.7150/thno.17450
[27] Guo, S., Tao, S., Yin, W., Qi, X., Yuan, T. and Zhang, C. (2017) Exosomes Derived from Platelet-Rich Plasma Promote the Re-Epithelization of Chronic Cutaneous Wounds via Activation of YAP in a Diabetic Rat Model. Theranostics, 7, 81-96.
https://doi.org/10.7150/thno.16803
[28] Chen, C., Wang, Q., Li, D., Qi, Z., Chen, Y. and Wang, S. (2023) MALAT1 Participates in the Role of Platelet-Rich Plasma Exosomes in Promoting Wound Healing of Diabetic Foot Ulcer. International Journal of Biological Macromolecules, 238, Article 124170.
https://doi.org/10.1016/j.ijbiomac.2023.124170
[29] Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438.
https://doi.org/10.1039/c7nr00352h
[30] Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., et al. (2019) Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics, 9, 65-76.
https://doi.org/10.7150/thno.29766
[31] Shi, Q., Qian, Z., Liu, D., Sun, J., Wang, X., Liu, H., et al. (2017) GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Frontiers in Physiology, 8, Article 904.
https://doi.org/10.3389/fphys.2017.00904
[32] Yang, J., Chen, Z., Pan, D., Li, H. and Shen, J. (2020) Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. International Journal of Nanomedicine, 15, 5911-5926.
https://doi.org/10.2147/ijn.s249129
[33] Lemos, D.R., McMurdo, M., Karaca, G., Wilflingseder, J., Leaf, I.A., Gupta, N., et al. (2018) Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. Journal of the American Society of Nephrology, 29, 1690-1705.
https://doi.org/10.1681/asn.2017121283
[34] Avila-Rodríguez, M., Meléndez-Martínez, D., Licona-Cassani, C., Aguilar-Yañez, J., Benavides, J. and Sánchez, M. (2020) Practical Context of Enzymatic Treatment for Wound Healing: A Secreted Protease Approach (Review). Biomedical Reports, 13, 3-14.
https://doi.org/10.3892/br.2020.1300
[35] Zhang, W., Tang, W., Hu, S., Fu, X., Wu, H., Shen, W., et al. (2023) Effect of Matrix Metalloproteinases on the Healing of Diabetic Foot Ulcer: A Systematic Review. Journal of Tissue Viability, 32, 51-58.
https://doi.org/10.1016/j.jtv.2022.12.001
[36] Li, G., Zou, X., Zhu, Y., Zhang, J., Zhou, L., Wang, D., et al. (2017) Expression and Influence of Matrix Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 and Vascular Endothelial Growth Factor in Diabetic Foot Ulcers. The International Journal of Lower Extremity Wounds, 16, 6-13.
https://doi.org/10.1177/1534734617696728
[37] Nguyen, T.T., Ding, D., Wolter, W.R., Pérez, R.L., Champion, M.M., Mahasenan, K.V., et al. (2018) Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That Accelerates Healing. Journal of Medicinal Chemistry, 61, 8825-8837.
https://doi.org/10.1021/acs.jmedchem.8b01005
[38] Ilizarov, G.A. (1989) The Tension-Stress Effect on the Genesis and Growth of Tissues: Part II. The Influence of the Rate and Frequency of Distraction. Clinical Orthopaedics and Related Research, 239, 263-285.
https://doi.org/10.1097/00003086-198902000-00029
[39] Yang, Y., Li, Y., Pan, Q., Bai, S., Wang, H., Pan, X., et al. (2022) Tibial Cortex Transverse Transport Accelerates Wound Healing via Enhanced Angiogenesis and Immunomodulation. Bone & Joint Research, 11, 189-199.
https://doi.org/10.1302/2046-3758.114.bjr-2021-0364.r1
[40] Wen, R., Cheng, X., Cao, H., Zhang, L., Luo, F. and Shang, W. (2023) Transverse Tibial Bone Transfer in the Treatment of Diabetes Foot Ulcer: A Pilot Study. Diabetes, Metabolic Syndrome and Obesity, 16, 2005-2012.
https://doi.org/10.2147/dmso.s413884
[41] Fan, Z., Yu, Z., Zheng, J., Yu, B. and Liu, D. (2020) Tibial Cortex Transverse Distraction in Treating Diabetic Foot Ulcers: What Are We Concerned About? Journal of International Medical Research, 48.
https://doi.org/10.1177/0300060520954697
[42] Albanna, M., Binder, K.W., Murphy, S.V., Kim, J., Qasem, S.A., Zhao, W., et al. (2019) In situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Scientific Reports, 9, Article No. 1856.
https://doi.org/10.1038/s41598-018-38366-w
[43] Sharma, D., Ross, D., Wang, G., Jia, W., Kirkpatrick, S.J. and Zhao, F. (2019) Upgrading Prevascularization in Tissue Engineering: A Review of Strategies for Promoting Highly Organized Microvascular Network Formation. Acta Biomaterialia, 95, 112-130.
https://doi.org/10.1016/j.actbio.2019.03.016
[44] Qin, M., Guan, X., Zhang, Y., Shen, B., Liu, F., Zhang, Q., et al. (2018) Evaluation of ex Vivo Produced Endothelial Progenitor Cells for Autologous Transplantation in Primates. Stem Cell Research & Therapy, 9, Article No. 14.
https://doi.org/10.1186/s13287-018-0769-5