[1]
|
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article 107843. https://doi.org/10.1016/j.diabres.2019.107843
|
[2]
|
Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093. https://doi.org/10.1021/acs.accounts.0c00864
|
[3]
|
Bowling, F.L., Rashid, S.T. and Boulton, A.J.M. (2015) Preventing and Treating Foot Complications Associated with Diabetes Mellitus. Nature Reviews Endocrinology, 11, 606-616. https://doi.org/10.1038/nrendo.2015.130
|
[4]
|
Kerr, M., Rayman, G. and Jeffcoate, W.J. (2014) Cost of Diabetic Foot Disease to the National Health Service in England. Diabetic Medicine, 31, 1498-1504. https://doi.org/10.1111/dme.12545
|
[5]
|
Armstrong, D.G., Tan, T., Boulton, A.J.M. and Bus, S.A. (2023) Diabetic Foot Ulcers: A Review. JAMA, 330, 62-75. https://doi.org/10.1001/jama.2023.10578
|
[6]
|
Dissemond, J., Bültemann, A., Gerber, V., Jäger, B., Kröger, K. and Münter, C. (2017) Diagnosis and Treatment of Chronic Wounds: Current Standards of Germany’s Initiative for Chronic Wounds e. V. Journal of Wound Care, 26, 727-732. https://doi.org/10.12968/jowc.2017.26.12.727
|
[7]
|
Zheng, S., Wan, X., Kambey, P.A., Luo, Y., Hu, X., Liu, Y., et al. (2023) Therapeutic Role of Growth Factors in Treating Diabetic Wound. World Journal of Diabetes, 14, 364-395. https://doi.org/10.4239/wjd.v14.i4.364
|
[8]
|
Dewanjee, S., Das, S., Das, A.K., Bhattacharjee, N., Dihingia, A., Dua, T.K., et al. (2018) Molecular Mechanism of Diabetic Neuropathy and Its Pharmacotherapeutic Targets. European Journal of Pharmacology, 833, 472-523. https://doi.org/10.1016/j.ejphar.2018.06.034
|
[9]
|
Radzieta, M., Sadeghpour-Heravi, F., Peters, T.J., Hu, H., Vickery, K., Jeffries, T., et al. (2021) A Multiomics Approach to Identify Host-Microbe Alterations Associated with Infection Severity in Diabetic Foot Infections: A Pilot Study. npj Biofilms and Microbiomes, 7, Article No. 29. https://doi.org/10.1038/s41522-021-00202-x
|
[10]
|
Sindrilaru, A. and Scharffetter-Kochanek, K. (2013) Disclosure of the Culprits: Macrophages—Versatile Regulators of Wound Healing. Advances in Wound Care, 2, 357-368. https://doi.org/10.1089/wound.2012.0407
|
[11]
|
Zubair, M. and Ahmad, J. (2019) Role of Growth Factors and Cytokines in Diabetic Foot Ulcer Healing: A Detailed Review. Reviews in Endocrine and Metabolic Disorders, 20, 207-217. https://doi.org/10.1007/s11154-019-09492-1
|
[12]
|
Park, K.H., Han, S.H., Hong, J.P., Han, S., Lee, D., Kim, B.S., et al. (2018) Topical Epidermal Growth Factor Spray for the Treatment of Chronic Diabetic Foot Ulcers: A Phase III Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial. Diabetes Research and Clinical Practice, 142, 335-344. https://doi.org/10.1016/j.diabres.2018.06.002
|
[13]
|
Gomez‐Villa, R., Aguilar‐Rebolledo, F., Lozano‐Platonoff, A., Teran‐Soto, J.M., Fabian‐Victoriano, M.R., Kresch‐Tronik, N.S., et al. (2014) Efficacy of Intralesional Recombinant Human Epidermal Growth Factor in Diabetic Foot Ulcers in Mexican Patients: A Randomized Double‐Blinded Controlled Trial. Wound Repair and Regeneration, 22, 497-503. https://doi.org/10.1111/wrr.12187
|
[14]
|
Oliveira, B.C., de Oliveira, B.G.R.B., Deutsch, G., Pessanha, F.S. and de Castilho, S.R. (2021) Effectiveness of a Synthetic Human Recombinant Epidermal Growth Factor in Diabetic Patients Wound Healing: Pilot, Double‐Blind, Randomized Clinical Controlled Trial. Wound Repair and Regeneration, 29, 920-926. https://doi.org/10.1111/wrr.12969
|
[15]
|
Gu, Y., Cui, S., Wang, Q., Liu, C., Jin, B., Guo, W., et al. (2019) A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Hepatocyte Growth Factor in the Treatment of Critical Limb Ischemia. Molecular Therapy, 27, 2158-2165. https://doi.org/10.1016/j.ymthe.2019.10.017
|
[16]
|
Berry-Kilgour, C., Cabral, J. and Wise, L. (2021) Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Advances in Wound Care, 10, 596-622. https://doi.org/10.1089/wound.2020.1183
|
[17]
|
Laiva, A.L., O’Brien, F.J. and Keogh, M.B. (2017) Innovations in Gene and Growth Factor Delivery Systems for Diabetic Wound Healing. Journal of Tissue Engineering and Regenerative Medicine, 12, e296-e312. https://doi.org/10.1002/term.2443
|
[18]
|
Gurunathan, S., Kang, M., Jeyaraj, M., Qasim, M. and Kim, J. (2019) Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells, 8, Article 307. https://doi.org/10.3390/cells8040307
|
[19]
|
Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., et al. (2018) Mesenchymal Stem Cells-Derived Exosomes Are More Immunosuppressive than Microparticles in Inflammatory Arthritis. Theranostics, 8, 1399-1410. https://doi.org/10.7150/thno.21072
|
[20]
|
Liang, Z., Lin, S., Pan, N., Zhong, G., Qiu, Z., Kuang, S., et al. (2022) UCMSCs‐Derived Exosomal circHIPK3 Promotes Ulcer Wound Angiogenesis of Diabetes Mellitus via miR‐20b‐5p/Nrf2/VEGFA Axis. Diabetic Medicine, 40, e14968. https://doi.org/10.1111/dme.14968
|
[21]
|
Guo, J., Yang, X., Chen, J., Wang, C., Sun, Y., Yan, C., et al. (2023) Exosomal miR-125b-5p Derived from Adipose-Derived Mesenchymal Stem Cells Enhance Diabetic Hindlimb Ischemia Repair via Targeting Alkaline Ceramidase 2. Journal of Nanobiotechnology, 21, Article No. 189. https://doi.org/10.1186/s12951-023-01954-8
|
[22]
|
Wang, B., Pang, M., Song, Y., Wang, H., Qi, P., Bai, S., et al. (2022) Human Fetal Mesenchymal Stem Cells Secretome Promotes Scarless Diabetic Wound Healing through Heat‐Shock Protein Family. Bioengineering & Translational Medicine, 8, e10354. https://doi.org/10.1002/btm2.10354
|
[23]
|
Ouyang, L., Qiu, D., Fu, X., Wu, A., Yang, P., Yang, Z., et al. (2022) Overexpressing HPGDS in Adipose-Derived Mesenchymal Stem Cells Reduces Inflammatory State and Improves Wound Healing in Type 2 Diabetic Mice. Stem Cell Research & Therapy, 13, Article No. 395. https://doi.org/10.1186/s13287-022-03082-w
|
[24]
|
De Gregorio, C., Contador, D., Díaz, D., Cárcamo, C., Santapau, D., Lobos-Gonzalez, L., et al. (2020) Human Adipose-Derived Mesenchymal Stem Cell-Conditioned Medium Ameliorates Polyneuropathy and Foot Ulceration in Diabetic BKS db/db Mice. Stem Cell Research & Therapy, 11, Article No. 168. https://doi.org/10.1186/s13287-020-01680-0
|
[25]
|
Zhang, C., Huang, L., Wang, X., Zhou, X., Zhang, X., Li, L., et al. (2022) Topical and Intravenous Administration of Human Umbilical Cord Mesenchymal Stem Cells in Patients with Diabetic Foot Ulcer and Peripheral Arterial Disease: A Phase I Pilot Study with a 3-Year Follow-Up. Stem Cell Research & Therapy, 13, Article No. 451. https://doi.org/10.1186/s13287-022-03143-0
|
[26]
|
Tao, S., Yuan, T., Rui, B., Zhu, Z., Guo, S. and Zhang, C. (2017) Exosomes Derived from Human Platelet-Rich Plasma Prevent Apoptosis Induced by Glucocorticoid-Associated Endoplasmic Reticulum Stress in Rat Osteonecrosis of the Femoral Head via the AKT/Bad/Bcl-2 Signal Pathway. Theranostics, 7, 733-750. https://doi.org/10.7150/thno.17450
|
[27]
|
Guo, S., Tao, S., Yin, W., Qi, X., Yuan, T. and Zhang, C. (2017) Exosomes Derived from Platelet-Rich Plasma Promote the Re-Epithelization of Chronic Cutaneous Wounds via Activation of YAP in a Diabetic Rat Model. Theranostics, 7, 81-96. https://doi.org/10.7150/thno.16803
|
[28]
|
Chen, C., Wang, Q., Li, D., Qi, Z., Chen, Y. and Wang, S. (2023) MALAT1 Participates in the Role of Platelet-Rich Plasma Exosomes in Promoting Wound Healing of Diabetic Foot Ulcer. International Journal of Biological Macromolecules, 238, Article 124170. https://doi.org/10.1016/j.ijbiomac.2023.124170
|
[29]
|
Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438. https://doi.org/10.1039/c7nr00352h
|
[30]
|
Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., et al. (2019) Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics, 9, 65-76. https://doi.org/10.7150/thno.29766
|
[31]
|
Shi, Q., Qian, Z., Liu, D., Sun, J., Wang, X., Liu, H., et al. (2017) GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Frontiers in Physiology, 8, Article 904. https://doi.org/10.3389/fphys.2017.00904
|
[32]
|
Yang, J., Chen, Z., Pan, D., Li, H. and Shen, J. (2020) Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. International Journal of Nanomedicine, 15, 5911-5926. https://doi.org/10.2147/ijn.s249129
|
[33]
|
Lemos, D.R., McMurdo, M., Karaca, G., Wilflingseder, J., Leaf, I.A., Gupta, N., et al. (2018) Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. Journal of the American Society of Nephrology, 29, 1690-1705. https://doi.org/10.1681/asn.2017121283
|
[34]
|
Avila-Rodríguez, M., Meléndez-Martínez, D., Licona-Cassani, C., Aguilar-Yañez, J., Benavides, J. and Sánchez, M. (2020) Practical Context of Enzymatic Treatment for Wound Healing: A Secreted Protease Approach (Review). Biomedical Reports, 13, 3-14. https://doi.org/10.3892/br.2020.1300
|
[35]
|
Zhang, W., Tang, W., Hu, S., Fu, X., Wu, H., Shen, W., et al. (2023) Effect of Matrix Metalloproteinases on the Healing of Diabetic Foot Ulcer: A Systematic Review. Journal of Tissue Viability, 32, 51-58. https://doi.org/10.1016/j.jtv.2022.12.001
|
[36]
|
Li, G., Zou, X., Zhu, Y., Zhang, J., Zhou, L., Wang, D., et al. (2017) Expression and Influence of Matrix Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 and Vascular Endothelial Growth Factor in Diabetic Foot Ulcers. The International Journal of Lower Extremity Wounds, 16, 6-13. https://doi.org/10.1177/1534734617696728
|
[37]
|
Nguyen, T.T., Ding, D., Wolter, W.R., Pérez, R.L., Champion, M.M., Mahasenan, K.V., et al. (2018) Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That Accelerates Healing. Journal of Medicinal Chemistry, 61, 8825-8837. https://doi.org/10.1021/acs.jmedchem.8b01005
|
[38]
|
Ilizarov, G.A. (1989) The Tension-Stress Effect on the Genesis and Growth of Tissues: Part II. The Influence of the Rate and Frequency of Distraction. Clinical Orthopaedics and Related Research, 239, 263-285. https://doi.org/10.1097/00003086-198902000-00029
|
[39]
|
Yang, Y., Li, Y., Pan, Q., Bai, S., Wang, H., Pan, X., et al. (2022) Tibial Cortex Transverse Transport Accelerates Wound Healing via Enhanced Angiogenesis and Immunomodulation. Bone & Joint Research, 11, 189-199. https://doi.org/10.1302/2046-3758.114.bjr-2021-0364.r1
|
[40]
|
Wen, R., Cheng, X., Cao, H., Zhang, L., Luo, F. and Shang, W. (2023) Transverse Tibial Bone Transfer in the Treatment of Diabetes Foot Ulcer: A Pilot Study. Diabetes, Metabolic Syndrome and Obesity, 16, 2005-2012. https://doi.org/10.2147/dmso.s413884
|
[41]
|
Fan, Z., Yu, Z., Zheng, J., Yu, B. and Liu, D. (2020) Tibial Cortex Transverse Distraction in Treating Diabetic Foot Ulcers: What Are We Concerned About? Journal of International Medical Research, 48. https://doi.org/10.1177/0300060520954697
|
[42]
|
Albanna, M., Binder, K.W., Murphy, S.V., Kim, J., Qasem, S.A., Zhao, W., et al. (2019) In situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Scientific Reports, 9, Article No. 1856. https://doi.org/10.1038/s41598-018-38366-w
|
[43]
|
Sharma, D., Ross, D., Wang, G., Jia, W., Kirkpatrick, S.J. and Zhao, F. (2019) Upgrading Prevascularization in Tissue Engineering: A Review of Strategies for Promoting Highly Organized Microvascular Network Formation. Acta Biomaterialia, 95, 112-130. https://doi.org/10.1016/j.actbio.2019.03.016
|
[44]
|
Qin, M., Guan, X., Zhang, Y., Shen, B., Liu, F., Zhang, Q., et al. (2018) Evaluation of ex Vivo Produced Endothelial Progenitor Cells for Autologous Transplantation in Primates. Stem Cell Research & Therapy, 9, Article No. 14. https://doi.org/10.1186/s13287-018-0769-5
|