血小板与结直肠癌的研究现状
Research Status of Platelets and Colorectal Cancer
DOI: 10.12677/acm.2024.14112944, PDF, HTML, XML,   
作者: 陈沪斌:绍兴文理学院医学院,浙江 绍兴
关键词: 结直肠癌血小板转移免疫逃逸Colorectal Cancer Platelet Metastasis Immune Escape
摘要: 本文概述了血小板在结直肠癌发展中的多重作用,尤其是在促进肿瘤转移、增强肿瘤细胞的耐药性及调控肿瘤微环境方面的关键功能。研究表明,血小板通过上皮–间质转化、肿瘤细胞诱导的血小板聚集等机制,增强肿瘤细胞的侵袭性及免疫逃逸能力。此外,血小板在辅助肠癌的诊断及治疗等方面也有其特殊的价值。
Abstract: This article outlines the multiple roles of platelets in the development of colorectal cancer, especially the key functions in promoting tumor metastasis, enhancing the drug resistance of tumor cells and regulating the tumor microenvironment. Studies show that platelets enhance the aggressiveness and immune escape ability of tumor cells through EMT, TCIPA and other mechanisms. In addition, platelets also have their special value in assisting in the diagnosis and treatment of intestinal cancer.
文章引用:陈沪斌. 血小板与结直肠癌的研究现状[J]. 临床医学进展, 2024, 14(11): 773-777. https://doi.org/10.12677/acm.2024.14112944

1. 引言

血小板是血细胞类型中第二丰富的,它们是从成熟的巨核细胞中脱落出来的短期(7~10天)的无核细胞碎片[1]。它们最为人所知的基本功能是止血和形成病理性血栓,除此以外,血小板在其他病理生理过程中也发挥关键作用,包括炎症、组织修复[2]。1964年在恶性肿瘤患者中首次提及血小板增多症[3]。此后越来越多的实验揭露出血小板与肿瘤之间的联系与相互影响,如促进肿瘤细胞的存活和增殖[4]。且有临床证据表明,癌症患者的血小板计数升高与预后不良之间存在密切的正相关关系[5] [6]。在这篇综述中,我们的目标是简要概述肿瘤和血小板之间的相互作用,以及辅助诊断及治疗结直肠癌的可能性。

2. 血小板促进肠癌转移

肿瘤细胞与循环、淋巴管和靶组织内的微环境之间的相互作用促进了肿瘤的远处转移。血小板通过调动原发性肿瘤细胞至血管周围区域,并诱导其发生EMT (上皮–间质转化),这一表型发生于肿瘤细胞转移的过程中,短暂且可逆,它帮助细胞运动、侵袭和扩散至微环境之外,并促进了肿瘤转移的进程[7]。在接受血小板处理的模型中,TGF-β依赖的信号通路显著上调,且血小板源性的TGF-β1在诱导多种转移前状态相关的基因表达以及促进体内转移过程中起到关键作用[8]。TGF-β与EMT密切相关,并通过SMAD依赖信号通路和SMAD非依赖信号通路来影响其相关基因的表达[9]

研究显示,静脉注射肿瘤细胞后,肿瘤细胞周围迅速形成了血小板微聚团。这一过程被称为TCIPA。这些血小板微聚团不仅为肿瘤细胞提供了免受宿主免疫监视及血流剪切力破坏的物理屏障,还进一步促进了肿瘤细胞的存活与转移[10]。Podoplanin (PDPN)是一种粘蛋白类型的蛋白质,它在多种癌细胞的表面表达。在血液循环中,肿瘤表面表达的PDPN通过与血小板受体CLEC-2结合,激活Syk相关的信号通路,并最终使血小板聚集,即TCIPA,从而帮助肿瘤细胞逃避免疫系统的清除,增强其转移能力[11]

在成功逃逸体循环并生存下来后,转移过程的下一步是肿瘤细胞在远端器官微循环中滞留,进而为其在新环境中的黏附和外渗奠定基础[12]。研究表明,通过阻断血小板膜上的P-选择素可以导致小鼠肺内结肠癌细胞转移灶的大量减少,并减轻了血小板与肿瘤细胞的结合[13]

血小板还能通过形成桥梁直接连接内皮细胞与循环肿瘤细胞,从而促进肿瘤细胞在血管内的滞留和黏附[14]。血小板能释放多重趋化因子如CXCL5、CXCL7等,通过募集粒细胞,促进肿瘤细胞的跨内皮细胞迁移[15]。GPVI是一种可以调节多种血小板功能的受体。其与肿瘤细胞表达的Gal-3之间的相互作用通过ITAM信号通路促进了肿瘤细胞的外渗[16]

除此以外,一项研究揭示了骨肉瘤细胞可以从血小板中获得健康的线粒体,这虽然削弱了肿瘤细胞的繁殖能力,但可以增强它们的转移倾向。而转移到肿瘤细胞的血小板线粒体增加了其抗氧化防御的强度,从而增加了肿瘤转移到肺部的概率[17]

3. 血小板促进肠癌免疫逃避

肠癌的免疫逃逸机制是其能够逃避免疫系统监视、进而生长和转移的关键因素之一。血小板和纤维蛋白原保护血管中的肿瘤细胞免受NK细胞的清除[18]。研究显示,PDGF-B通过促进TGF-β的活性释放,调控细胞外基质的形成和肿瘤微环境的纤维化,减少肿瘤内免疫细胞的渗透[19]。此外,肠癌细胞通过降低或改变其表面的肿瘤相关抗原(如MHC-I),避免被免疫系统识别。而血小板源性的MHC-I类分子可以赋予癌细胞异常表型,颠覆NK细胞的抗肿瘤反应性[20]

在PDL1阴性的结肠癌小鼠模型中,血小板表达的PD-L1可以干扰T细胞对PD-L1阴性肿瘤的渗透。干扰血小板与PD-L1阴性肿瘤细胞的结合可促进T细胞诱导的肿瘤细胞毒性。同时这也一定程度上解释了一些PD-L1阴性的肿瘤细胞对PD-L1抑制剂敏感的原因[21]

血小板源性微粒可以通过P-选择素选择性地结合Treg,阻止Treg分化为可以产生IL-17和干扰素-γ的细胞[22]。此外,TCIPA中招募的血小板可以通过其表面的糖复合物GPIIb-IIIa纤维蛋白原桥附着到肿瘤细胞表面,确保肿瘤细胞免受免疫监视[23]

4. 血小板促进肠癌生长及耐药

在原发结直肠肿瘤的形成过程中,血小板也参与其中,血小板合成并分泌PGE2、TXA2等一系列异构体,促进血管生成和诱导基质细胞增殖[24]。除此之外,血小板可以释放包括表皮生长因子、PDGF和TGF-β,促进肿瘤细胞增殖[4]。血小板还可以产生多种生长因子,影响肿瘤微血管的生长从而促进肿瘤生长[25]

肿瘤细胞可以通过向血液中释放IL-6来诱导血小板增多。在小鼠模型中,通过抗体阻断IL-6的活性,显著抑制了副肿瘤性血小板增多症的发生,并降低了肿瘤细胞对紫杉醇的耐药性[26]。无独有偶,向移植了肿瘤的小鼠输注血小板可以抵抗多西他赛的抗肿瘤作用[27]

5. 血小板预测肠癌预后

在一项对1383例结直肠癌患者的血液学比例和临床病理特征的回顾性研究中,PLR (血小板–淋巴细胞比率)的高水平与肿瘤体积较大、晚期肿瘤的侵袭、淋巴结转移、远处转移和TNM分期靠后相关[5]。低PLR组结肠癌患者的总体生存率和无复发生存率明显高于高PLR组[28]。高PLR可能是结直肠癌等癌种的一个独立的不良预后因素。

另一项大型实验证实了血小板的高计数与肠癌的所有阶段都相关,但当出现远处转移时其相关性最大。此外血小板计数的大幅增加与癌症风险高相关。被诊断患有结肠癌等癌种的患者更有可能出现短期的血小板计数升高[6]

6. 与血小板相关的治疗

一项实验通过在体外模型上使用达比加群,抑制凝血酶的活性,干扰了TCIPA的过程,且在与吉西他滨的联合使用中能够显著抑制肿瘤生长并减少肿瘤细胞的扩散[29]。YAP等人设计了一种GPIIb-IIIa的抗体,其可能增强肿瘤的超声和PET成像[30]。此外,GPIIb-IIIa受体拮抗剂阿昔单抗,能干扰血小板聚集和血栓形成[31]αvβ3整合素能促进新血管的形成,为肿瘤的生长和转移提供营养和氧气。联合阻断GPIIb-IIIa和肿瘤细胞表达的αvβ3整合素在抑制肿瘤生长方面非常有效[32]

血小板的CLEC2受体主要参与癌症相关的血栓形成,而在生理止血中的作用微乎其微,靶向CLEC2受体似乎是一种安全且有效的治疗方式[33]。一种抑制PDPN介导的血小板激活的抑制剂,与顺铂联合治疗可延长小鼠的存活时间且不会影响小鼠的出血风险[34]。同时,GPVI的缺失将导致瘤内出血和随后化疗药物的有效渗透[33]

TXA2被认为是血小板活化和聚集的强大调节剂,能促进肿瘤细胞–血小板聚集物结合在内皮细胞表面。研究显示,抑制血小板COX-1及其产物TXA2可以减少肿瘤的转移[35]。低剂量的阿司匹林,也能通过抑制转移来有效降低不同类型癌症的发病率和死亡率[36]

7. 展望与总结

本文系统性地探讨了血小板在肠癌发生、进展和转移中的关键作用。通过分析血小板与肿瘤微环境的相互作用机制,本文展示了血小板如何通过调节免疫逃逸、EMT等机制来加速肠癌的恶性进展。此外,本文还探讨了血小板作为潜在治疗靶点的可行性。

参考文献

[1] van der Meijden, P.E.J. and Heemskerk, J.W.M. (2018) Platelet Biology and Functions: New Concepts and Clinical Perspectives. Nature Reviews Cardiology, 16, 166-179.
https://doi.org/10.1038/s41569-018-0110-0
[2] Gaertner, F. and Massberg, S. (2019) Patrolling the Vascular Borders: Platelets in Immunity to Infection and Cancer. Nature Reviews Immunology, 19, 747-760.
https://doi.org/10.1038/s41577-019-0202-z
[3] Levin, J. (1964) Thrombocytosis Associated with Malignant Disease. Archives of Internal Medicine, 114, 497-500.
https://doi.org/10.1001/archinte.1964.03860100079008
[4] Chen, R., Jin, G., Li, W. and McIntyre, T.M. (2018) Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor-Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. The Journal of Immunology, 201, 2154-2164.
https://doi.org/10.4049/jimmunol.1800124
[5] Chen, J., Zhai, E., Yuan, Y., Wu, K., Xu, J., Peng, J., et al. (2017) Systemic Immune-Inflammation Index for Predicting Prognosis of Colorectal Cancer. World Journal of Gastroenterology, 23, 6261-6272.
https://doi.org/10.3748/wjg.v23.i34.6261
[6] Giannakeas, V., Kotsopoulos, J., Cheung, M.C., Rosella, L., Brooks, J.D., Lipscombe, L., et al. (2022) Analysis of Platelet Count and New Cancer Diagnosis over a 10-Year Period. JAMA Network Open, 5, e2141633.
https://doi.org/10.1001/jamanetworkopen.2021.41633
[7] Scheel, C., Onder, T., Karnoub, A. and Weinberg, R.A. (2007) Adaptation versus Selection: The Origins of Metastatic Behavior. Cancer Research, 67, 11476-11480.
https://doi.org/10.1158/0008-5472.can-07-1653
[8] Labelle, M., Begum, S. and Hynes, R.O. (2011) Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. Cancer Cell, 20, 576-590.
https://doi.org/10.1016/j.ccr.2011.09.009
[9] Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-β Family Signalling. Nature, 425, 577-584.
https://doi.org/10.1038/nature02006
[10] Egan, K., Cooke, N. and Kenny, D. (2014) Living in Shear: Platelets Protect Cancer Cells from Shear Induced Damage. Clinical & Experimental Metastasis, 31, 697-704.
https://doi.org/10.1007/s10585-014-9660-7
[11] Suzuki-Inoue, K. (2006) A Novel Syk-Dependent Mechanism of Platelet Activation by the C-Type Lectin Receptor Clec-2. Blood, 107, 542-549.
https://doi.org/10.1182/blood-2005-05-1994
[12] Reymond, N., d’Água, B.B. and Ridley, A.J. (2013) Crossing the Endothelial Barrier during Metastasis. Nature Reviews Cancer, 13, 858-870.
https://doi.org/10.1038/nrc3628
[13] Läubli, H. and Borsig, L. (2010) Selectins as Mediators of Lung Metastasis. Cancer Microenvironment, 3, 97-105.
https://doi.org/10.1007/s12307-010-0043-6
[14] Bauer, A.T., Suckau, J., Frank, K., Desch, A., Goertz, L., Wagner, A.H., et al. (2015) Von Willebrand Factor Fibers Promote Cancer-Associated Platelet Aggregation in Malignant Melanoma of Mice and Humans. Blood, 125, 3153-3163.
https://doi.org/10.1182/blood-2014-08-595686
[15] Takagi, S., Sasaki, Y., Koike, S., Takemoto, A., Seto, Y., Haraguchi, M., et al. (2021) Platelet-Derived Lysophosphatidic Acid Mediated LPAR1 Activation as a Therapeutic Target for Osteosarcoma Metastasis. Oncogene, 40, 5548-5558.
https://doi.org/10.1038/s41388-021-01956-6
[16] Mammadova-Bach, E., Gil-Pulido, J., Sarukhanyan, E., Burkard, P., Shityakov, S., Schonhart, C., et al. (2020) Platelet Glycoprotein VI Promotes Metastasis through Interaction with Cancer Cell-Derived Galectin-3. Blood, 135, 1146-1160.
https://doi.org/10.1182/blood.2019002649
[17] Zhang, W., Zhou, H., Li, H., Mou, H., Yinwang, E., Xue, Y., et al. (2023) Cancer Cells Reprogram to Metastatic State through the Acquisition of Platelet Mitochondria. Cell Reports, 42, Article ID: 113147.
https://doi.org/10.1016/j.celrep.2023.113147
[18] Palumbo, J.S., Barney, K.A., Blevins, E.A., Shaw, M.A., Mishra, A., Flick, M.J., et al. (2008) Factor XIII Transglutaminase Supports Hematogenous Tumor Cell Metastasis through a Mechanism Dependent on Natural Killer Cell Function. Journal of Thrombosis and Haemostasis, 6, 812-819.
https://doi.org/10.1111/j.1538-7836.2008.02938.x
[19] Zhang, Y., Manouchehri Doulabi, E., Herre, M., Cedervall, J., Qiao, Q., Miao, Z., et al. (2022) Platelet-Derived PDGFB Promotes Recruitment of Cancer-Associated Fibroblasts, Deposition of Extracellular Matrix and TGFβ Signaling in the Tumor Microenvironment. Cancers, 14, Article No. 1947.
https://doi.org/10.3390/cancers14081947
[20] Placke, T., Örgel, M., Schaller, M., Jung, G., Rammensee, H., Kopp, H., et al. (2012) Platelet-Derived MHC Class I Confers a Pseudonormal Phenotype to Cancer Cells That Subverts the Antitumor Reactivity of Natural Killer Immune Cells. Cancer Research, 72, 440-448.
https://doi.org/10.1158/0008-5472.can-11-1872
[21] Zaslavsky, A.B., Adams, M.P., Cao, X., Maj, T., Choi, J.E., Stangl-Kremser, J., et al. (2020) Platelet PD-L1 Suppresses Anti-Cancer Immune Cell Activity in PD-L1 Negative Tumors. Scientific Reports, 10, Article No. 19296.
https://doi.org/10.1038/s41598-020-76351-4
[22] Dinkla, S., van Cranenbroek, B., van der Heijden, W.A., He, X., Wallbrecher, R., Dumitriu, I.E., et al. (2016) Platelet Microparticles Inhibit IL-17 Production by Regulatory T Cells through P-Selectin. Blood, 127, 1976-1986.
https://doi.org/10.1182/blood-2015-04-640300
[23] Lou, X.L., Sun, J., Gong, S.Q., et al. (2015) Interaction between Circulating Cancer Cells and Platelets: Clinical Implication. Chinese Journal of Cancer Research, 27, 450-460.
[24] Thun, M.J., Jacobs, E.J. and Patrono, C. (2012) The Role of Aspirin in Cancer Prevention. Nature Reviews Clinical Oncology, 9, 259-267.
https://doi.org/10.1038/nrclinonc.2011.199
[25] Lakka Klement, G., Yip, T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V., et al. (2009) Platelets Actively Sequester Angiogenesis Regulators. Blood, 113, 2835-2842.
https://doi.org/10.1182/blood-2008-06-159541
[26] Josa, V., Ferenczi, S., Szalai, R., Fuder, E., Kuti, D., Horvath, K., et al. (2020) Thrombocytosis and Effects of IL-6 Knock-Out in a Colitis-Associated Cancer Model. International Journal of Molecular Sciences, 21, Article No. 6218.
https://doi.org/10.3390/ijms21176218
[27] Bottsford-Miller, J., Choi, H., Dalton, H.J., Stone, R.L., Cho, M.S., Haemmerle, M., et al. (2015) Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer. Clinical Cancer Research, 21, 602-610.
https://doi.org/10.1158/1078-0432.ccr-14-0870
[28] Hu, Z., Tan, S., Chen, S., Qin, S., Chen, H., Qin, S., et al. (2020) Diagnostic Value of Hematological Parameters Platelet to Lymphocyte Ratio and Hemoglobin to Platelet Ratio in Patients with Colon Cancer. Clinica Chimica Acta, 501, 48-52.
https://doi.org/10.1016/j.cca.2019.11.036
[29] Shi, K., Damhofer, H., Daalhuisen, J., ten Brink, M., Richel, D.J. and Spek, C.A. (2017) Dabigatran Potentiates Gemcitabine-Induced Growth Inhibition of Pancreatic Cancer in Mice. Molecular Medicine, 23, 13-23.
https://doi.org/10.2119/molmed.2016.00214
[30] Yap, M.L., McFadyen, J.D., Wang, X., Zia, N.A., Hohmann, J.D., Ziegler, M., et al. (2017) Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Theranostics, 7, 2565-2574.
https://doi.org/10.7150/thno.19900
[31] Giordano, A., Musumeci, G., D’Angelillo, A., Rossini, R., Biondi Zoccai, G., Messina, S., et al. (2016) Effects of Glycoprotein IIb/IIIa Antagonists: Anti Platelet Aggregation and Beyond. Current Drug Metabolism, 17, 194-203.
https://doi.org/10.2174/1389200217666151211121112
[32] Trikha, M., Zhou, Z., Timar, J., et al. (2002) Multiple Roles for Platelet GPIIb/IIIa and Alphavbeta3 Integrins in Tumor Growth, Angiogenesis, and Metastasis. Cancer Research, 62, 2824-2833.
[33] Suzuki-Inoue, K. (2019) Platelets and Cancer-Associated Thrombosis: Focusing on the Platelet Activation Receptor CLEC-2 and Podoplanin. Blood, 134, 1912-1918.
https://doi.org/10.1182/blood.2019001388
[34] Chang, Y., Hsieh, P., Chang, Y., Lu, M., Huang, T., Chong, K., et al. (2015) Identification of a Novel Platelet Antagonist That Binds to CLEC-2 and Suppresses Podoplanin-Induced Platelet Aggregation and Cancer Metastasis. Oncotarget, 6, 42733-42748.
https://doi.org/10.18632/oncotarget.5811
[35] Lucotti, S., Cerutti, C., Soyer, M., Gil-Bernabé, A.M., Gomes, A.L., Allen, P.D., et al. (2019) Aspirin Blocks Formation of Metastatic Intravascular Niches by Inhibiting Platelet-Derived Cox-1/Thromboxane A2. Journal of Clinical Investigation, 129, 1845-1862.
https://doi.org/10.1172/jci121985
[36] Rothwell, P.M., Wilson, M., Price, J.F., Belch, J.F., Meade, T.W. and Mehta, Z. (2012) Effect of Daily Aspirin on Risk of Cancer Metastasis: A Study of Incident Cancers during Randomised Controlled Trials. The Lancet, 379, 1591-1601.
https://doi.org/10.1016/s0140-6736(12)60209-8