[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[2]
|
Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188615. https://doi.org/10.1016/j.bbcan.2021.188615
|
[3]
|
Reck, M., Remon, J. and Hellmann, M.D. (2022) First-Line Immunotherapy for Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 586-597. https://doi.org/10.1200/jco.21.01497
|
[4]
|
Bear, A.S., Vonderheide, R.H. and O’Hara, M.H. (2020) Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802. https://doi.org/10.1016/j.ccell.2020.08.004
|
[5]
|
Palestro, C.J. (2020) Molecular Imaging of Infection: The First 50 Years. Seminars in Nuclear Medicine, 50, 23-34. https://doi.org/10.1053/j.semnuclmed.2019.10.002
|
[6]
|
李坤成, 于春水. 分子影像学研究进展 [J]. 中国医疗设备, 2008, 23(1): 1-4.
|
[7]
|
Groheux, D., Cochet, A., Humbert, O., Alberini, J., Hindié, E. and Mankoff, D. (2016) 18F-FDG PET/CT for Staging and Restaging of Breast Cancer. Journal of Nuclear Medicine, 57, 17S-26S. https://doi.org/10.2967/jnumed.115.157859
|
[8]
|
Lucia, F., Louis, T., Cousin, F., Bourbonne, V., Visvikis, D., Mievis, C., et al. (2023) Multicentric Development and Evaluation of [18F]-FDG PET/CT and CT Radiomic Models to Predict Regional and/or Distant Recurrence in Early-Stage Non-Small Cell Lung Cancer Treated by Stereotactic Body Radiation Therapy. European Journal of Nuclear Medicine and Molecular Imaging, 51, 1097-1108. https://doi.org/10.1007/s00259-023-06510-y
|
[9]
|
Mirshahvalad, S.A., Hinzpeter, R., Kohan, A., Anconina, R., Kulanthaivelu, R., Ortega, C., et al. (2022) Diagnostic Performance of [18F]-FDG PET/MR in Evaluating Colorectal Cancer: A Systematic Review and Meta-Analysis. European Journal of Nuclear Medicine and Molecular Imaging, 49, 4205-4217. https://doi.org/10.1007/s00259-022-05871-0
|
[10]
|
Kawada, K., Toda, K., Nakamoto, Y., Iwamoto, M., Hatano, E., Chen, F., et al. (2015) Relationship between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. Journal of Nuclear Medicine, 56, 1322-1327. https://doi.org/10.2967/jnumed.115.160614
|
[11]
|
Hong, J., Guo, F., Lu, S., Shen, C., Ma, D., Zhang, X., et al. (2020) F. Nucleatum Targets LncRNA ENO1-IT1 to Promote Glycolysis and Oncogenesis in Colorectal Cancer. Gut, 70, 2123-2137. https://doi.org/10.1136/gutjnl-2020-322780
|
[12]
|
Pijl, J.P., Nienhuis, P.H., Kwee, T.C., Glaudemans, A.W.J.M., Slart, R.H.J.A. and Gormsen, L.C. (2021) Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Seminars in Nuclear Medicine, 51, 633-645. https://doi.org/10.1053/j.semnuclmed.2021.06.008
|
[13]
|
Arasanz, H., Gato-Cañas, M., Zuazo, M., Ibañez-Vea, M., Breckpot, K., Kochan, G., et al. (2017) PD1 Signal Transduction Pathways in T Cells. Oncotarget, 8, 51936-51945. https://doi.org/10.18632/oncotarget.17232
|
[14]
|
Khailaie, S., Rowshanravan, B., Robert, P.A., Waters, E., Halliday, N., Badillo Herrera, J.D., et al. (2018) Characterization of CTLA4 Trafficking and Implications for Its Function. Biophysical Journal, 115, 1330-1343. https://doi.org/10.1016/j.bpj.2018.08.020
|
[15]
|
Hahn, N.M., Necchi, A., Loriot, Y., Powles, T., Plimack, E.R., Sonpavde, G., et al. (2018) Role of Checkpoint Inhibition in Localized Bladder Cancer. European Urology Oncology, 1, 190-198. https://doi.org/10.1016/j.euo.2018.05.002
|
[16]
|
Li, P., Huang, T., Zou, Q., Liu, D., Wang, Y., Tan, X., et al. (2019) FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. The Journal of Immunology, 202, 3065-3075. https://doi.org/10.4049/jimmunol.1801199
|
[17]
|
马雯娟, 任建伟, 常守凤, 等. PD-L1在结直肠癌肿瘤细胞、肿瘤浸润免疫细胞中的表达与临床病理特征及预后的相关性[J]. 现代肿瘤医学, 2023, 31(14): 2660-2665.
|
[18]
|
陈思汉, 毛志刚, 张雨濛, 等. PD-L1在人结直肠癌组织中的表达和意义初探[J]. 现代免疫学, 2023, 43(4): 307-311.
|
[19]
|
Contardi, E., Palmisano, G.L., Tazzari, P.L., Martelli, A.M., Falà, F., Fabbi, M., et al. (2005) CTLA-4 Is Constitutively Expressed on Tumor Cells and Can Trigger Apoptosis Upon Ligand Interaction. International Journal of Cancer, 117, 538-550. https://doi.org/10.1002/ijc.21155
|
[20]
|
Du, Y., Jin, Y., Sun, W., Fang, J., Zheng, J. and Tian, J. (2018) Advances in Molecular Imaging of Immune Checkpoint Targets in Malignancies: Current and Future Prospect. European Radiology, 29, 4294-4302. https://doi.org/10.1007/s00330-018-5814-3
|
[21]
|
Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., et al. (2001) PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nature Immunology, 2, 261-268. https://doi.org/10.1038/85330
|
[22]
|
Ge, Y., Xi, H., Ju, S. and Zhang, X. (2013) Blockade of PD-1/PD-L1 Immune Checkpoint during DC Vaccination Induces Potent Protective Immunity against Breast Cancer in Hu-SCID Mice. Cancer Letters, 336, 253-259. https://doi.org/10.1016/j.canlet.2013.03.010
|
[23]
|
Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., Hwu, W., Topalian, S.L., Hwu, P., et al. (2012) Safety and Activity of Anti–pd-L1 Antibody in Patients with Advanced Cancer. New England Journal of Medicine, 366, 2455-2465. https://doi.org/10.1056/nejmoa1200694
|
[24]
|
Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454. https://doi.org/10.1056/nejmoa1200690
|
[25]
|
England, C.G., Jiang, D., Ehlerding, E.B., Rekoske, B.T., Ellison, P.A., Hernandez, R., et al. (2017) 89Zr-Labeled Nivolumab for Imaging of T-Cell Infiltration in a Humanized Murine Model of Lung Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 45, 110-120. https://doi.org/10.1007/s00259-017-3803-4
|
[26]
|
Zhang, M., Jiang, H., Zhang, R., Jiang, H., Xu, H., Pan, W., et al. (2019) Near‐Infrared Fluorescence‐Labeled Anti‐PD‐L1‐mAb for Tumor Imaging in Human Colorectal Cancer Xenografted Mice. Journal of Cellular Biochemistry, 120, 10239-10247. https://doi.org/10.1002/jcb.28308
|
[27]
|
Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., et al. (2019) In Vivo Molecular Imaging for Immunotherapy Using Ultra-Bright Near-Infrared-IIb Rare-Earth Nanoparticles. Nature Biotechnology, 37, 1322-1331. https://doi.org/10.1038/s41587-019-0262-4
|
[28]
|
Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., et al. (2019) PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody. Journal of Nuclear Medicine, 61, 117-122. https://doi.org/10.2967/jnumed.119.226712
|
[29]
|
Walker, L.S.K. (2013) Treg and CTLA-4: Two Intertwining Pathways to Immune Tolerance. Journal of Autoimmunity, 45, 49-57. https://doi.org/10.1016/j.jaut.2013.06.006
|
[30]
|
Sharma, A., Subudhi, S.K., Blando, J., Scutti, J., Vence, L., Wargo, J., et al. (2019) Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (TREGs) in Human Cancers. Clinical Cancer Research, 25, 1233-1238. https://doi.org/10.1158/1078-0432.ccr-18-0762
|
[31]
|
Camacho, L.H. (2015) ctla‐4 Blockade with Ipilimumab: Biology, Safety, Efficacy, and Future Considerations. Cancer Medicine, 4, 661-672. https://doi.org/10.1002/cam4.371
|
[32]
|
Ehlerding, E.B., England, C.G., Majewski, R.L., Valdovinos, H.F., Jiang, D., Liu, G., et al. (2017) Immunopet Imaging of CTLA-4 Expression in Mouse Models of Non-Small Cell Lung Cancer. Molecular Pharmaceutics, 14, 1782-1789. https://doi.org/10.1021/acs.molpharmaceut.7b00056
|
[33]
|
Higashikawa, K., Yagi, K., Watanabe, K., Kamino, S., Ueda, M., Hiromura, M., et al. (2014) 64Cu-DOTA-Anti-CTLA-4 mAb Enabled PET Visualization of CTLA-4 on the T-Cell Infiltrating Tumor Tissues. PLOS ONE, 9, e109866. https://doi.org/10.1371/journal.pone.0109866
|
[34]
|
Reeves, K.M., Song, P.N., Angermeier, A., Manna, D.D., Li, Y., Wang, J., et al. (2021) 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clinical Cancer Research, 28, 327-337. https://doi.org/10.1158/1078-0432.ccr-21-2394
|
[35]
|
Kristensen, L.K., Christensen, C., Alfsen, M.Z., Cold, S., Nielsen, C.H. and Kjaer, A. (2020) Monitoring CD8a+ T Cell Responses to Radiotherapy and CTLA-4 Blockade Using [64Cu]NOTA-CD8a PET Imaging. Molecular Imaging and Biology, 22, 1021-1030. https://doi.org/10.1007/s11307-020-01481-0
|
[36]
|
Lu, P., Takai, K., Weaver, V.M. and Werb, Z. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, a005058. https://doi.org/10.1101/cshperspect.a005058
|
[37]
|
Dranoff, G. (2004) Cytokines in Cancer Pathogenesis and Cancer Therapy. Nature Reviews Cancer, 4, 11-22. https://doi.org/10.1038/nrc1252
|
[38]
|
Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M.A. (2014) Chronic Inflammation and Cytokines in the Tumor Microenvironment. Journal of Immunology Research, 2014, Article ID: 149185. https://doi.org/10.1155/2014/149185
|
[39]
|
den Hollander, M.W., Bensch, F., Glaudemans, A.W.J.M., Oude Munnink, T.H., Enting, R.H., den Dunnen, W.F.A., et al. (2015) TGF-β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. Journal of Nuclear Medicine, 56, 1310-1314. https://doi.org/10.2967/jnumed.115.154401
|
[40]
|
van der Veen, E.L., Suurs, F.V., Cleeren, F., Bormans, G., Elsinga, P.H., Hospers, G.A.P., et al. (2020) Development and Evaluation of Interleukin-2-Derived Radiotracers for PET Imaging of T Cells in Mice. Journal of Nuclear Medicine, 61, 1355-1360. https://doi.org/10.2967/jnumed.119.238782
|
[41]
|
Li, K., Liu, W., Yu, H., Chen, J., Tang, W., Wang, J., et al. (2024) Ga-FAPI PET Imaging Monitors Response to Combined TGF-βR Inhibition and Immunotherapy in Metastatic Colorectal Cancer. Journal of Clinical Investigation, 134, e170490. https://doi.org/10.1172/jci181374
|
[42]
|
杨迪迪, 王振宜, 李琦. 中药调节大肠癌患者免疫功能的研究进展[J]. 吉林中医药, 2015, 35(7): 753-756.
|
[43]
|
Lee, E., Kim, Y.S., Kim, J.H., Woo, K.W., Park, Y., Ha, J., et al. (2024) Uncovering the Colorectal Cancer Immunotherapeutic Potential: Evening Primrose (Oenothera biennis) Root Extract and Its Active Compound Oenothein B Targeting the PD-1/PD-L1 Blockade. Phytomedicine, 125, Article ID: 155370. https://doi.org/10.1016/j.phymed.2024.155370
|