分子影像学在结直肠癌免疫治疗中的研究进展
Research Progress of Molecular Imaging in Immunotherapy for Colorectal Cancer
DOI: 10.12677/acm.2024.14112946, PDF, HTML, XML,   
作者: 易泽林:成都中医药大学医学与生命科学学院,四川 成都;邬颖华*:成都中医药大学附属医院放射科,四川 成都
关键词: 分子影像学免疫治疗结直肠癌Molecular Imaging Immunotherapy Colorectal Cancer
摘要: 结直肠癌是常见的恶性肿瘤,近年来免疫治疗已经成为继手术、化学疗法和放射疗法之后的主要治疗手段,且取得了很好的疗效。由于患者个体化差异存在,免疫治疗前或治疗中需要密切监测体内疾病相关的免疫变化,从而制定个性化、精准化的治疗方案。分子影像技术可以从细胞或分子水平上更好地监测肿瘤免疫治疗的反应,选择合适的靶点及示踪剂是分子成像的重要环节。本文将就分子影像学在结直肠癌免疫治疗监测方面的应用作综述。
Abstract: Colorectal cancer is a common malignant tumor. In recent years, the immunotherapy has become the main treatment means after surgery, chemotherapy and radiotherapy, and has achieved great efficacy. Due to the existence of individualized differences in patients, immunotherapy requires close monitoring of disease-related immune changes in the body before or during treatment, so as to formulate personalized and precise treatment plans. Molecular imaging technology can better monitor the response to tumor immunotherapy at the cellular or molecular level, and the selection of appropriate targets and tracers is an important part of molecular imaging. In this paper, we will review the application of molecular imaging in the monitoring of immunotherapy for colorectal cancer.
文章引用:易泽林, 邬颖华. 分子影像学在结直肠癌免疫治疗中的研究进展[J]. 临床医学进展, 2024, 14(11): 785-790. https://doi.org/10.12677/acm.2024.14112946

1. 引言

结直肠癌(colorectal cancer, CRC)是世界范围内发病率和死亡率较高的恶性肿瘤之一[1],早期常因其症状不明显而易被忽视,导致肿瘤进展到一定程度甚至晚期才得以被诊断。目前,临床上CRC的有效干预措施包括手术、放化疗、靶向治疗和免疫治疗,其中免疫治疗作为癌症治疗的突破口之一,展现了显著的价值。免疫治疗是通过免疫系统提供主动或被动免疫来对抗肿瘤细胞,进而达到清除癌细胞、增强患者免疫力和延长患者生存期的目的。近年来随着肿瘤免疫疗法的进步,免疫检查点阻断疗法、免疫细胞疗法、CAR-T细胞疗法、肿瘤疫苗等多种免疫治疗方案得到应用,在多种不同肿瘤的治疗过程中取得了不错的进展,其中免疫检查点抑制剂的联合疗法对于胃癌、肾癌、非小细胞肺癌等的治疗及预后有着显著进展,并有望通过多模式新型免疫疗法对胰腺癌产生一定作用[2]-[4]。然而由于结直肠癌是一种高度异质性的肿瘤,不同的亚型对于免疫治疗的反应相差甚远,并且患者对免疫治疗的反应也存在着个体差异。因此,在治疗过程中监测相关的免疫反应或在治疗前进行相关的免疫预测是很有必要的,而分子影像学技术在这方面具有明显的优势。现就分子影像在结直肠癌免疫治疗中的应用及进展综述如下。

2. 肿瘤免疫治疗分子成像的原理

分子影像可以利用特殊的示踪剂及分子物质在细胞和分子水平上评估体内生理或病理变化过程[5],能够无创性在结构变化之前识别到异常,获取更全面的肿瘤信息,进而指导个体化治疗。目前分子影像学的主要成像方式为MRI、光学成像、正电子发射型计算机断层显像(PET)和单光子发射型计算机断层成像(SPECT)。其技术的关键是分子探针,它是由能与靶组织特异性结合的物质(如配体或抗体等)和能产生影像学信号的物质(如同位素、微泡、荧光素或顺磁性原子)相结合而成的一种复合物,作用是对目标部位进行成像[6]。由此可见,设计开发具有高灵敏度、高特异性、低毒性的免疫示踪剂对于分子成像的准确性至关重要。

3. 免疫治疗分子成像的主要类型

3.1. 肿瘤代谢过程分子成像

近年来,肿瘤的代谢成像备受关注。临床上最常用的放射性示踪剂是18F-脱氧葡萄糖(18F-FDG),它能被快速增殖的癌细胞吸收,而用于检测原发性和转移性癌变,并对肿瘤的分期及预后有一定的指导作用[7] [8]。Mirshahvalad等[9]采用荟萃分析得出18F-FDG PET/MR在检测CRC病灶及转移方面具有很高的诊断效能。Kawada等[10]通过回顾性研究发现18F-FDG PET/CT能够用于预测转移性CRC的KRAS状态。随着对肠道微生物群的关注度的不断增高,Hong等[11]通过18F-FDG PET/CT及微生物群PCR技术对CRC患者进行分析,发现了肿瘤代谢改变与微生物群紊乱之间的相关性。然而,18F-FDG的摄取不是肿瘤细胞所特有的,一些活化的免疫细胞也可以摄取该物质[12],因此还需要大量研究进一步证明其有效性,以降低出现假阳性的结果。

3.2. 免疫靶点细胞分子成像

免疫治疗的效果是通过免疫细胞的激活驱动的,对肿瘤免疫细胞成像可以提供免疫细胞迁移的信息并可以检测特定的免疫细胞群体。目前,应用最广泛的是针对T细胞的相关成像,其中免疫检查点靶向分子成像的应用取得了很大的进展。免疫靶点分子如程序性死亡受体1 (programmed cell death, PD-1)及其配体(programmed cell death-ligand 1, PD-L1)、细胞毒性T淋巴细胞抗原4 (cytotoxic T lymphocyte-associated antigen-4, CTLA-4)是调节T细胞活性的抑制性分子,它们对T细胞功能进行负调控[13] [14]。免疫靶点的阻断是通过阻断T细胞活化的抑制信号来发挥作用,进而增强了抗肿瘤反应的能力[15]。目前大量研究[16]-[19]表明免疫检查点PD-1及CTLA-4均在CRC中表达,这表明其与结直肠癌的发生发展存在一定的联系,并且利用分子影像技术可以无创评估这些免疫检查点分子的表达和定位,进而为临床预后提供更好的工具[20]

3.2.1. PD-1/PD-L1

PD-1主要存在于T细胞、B细胞、NK细胞和活化的单核细胞,它的配体是PD-L1和PD-L2,其中PD-L1是PD-1的主要配体[21]。多项临床研究[22]-[24]显示PD-1抑制剂在治疗肿瘤的应用中取得了良好的效果,特别是在黑色素瘤、肾癌、肺癌、卵巢癌患者中较为突出。并且England等[25]使用89Zr标记的抗体对肺癌小鼠模型进行PET成像,结果显示PD-1靶向药物可以在体内进行肿瘤成像,这表明肿瘤中PD-1表达和定位可以成为抗PD-1治疗的临床相关预测标志物。同样,对于结直肠癌这方面的研究也在不断进行,Zhang等[26]用近红外染料来标记抗PD-L1 mAb,再通过光学成像测试NIR-PD-L1-mAb探针监测皮下异种移植小鼠中人CRC的PD-L1表达的能力,并且证明其结合具有特异性。Zhang等[27]将抗PD-L1 mAb标记的一种纳米颗粒(ErNP)用于小鼠癌症免疫疗法的动态成像。Lv等[28]发现68Ga-NOTA-Nb109在肿瘤中PD-L1状态的PET成像和及时评估免疫检查点靶向治疗的效果方面具有巨大潜力。这表明,PD-1及其配体PD-L1的表达可以通过分子影像的相关技术进行监测,并在这方面展现出了良好的效果,进而有望为免疫治疗提供很大的帮助。

3.2.2. CTLA-4

CTLA-4在T细胞表面表达,它也是参与免疫系统下调和抗肿瘤反应的最重要的分子之一[29]。CTLA-4靶向治疗的调控机制是通过增强肿瘤细胞的内源性反应,进一步帮助细胞毒性T细胞对肿瘤产生更强的反应[30]。目前,在黑色素瘤及肺癌[31] [32]的治疗方案中靶向CTLA-4受体的免疫疗法表现出良好的抗肿瘤功效。尽管这种免疫疗法在临床上是一种值得采用的方法,但是由于随着T细胞反应的增强同时会产生皮疹、腹泻、炎症等一系列自身免疫相关的不良反应。Higashikawa等[33]通过PET成像评估了64Cu标记的DOTA基团的抗CTLA-4 mAb作为成像探针的实用性,并成功观察小鼠模型结肠肿瘤细胞中CTLA-4的表达。Reeves等[34]利用18F-FMISO缺氧PET成像对乳腺癌及结直肠癌小鼠模型中肿瘤微环境进行监测,成功对检查点阻断的治疗反应进行可靠的早期监测。Kristensen等[35]证明了一种基于Cu-64标记抗体的PET示踪剂可用于无创检测和量化CD8a+细胞,并检测小鼠结肠肿瘤在抗CTLA-4联合治疗后引起的变化。因此,通过无创成像技术对免疫治疗反应进行预测,将有助于减轻对患者造成的伤害,以应用于更合适的患者。

另外,CAR-T细胞疗法、NK细胞疗法等其他免疫治疗方法利用分子成像技术监测其疗效的研究也在不断受到关注。总而言之,分子影像学可以通过监测免疫细胞的相关变化,对预测免疫反应提供帮助,并成为一种重要的工具。

3.3. 肿瘤细胞外基质成分成像

细胞外基质成分(extracellular matrix components, ECM)是一种复杂的大分子网络,在维持组织形态方面发挥重要作用,它可以直接或间接调节几乎所有细胞行为[36],例如胶原蛋白作为ECM的主要成分,可以通过与肿瘤干细胞(cancer stem cells, CSC)的直接接触进而引导CSC的定向迁移。其中细胞因子对肿瘤微环境的形成有着重要作用,促炎细胞因子可促进抗肿瘤反应[37],而抗炎细胞因子可诱导免疫抑制肿瘤环境[38]。近年来已有多项研究对细胞因子进行了无创成像,研究人员通过使用一种放射性标记的抗TGF-β单克隆抗体,并用PET对小鼠肿瘤摄取进行观察,发现可以评估细胞因子靶向抗体在患者体内的穿透情况[39],进而有助于检测患者TME中的细胞因子。同时,另有研究[40]是通过使用放射性标记的细胞因子来检测T细胞或其他免疫细胞,比如基于IL-2的示踪剂来检测表达IL-2受体的活化T细胞。基于此,对于CRC这方面的研究也在探索中,Li等[41]研究发现68Ga-FAPI PET/CT成像可以准确检测CAFs的动态变化,并评估TGF-β抑制剂对CRC进行免疫治疗的反应,更好地指导CRC患者的免疫治疗。以上研究表明,细胞因子及其受体的成像可用于衡量TME的抗肿瘤免疫状态,以便更好地评估及预测免疫治疗的反应,对临床有更好的提示作用。

4. 结论和展望

在临床实践中,免疫治疗越来越多地用于各种癌症,因此使用恰当的方法来评估及预测疗效是很有必要的。相比活检及免疫组化,PET或SPECT等非侵入性的全身成像技术在结直肠癌的免疫治疗过程中展现出广阔的应用前景。目前,通过对肿瘤免疫反应相关的肿瘤细胞、肿瘤微环境中的免疫细胞以及相关分子物质进行监测,均在一定程度上有助于监测免疫治疗疗效。同时随着中医药事业的发展,对于结直肠癌的治疗不再局限于西医疗法,越来越多的学者逐渐重视中医治疗,并通过研究表明中西医结合治疗对于结直肠癌的生存质量及预后有着良好的作用。中药单体、有效成分及中药联合化疗等方法可以调节结直肠癌特异性和非特异性免疫功能,从而改善临床症状、提高生活质量、延长生存期[42]。中医治疗相关研究显示[43]月见草根提取物(EPRE)及其活性化合物通过刺激hPD-L1/PD-1 CRC小鼠的肿瘤特异性T淋巴细胞,能够有效抑制PD-1/PD-L1之间的分子相互作用,揭示其抗结直肠癌的潜力,这表明中医治疗因此,分子影像技术的应用为进一步监测中西医结合治疗结直肠癌的疗效提供了可能。

相信在分子影像技术的参与下,通过探索选择高特异性的探针、合适的靶点将有希望可视化监测及评估结直肠癌的免疫治疗的效果,未来也将在结直肠癌的中医药治疗方面发挥巨大的作用,展现出良好的前景,使患者在更大程度上受益。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188615.
https://doi.org/10.1016/j.bbcan.2021.188615
[3] Reck, M., Remon, J. and Hellmann, M.D. (2022) First-Line Immunotherapy for Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 586-597.
https://doi.org/10.1200/jco.21.01497
[4] Bear, A.S., Vonderheide, R.H. and O’Hara, M.H. (2020) Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802.
https://doi.org/10.1016/j.ccell.2020.08.004
[5] Palestro, C.J. (2020) Molecular Imaging of Infection: The First 50 Years. Seminars in Nuclear Medicine, 50, 23-34.
https://doi.org/10.1053/j.semnuclmed.2019.10.002
[6] 李坤成, 于春水. 分子影像学研究进展 [J]. 中国医疗设备, 2008, 23(1): 1-4.
[7] Groheux, D., Cochet, A., Humbert, O., Alberini, J., Hindié, E. and Mankoff, D. (2016) 18F-FDG PET/CT for Staging and Restaging of Breast Cancer. Journal of Nuclear Medicine, 57, 17S-26S.
https://doi.org/10.2967/jnumed.115.157859
[8] Lucia, F., Louis, T., Cousin, F., Bourbonne, V., Visvikis, D., Mievis, C., et al. (2023) Multicentric Development and Evaluation of [18F]-FDG PET/CT and CT Radiomic Models to Predict Regional and/or Distant Recurrence in Early-Stage Non-Small Cell Lung Cancer Treated by Stereotactic Body Radiation Therapy. European Journal of Nuclear Medicine and Molecular Imaging, 51, 1097-1108.
https://doi.org/10.1007/s00259-023-06510-y
[9] Mirshahvalad, S.A., Hinzpeter, R., Kohan, A., Anconina, R., Kulanthaivelu, R., Ortega, C., et al. (2022) Diagnostic Performance of [18F]-FDG PET/MR in Evaluating Colorectal Cancer: A Systematic Review and Meta-Analysis. European Journal of Nuclear Medicine and Molecular Imaging, 49, 4205-4217.
https://doi.org/10.1007/s00259-022-05871-0
[10] Kawada, K., Toda, K., Nakamoto, Y., Iwamoto, M., Hatano, E., Chen, F., et al. (2015) Relationship between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. Journal of Nuclear Medicine, 56, 1322-1327.
https://doi.org/10.2967/jnumed.115.160614
[11] Hong, J., Guo, F., Lu, S., Shen, C., Ma, D., Zhang, X., et al. (2020) F. Nucleatum Targets LncRNA ENO1-IT1 to Promote Glycolysis and Oncogenesis in Colorectal Cancer. Gut, 70, 2123-2137.
https://doi.org/10.1136/gutjnl-2020-322780
[12] Pijl, J.P., Nienhuis, P.H., Kwee, T.C., Glaudemans, A.W.J.M., Slart, R.H.J.A. and Gormsen, L.C. (2021) Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Seminars in Nuclear Medicine, 51, 633-645.
https://doi.org/10.1053/j.semnuclmed.2021.06.008
[13] Arasanz, H., Gato-Cañas, M., Zuazo, M., Ibañez-Vea, M., Breckpot, K., Kochan, G., et al. (2017) PD1 Signal Transduction Pathways in T Cells. Oncotarget, 8, 51936-51945.
https://doi.org/10.18632/oncotarget.17232
[14] Khailaie, S., Rowshanravan, B., Robert, P.A., Waters, E., Halliday, N., Badillo Herrera, J.D., et al. (2018) Characterization of CTLA4 Trafficking and Implications for Its Function. Biophysical Journal, 115, 1330-1343.
https://doi.org/10.1016/j.bpj.2018.08.020
[15] Hahn, N.M., Necchi, A., Loriot, Y., Powles, T., Plimack, E.R., Sonpavde, G., et al. (2018) Role of Checkpoint Inhibition in Localized Bladder Cancer. European Urology Oncology, 1, 190-198.
https://doi.org/10.1016/j.euo.2018.05.002
[16] Li, P., Huang, T., Zou, Q., Liu, D., Wang, Y., Tan, X., et al. (2019) FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. The Journal of Immunology, 202, 3065-3075.
https://doi.org/10.4049/jimmunol.1801199
[17] 马雯娟, 任建伟, 常守凤, 等. PD-L1在结直肠癌肿瘤细胞、肿瘤浸润免疫细胞中的表达与临床病理特征及预后的相关性[J]. 现代肿瘤医学, 2023, 31(14): 2660-2665.
[18] 陈思汉, 毛志刚, 张雨濛, 等. PD-L1在人结直肠癌组织中的表达和意义初探[J]. 现代免疫学, 2023, 43(4): 307-311.
[19] Contardi, E., Palmisano, G.L., Tazzari, P.L., Martelli, A.M., Falà, F., Fabbi, M., et al. (2005) CTLA-4 Is Constitutively Expressed on Tumor Cells and Can Trigger Apoptosis Upon Ligand Interaction. International Journal of Cancer, 117, 538-550.
https://doi.org/10.1002/ijc.21155
[20] Du, Y., Jin, Y., Sun, W., Fang, J., Zheng, J. and Tian, J. (2018) Advances in Molecular Imaging of Immune Checkpoint Targets in Malignancies: Current and Future Prospect. European Radiology, 29, 4294-4302.
https://doi.org/10.1007/s00330-018-5814-3
[21] Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., et al. (2001) PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nature Immunology, 2, 261-268.
https://doi.org/10.1038/85330
[22] Ge, Y., Xi, H., Ju, S. and Zhang, X. (2013) Blockade of PD-1/PD-L1 Immune Checkpoint during DC Vaccination Induces Potent Protective Immunity against Breast Cancer in Hu-SCID Mice. Cancer Letters, 336, 253-259.
https://doi.org/10.1016/j.canlet.2013.03.010
[23] Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., Hwu, W., Topalian, S.L., Hwu, P., et al. (2012) Safety and Activity of Anti–pd-L1 Antibody in Patients with Advanced Cancer. New England Journal of Medicine, 366, 2455-2465.
https://doi.org/10.1056/nejmoa1200694
[24] Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454.
https://doi.org/10.1056/nejmoa1200690
[25] England, C.G., Jiang, D., Ehlerding, E.B., Rekoske, B.T., Ellison, P.A., Hernandez, R., et al. (2017) 89Zr-Labeled Nivolumab for Imaging of T-Cell Infiltration in a Humanized Murine Model of Lung Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 45, 110-120.
https://doi.org/10.1007/s00259-017-3803-4
[26] Zhang, M., Jiang, H., Zhang, R., Jiang, H., Xu, H., Pan, W., et al. (2019) Near‐Infrared Fluorescence‐Labeled Anti‐PD‐L1‐mAb for Tumor Imaging in Human Colorectal Cancer Xenografted Mice. Journal of Cellular Biochemistry, 120, 10239-10247.
https://doi.org/10.1002/jcb.28308
[27] Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., et al. (2019) In Vivo Molecular Imaging for Immunotherapy Using Ultra-Bright Near-Infrared-IIb Rare-Earth Nanoparticles. Nature Biotechnology, 37, 1322-1331.
https://doi.org/10.1038/s41587-019-0262-4
[28] Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., et al. (2019) PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody. Journal of Nuclear Medicine, 61, 117-122.
https://doi.org/10.2967/jnumed.119.226712
[29] Walker, L.S.K. (2013) Treg and CTLA-4: Two Intertwining Pathways to Immune Tolerance. Journal of Autoimmunity, 45, 49-57.
https://doi.org/10.1016/j.jaut.2013.06.006
[30] Sharma, A., Subudhi, S.K., Blando, J., Scutti, J., Vence, L., Wargo, J., et al. (2019) Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (TREGs) in Human Cancers. Clinical Cancer Research, 25, 1233-1238.
https://doi.org/10.1158/1078-0432.ccr-18-0762
[31] Camacho, L.H. (2015) ctla‐4 Blockade with Ipilimumab: Biology, Safety, Efficacy, and Future Considerations. Cancer Medicine, 4, 661-672.
https://doi.org/10.1002/cam4.371
[32] Ehlerding, E.B., England, C.G., Majewski, R.L., Valdovinos, H.F., Jiang, D., Liu, G., et al. (2017) Immunopet Imaging of CTLA-4 Expression in Mouse Models of Non-Small Cell Lung Cancer. Molecular Pharmaceutics, 14, 1782-1789.
https://doi.org/10.1021/acs.molpharmaceut.7b00056
[33] Higashikawa, K., Yagi, K., Watanabe, K., Kamino, S., Ueda, M., Hiromura, M., et al. (2014) 64Cu-DOTA-Anti-CTLA-4 mAb Enabled PET Visualization of CTLA-4 on the T-Cell Infiltrating Tumor Tissues. PLOS ONE, 9, e109866.
https://doi.org/10.1371/journal.pone.0109866
[34] Reeves, K.M., Song, P.N., Angermeier, A., Manna, D.D., Li, Y., Wang, J., et al. (2021) 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clinical Cancer Research, 28, 327-337.
https://doi.org/10.1158/1078-0432.ccr-21-2394
[35] Kristensen, L.K., Christensen, C., Alfsen, M.Z., Cold, S., Nielsen, C.H. and Kjaer, A. (2020) Monitoring CD8a+ T Cell Responses to Radiotherapy and CTLA-4 Blockade Using [64Cu]NOTA-CD8a PET Imaging. Molecular Imaging and Biology, 22, 1021-1030.
https://doi.org/10.1007/s11307-020-01481-0
[36] Lu, P., Takai, K., Weaver, V.M. and Werb, Z. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, a005058.
https://doi.org/10.1101/cshperspect.a005058
[37] Dranoff, G. (2004) Cytokines in Cancer Pathogenesis and Cancer Therapy. Nature Reviews Cancer, 4, 11-22.
https://doi.org/10.1038/nrc1252
[38] Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M.A. (2014) Chronic Inflammation and Cytokines in the Tumor Microenvironment. Journal of Immunology Research, 2014, Article ID: 149185.
https://doi.org/10.1155/2014/149185
[39] den Hollander, M.W., Bensch, F., Glaudemans, A.W.J.M., Oude Munnink, T.H., Enting, R.H., den Dunnen, W.F.A., et al. (2015) TGF-β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. Journal of Nuclear Medicine, 56, 1310-1314.
https://doi.org/10.2967/jnumed.115.154401
[40] van der Veen, E.L., Suurs, F.V., Cleeren, F., Bormans, G., Elsinga, P.H., Hospers, G.A.P., et al. (2020) Development and Evaluation of Interleukin-2-Derived Radiotracers for PET Imaging of T Cells in Mice. Journal of Nuclear Medicine, 61, 1355-1360.
https://doi.org/10.2967/jnumed.119.238782
[41] Li, K., Liu, W., Yu, H., Chen, J., Tang, W., Wang, J., et al. (2024) Ga-FAPI PET Imaging Monitors Response to Combined TGF-βR Inhibition and Immunotherapy in Metastatic Colorectal Cancer. Journal of Clinical Investigation, 134, e170490.
https://doi.org/10.1172/jci181374
[42] 杨迪迪, 王振宜, 李琦. 中药调节大肠癌患者免疫功能的研究进展[J]. 吉林中医药, 2015, 35(7): 753-756.
[43] Lee, E., Kim, Y.S., Kim, J.H., Woo, K.W., Park, Y., Ha, J., et al. (2024) Uncovering the Colorectal Cancer Immunotherapeutic Potential: Evening Primrose (Oenothera biennis) Root Extract and Its Active Compound Oenothein B Targeting the PD-1/PD-L1 Blockade. Phytomedicine, 125, Article ID: 155370.
https://doi.org/10.1016/j.phymed.2024.155370