[1]
|
Chen, X., Tu, L., Tang, Q., Huang, L. and Qin, Y. (2022) An Emerging Role for Neutrophil Extracellular Traps in IgA Vasculitis: A Mini-Review. Frontiers in Immunology, 13, Article 912929. https://doi.org/10.3389/fimmu.2022.912929
|
[2]
|
Türkmen, Ş., Taşar, S., Güzel, M., Sönmez, H.E., Çakan, M. and Sözeri, B. (2023) A Rare Complication of IgA Vasculitis: Renal and Intestinal Ischemia Successfully Treated with Plasmapheresis. The Turkish Journal of Pediatrics, 65, 868-873. https://doi.org/10.24953/turkjped.2022.935
|
[3]
|
Neumann, T. (2022) Update Immunglobulin-A-Vaskulitis. Zeitschrift für Rheumatologie, 81, 305-312. https://doi.org/10.1007/s00393-022-01162-z
|
[4]
|
Xu, L., Li, Y. and Wu, X. (2022) IgA Vasculitis Update: Epidemiology, Pathogenesis, and Biomarkers. Frontiers in Immunology, 13, Article 912864. https://doi.org/10.3389/fimmu.2022.921864
|
[5]
|
Zhu, Z., Zhang, T., Chang, S., Ren, Z. and Zhang, Q. (2023) AZGP1 as a Potential Biomarker of IgA Vasculitis with Nephritis in a Children‑Based Urinary Proteomics Study by diaPASEF. Molecular Medicine Reports, 28, Article No. 157. https://doi.org/10.3892/mmr.2023.13044
|
[6]
|
Shi, D., Chan, H., Yang, X., Zhang, G., Yang, H., Wang, M., et al. (2019) Risk Factors Associated with IgA Vasculitis with Nephritis (Henoch-Schönlein Purpura Nephritis) Progressing to Unfavorable Outcomes: A Meta-Analysis. PLOS ONE, 14, e0223218. https://doi.org/10.1371/journal.pone.0223218
|
[7]
|
Hu, L., Li, L., Che, H., Zhao, B., Xiao, L., Liu, P., et al. (2024) Huanglian Decoction Treats Henoch-Schonlein Purpura Nephritis by Inhibiting NF-κB/NLRP3 Signaling Pathway and Reducing Renal IgA Deposition. Anais da Academia Brasileira de Ciências, 96, e20220970. https://doi.org/10.1590/0001-3765202420220970
|
[8]
|
Parums, D.V. (2024) A Review of IgA Vasculitis (HENOCH-SCHÖNLEIN Purpura) Past, Present, and Future. Medical Science Monitor, 30, e943912. https://doi.org/10.12659/msm.943912
|
[9]
|
Qin, J., Zhang, L., Ke, B., Liu, T., Kong, C. and Jin, C. (2023) Causal Relationships between Circulating Inflammatory Factors and IgA Vasculitis: A Bidirectional Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1248325. https://doi.org/10.3389/fimmu.2023.1248325
|
[10]
|
Wen, M., Dang, X., Feng, S., He, Q., Li, X., Liu, T., et al. (2022) Integrated Analyses of Gut Microbiome and Host Metabolome in Children with Henoch-Schönlein Purpura. Frontiers in Cellular and Infection Microbiology, 11, Article 796410. https://doi.org/10.3389/fcimb.2021.796410
|
[11]
|
Hu, X., Fan, R., Song, W., Qing, J., Yan, X., Li, Y., et al. (2022) Landscape of Intestinal Microbiota in Patients with IgA Nephropathy, IgA Vasculitis and Kawasaki Disease. Frontiers in Cellular and Infection Microbiology, 12, Article 1061629. https://doi.org/10.3389/fcimb.2022.1061629
|
[12]
|
Batu, E.D., Sener, S., Ozomay Baykal, G., Arslanoglu Aydin, E., et al. (2023) The Characteristics of Patients with covid-19-Associated Pediatric Vasculitis: An International, Multicenter Study. Arthritis & Rheumatology, 75, 499-506. https://doi.org/10.1002/art.42411
|
[13]
|
Blumberg, S. (1980) A Possible Association between Influenza Vaccination and Small-Vessel Vasculitis. Archives of Internal Medicine, 140, 847-848. https://doi.org/10.1001/archinte.1980.00330180121037
|
[14]
|
Casini, F., Magenes, V.C., De Sanctis, M., Gattinara, M., Pandolfi, M., Cambiaghi, S., et al. (2022) Henoch-Schönlein Purpura Following COVID-19 Vaccine in a Child: A Case Report. Italian Journal of Pediatrics, 48, Article No. 158. https://doi.org/10.1186/s13052-022-01351-1
|
[15]
|
Hashizume, H., Ajima, S. and Ishikawa, Y. (2022) Immunoglobulin a Vasculitis Post-Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination and Review of Reported Cases. The Journal of Dermatology, 49, 560-563. https://doi.org/10.1111/1346-8138.16326
|
[16]
|
Urganci, N., Sakar, M., Yalcín, O. and Kalyoncu, D. (2022) Henoch-Schönlein Purpura Induced by Infliximab for Crohn’s Disease: A Case Report and Literature Review. Revista de Gastroenterología de México (English Edition), 87, 110-112. https://doi.org/10.1016/j.rgmxen.2021.10.005
|
[17]
|
Ruan, J.W., Fan, G.Z., Niu, M.M., Jiang, Q., Li, R.X., Qiu, Z., et al. (2022) Serum Immunoglobulin Profiles in Chinese Children with Henoch-Schönlein Purpura. Scandinavian Journal of Immunology, 96, e13191. https://doi.org/10.1111/sji.13191
|
[18]
|
Marro, J., Chetwynd, A.J., Edwards, S., Wright, R.D. and Oni, L. (2022) Increased Urinary IgA in Paediatric IgA Vasculitis Nephritis. International Journal of Molecular Sciences, 23, Article 14548. https://doi.org/10.3390/ijms232314548
|
[19]
|
Williams, C.E.C., Lamond, M., Marro, J., Chetwynd, A.J. and Oni, L. (2023) A Narrative Review of Potential Drug Treatments for Nephritis in Children with IgA Vasculitis (HSP). Clinical Rheumatology, 42, 3189-3200. https://doi.org/10.1007/s10067-023-06781-8
|
[20]
|
Held, M., Kozmar, A., Sestan, M., Turudic, D., Kifer, N., Srsen, S., et al. (2024) Insight into the Interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in IgA Vasculitis (IgAV). International Journal of Molecular Sciences, 25, Article 4383. https://doi.org/10.3390/ijms25084383
|
[21]
|
Takeuchi, S., Kawakami, T., Okano, T., Shida, H., Nakazawa, D., Tomaru, U., et al. (2021) Elevated Myeloperoxidase-DNA Complex Levels in Sera of Patients with IgA Vasculitis. Pathobiology, 89, 23-28. https://doi.org/10.1159/000519869
|
[22]
|
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385
|
[23]
|
Chen, X., Tu, L., Tang, Q., Zou, J., Yun, X. and Qin, Y. (2023) DNase I Targeted Degradation of Neutrophil Extracellular Traps to Reduce the Damage on IgAV Rat. PLOS ONE, 18, e0291592. https://doi.org/10.1371/journal.pone.0291592
|
[24]
|
Malíčková, K., Ďuricová, D., Bortlík, M., Hrušková, Z., Svobodová, B., Machková, N., et al. (2011) Impaired Deoxyribonuclease I Activity in Patients with Inflammatory Bowel Diseases. Autoimmune Diseases, 2011, 1-5. https://doi.org/10.4061/2011/945861
|
[25]
|
Leffler, J., Martin, M., Gullstrand, B., Tydén, H., Lood, C., Truedsson, L., et al. (2012) Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease. The Journal of Immunology, 188, 3522-3531. https://doi.org/10.4049/jimmunol.1102404
|
[26]
|
Jia, X., Zhu, Z., Miao, J., Zhang, L., Li, X., Bao, Y., et al. (2022) Serum Syndecan-1 Levels in Patients with Immunoglobulin a Vasculitis in Children. Jornal de Pediatria, 98, 526-532. https://doi.org/10.1016/j.jped.2022.01.004
|
[27]
|
Muslu, A., Islek, I., Gok, F., Aliyazicioglu, Y., Dagdemir, A., Dundaroz, R., et al. (2002) Endothelin Levels in Henoch-Schonlein Purpura. Pediatric Nephrology, 17, 920-925. https://doi.org/10.1007/s00467-002-0885-3
|
[28]
|
Fessatou, S., Nicolaidou, P., Gourgiotis, D., Georgouli, H., Douros, K., Moustaki, M., et al. (2008) Endothelin 1 Levels in Relation to Clinical Presentation and Outcome of Henoch Schonlein Purpura. BMC Pediatrics, 8, Article No. 33. https://doi.org/10.1186/1471-2431-8-33
|
[29]
|
Noce, A., Fabrini, R., Dessì, M., Bocedi, A., Santini, S., Rovella, V., et al. (2013) Erythrocyte Glutathione Transferase Activity: A Possible Early Biomarker for Blood Toxicity in Uremic Diabetic Patients. Acta Diabetologica, 51, 219-224. https://doi.org/10.1007/s00592-013-0497-3
|
[30]
|
Tesauro, M., Nisticò, S., Noce, A., Tarantino, A., Marrone, G., Costa, A., et al. (2015) The Possible Role of Glutathione-S-Transferase Activity in Diabetic Nephropathy. International Journal of Immunopathology and Pharmacology, 28, 129-133. https://doi.org/10.1177/0394632015572564
|
[31]
|
Frkovic, M., Turcic, A., Gagro, A., Srsen, S., Frkovic, S.H., Rogic, D., et al. (2024) Erythrocyte Glutathione S-Transferase Activity as a Sensitive Marker of Kidney Function Impairment in Children with IgA Vasculitis. International Journal of Molecular Sciences, 25, Article 3795. https://doi.org/10.3390/ijms25073795
|
[32]
|
Zhang, L., Lin, Q., Jiang, L., Wu, M., Huang, L., Quan, W., et al. (2022) Increased Circulating Innate Lymphoid Cell (ILC)1 and Decreased Circulating ILC3 Are Involved in the Pathogenesis of Henoch-Schonlein Purpura. BMC Pediatrics, 22, Article No. 201. https://doi.org/10.1186/s12887-022-03262-w
|
[33]
|
Klose, C.S.N. and Artis, D. (2016) Innate Lymphoid Cells as Regulators of Immunity, Inflammation and Tissue Homeostasis. Nature Immunology, 17, 765-774. https://doi.org/10.1038/ni.3489
|
[34]
|
Bar‐Ephraïm, Y.E. and Mebius, R.E. (2016) Innate Lymphoid Cells in Secondary Lymphoid Organs. Immunological Reviews, 271, 185-199. https://doi.org/10.1111/imr.12407
|
[35]
|
Rangarajan, S., Richter, J.R., Richter, R.P., Bandari, S.K., Tripathi, K., Vlodavsky, I., et al. (2020) Heparanase-Enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. Journal of Histochemistry & Cytochemistry, 68, 823-840. https://doi.org/10.1369/0022155420937087
|
[36]
|
Schmitt, R. (2018) Zag—A Novel Biomarker for Cardiovascular Risk in ESRD Patients? Kidney International, 94, 858-860. https://doi.org/10.1016/j.kint.2018.08.010
|
[37]
|
Sörensen-Zender, I., Bhayana, S., Susnik, N., Rolli, V., Batkai, S., Baisantry, A., et al. (2015) Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart. Journal of the American Society of Nephrology, 26, 2659-2668. https://doi.org/10.1681/asn.2014050485
|
[38]
|
Schmitt, R., Marlier, A. and Cantley, L.G. (2008) Zag Expression during Aging Suppresses Proliferation after Kidney Injury. Journal of the American Society of Nephrology, 19, 2375-2383. https://doi.org/10.1681/asn.2008010035
|
[39]
|
Liu, Y., Wen, M., He, Q., Dang, X., Feng, S., Liu, T., et al. (2022) Lipid Metabolism Contribute to the Pathogenesis of IgA Vasculitis. Diagnostic Pathology, 17, Article No. 28. https://doi.org/10.1186/s13000-021-01185-1
|
[40]
|
Elblehi, S.S., Hafez, M.H. and El-Sayed, Y.S. (2019) L-α-Phosphatidylcholine Attenuates Mercury-Induced Hepato-Renal Damage through Suppressing Oxidative Stress and Inflammation. Environmental Science and Pollution Research, 26, 9333-9342. https://doi.org/10.1007/s11356-019-04395-9
|
[41]
|
Lee, H.S., Kim, B.K., Nam, Y., Sohn, U.D., Park, E.S., Hong, S.A., et al. (2013) Protective Role of Phosphatidylcholine against Cisplatin-Induced Renal Toxicity and Oxidative Stress in Rats. Food and Chemical Toxicology, 58, 388-393. https://doi.org/10.1016/j.fct.2013.05.005
|
[42]
|
Liu, L., Liu, H., Zhu, K., Zhang, L., Yin, X., Han, L., et al. (2023) Proteome Analysis Reveals Novel Serum Biomarkers for Henoch-Schönlein Purpura in Chinese Children. Journal of Proteomics, 276, Article 104841. https://doi.org/10.1016/j.jprot.2023.104841
|
[43]
|
Zhu, W., Liu, M., Wang, G., Peng, B., Yan, Y., Che, J., et al. (2014) Fibrinogen Alpha Chain Precursor and Apolipoprotein A-I in Urine as Biomarkers for Noninvasive Diagnosis of Calcium Oxalate Nephrolithiasis: A Proteomics Study. BioMed Research International, 2014, 1-8. https://doi.org/10.1155/2014/415651
|
[44]
|
Davalos, D. and Akassoglou, K. (2011) Fibrinogen as a Key Regulator of Inflammation in Disease. Seminars in Immunopathology, 34, 43-62. https://doi.org/10.1007/s00281-011-0290-8
|
[45]
|
Batnožić Varga, M. (2023) Association between High Mobility Group Box 1 Protein Gene (Rs41369348) Polymorphism and Immunoglobulin a Vasculitis in Children. Acta Clinica Croatica, 62, 25-35. https://doi.org/10.20471/acc.2023.62.01.04
|
[46]
|
Filleron, A., Cezar, R., Fila, M., Protsenko, N., Van Den Hende, K., Jeziorski, E., et al. (2024) Regulatory T and B Cells in Pediatric Henoch-Schönlein Purpura: Friends or Foes? Arthritis Research & Therapy, 26, Article No. 52. https://doi.org/10.1186/s13075-024-03278-w
|
[47]
|
Jia, X., Zhu, H., Jiang, Q., Gu, J., Yu, S., Chi, X., et al. (2023) Identification of Key Genes and Imbalance of Immune Cell Infiltration in Immunoglobulin A Associated Vasculitis Nephritis by Integrated Bioinformatic Analysis. Frontiers in Immunology, 14, Article 1087293. https://doi.org/10.3389/fimmu.2023.1087293
|
[48]
|
Xu, Y., Huang, X., Wang, Y., Zheng, L., Li, M., Dai, Y., et al. (2023) Development of Henoch-Schoenlein Purpura in a Child with Idiopathic Hypereosinophilia Syndrome with Multiple Thrombotic Onset: A Case Report. World Journal of Clinical Cases, 11, 952-961. https://doi.org/10.12998/wjcc.v11.i4.952
|
[49]
|
Sonoda, E., Matsumoto, R., Hitoshi, Y., Ishii, T., Sugimoto, M., Araki, S., et al. (1989) Transforming Growth Factor Beta Induces IgA Production and Acts Additively with Interleukin 5 for IgA Production. The Journal of Experimental Medicine, 170, 1415-1420. https://doi.org/10.1084/jem.170.4.1415
|
[50]
|
Ma, X., Nakayamada, S. and Wang, J. (2021) Multi-Source Pathways of T Follicular Helper Cell Differentiation. Frontiers in Immunology, 12, Article 621105. https://doi.org/10.3389/fimmu.2021.621105
|
[51]
|
Jen, H., Chuang, Y., Lin, S., Chiang, B. and Yang, Y. (2011) Increased Serum Interleukin-17 and Peripheral Th17 Cells in Children with Acute Henoch-Schönlein Purpura. Pediatric Allergy and Immunology, 22, 862-868. https://doi.org/10.1111/j.1399-3038.2011.01198.x
|
[52]
|
Jiang, M., Dai, J., Jiang, C., Pan, Y., Ren, M. and Xing, M. (2023) Long Noncoding RNA MEG8 Induces an Imbalance of Th17/Treg Cells through the Mir-107/stat3 Axis in Henoch-Schonlein Purpura Rats. Aging, 15, 13854-13864. https://doi.org/10.18632/aging.205266
|
[53]
|
Xia, L., Chen, M., Zhang, H., Zheng, X., Bao, J., Gao, J., et al. (2022) Genome-Wide Association Study of 7661 Chinese Han Individuals and Fine-Mapping Major Histocompatibility Complex Identifies HLA-DRB1 as Associated with IgA Vasculitis. Journal of Clinical Laboratory Analysis, 36, e24457. https://doi.org/10.1002/jcla.24457
|
[54]
|
Held, M., Stingl Jankovic, K., Sestan, M., Sapina, M., Kifer, N., Srsen, S., et al. (2024) HLA Polymorphisms and Clinical Manifestations in IgA Vasculitis. International Journal of Molecular Sciences, 25, Article 882. https://doi.org/10.3390/ijms25020882
|
[55]
|
Cui, M., Liu, J., Geng, L., Li, Q. and Xi, L. (2022) Let-7a Targeting TNFAPI3 Promotes Vascular Endothelial Cell Apoptosis of Pediatric Patients with Henoch-Schönlein Purpura via NF-κB Signaling Pathway. Journal of Healthcare Engineering, 2022, 1-10. https://doi.org/10.1155/2022/3889318
|
[56]
|
Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., et al. (2000) Hypoxia-Induced Endothelial Apoptosis through Nuclear Factor-κB (NF-κB)-Mediated BCL-2 Suppression. Circulation Research, 86, 974-981. https://doi.org/10.1161/01.res.86.9.974
|
[57]
|
Gholinejad, Z., Khadem Ansari, M.H. and Rasmi, Y. (2019) Titanium Dioxide Nanoparticles Induce Endothelial Cell Apoptosis via Cell Membrane Oxidative Damage and P38, PI3K/Akt, NF-κB Signaling Pathways Modulation. Journal of Trace Elements in Medicine and Biology, 54, 27-35. https://doi.org/10.1016/j.jtemb.2019.03.008
|
[58]
|
Zhang, X., Che, R., Xu, H., Ding, G., Zhao, F., Huang, S., et al. (2022) Hemoperfusion and Intravenous Immunoglobulins for Refractory Gastrointestinal Involvement in Pediatric Henoch-Schönlein Purpura: A Single-Center Retrospective Cohort Study. BMC Pediatrics, 22, Article No. 692. https://doi.org/10.1186/s12887-022-03709-0
|
[59]
|
Ozen, S., Marks, S.D., Brogan, P., Groot, N., de Graeff, N., Avcin, T., et al. (2019) European Consensus-Based Recommendations for Diagnosis and Treatment of Immunoglobulin a Vasculitis—The SHARE Initiative. Rheumatology, 58, 1607-1616. https://doi.org/10.1093/rheumatology/kez041
|
[60]
|
Penido, M.G.M.G. and Palma, L.M.P. (2022) IgA Vasculitis in Children. Brazilian Journal of Nephrology, 44, 3-5. https://doi.org/10.1590/2175-8239-jbn-2022-e002
|
[61]
|
Zhong, X. and Ding, J. (2022) Diagnosis and Treatment of IgA Nephropathy and IgA Vasculitis Nephritis in Chinese Children. Pediatric Nephrology, 38, 1707-1715. https://doi.org/10.1007/s00467-022-05798-6
|
[62]
|
Working Group for National Survey on Status of Diagnosis and Treatment of Childhood Renal Disease (2013) Multi-center Investigation of Diagnosis and Treatment of Henoch-Schonlein Purpura Nephritis in Childhood. Chinese Journal of Contemporary Pediatrics, 51, 881-887.
|
[63]
|
Hou, L., Zhang, Z. and Du, Y. (2021) Leflunomide Therapy for IgA Vasculitis with Nephritis in Children. BMC Pediatrics, 21, Article No. 391. https://doi.org/10.1186/s12887-021-02866-y
|
[64]
|
Kara, M.A., Kiliç, B.D., Büyükçelik, M. and Balat, A. (2022) Renal Biopsy in Children with IgA Vasculitis. Brazilian Journal of Nephrology, 44, 48-57. https://doi.org/10.1590/2175-8239-jbn-2021-0035
|
[65]
|
Miki, H., Tsuboi, H., Kawashima, F., Sugita, T., Nishiyama, T., Kuroda, Y., et al. (2024) Multidrug-Resistant IgA Vasculitis with Gastrointestinal Symptoms Successfully Treated with Intravenous Cyclophosphamide and Maintained with Mycophenolate Mofetil. Internal Medicine, 63, 743-747. https://doi.org/10.2169/internalmedicine.1990-23
|
[66]
|
Di Gaetano, N., Cittera, E., Nota, R., Vecchi, A., Grieco, V., Scanziani, E., et al. (2003) Complement Activation Determines the Therapeutic Activity of Rituximab in Vivo. The Journal of Immunology, 171, 1581-1587. https://doi.org/10.4049/jimmunol.171.3.1581
|
[67]
|
Hernández-Rodríguez, J., Carbonell, C., Mirón-Canelo, J., Diez-Ruiz, S., Marcos, M. and Chamorro, A.J. (2020) Rituximab Treatment for IgA Vasculitis: A Systematic Review. Autoimmunity Reviews, 19, Article 102490. https://doi.org/10.1016/j.autrev.2020.102490
|
[68]
|
Xue, X., Liu, X., Lu, C., Jin, X., Liu, Q., Wang, X., et al. (2021) Chinese Patent Herbal Medicine Huaiqihuang for Henoch-Schonlein Purpura Nephritis in Children: A Systematic Review of Randomized Controlled Trials. BMC Complementary Medicine and Therapies, 21, Article No. 278. https://doi.org/10.1186/s12906-021-03415-x
|
[69]
|
Markó, L., Vigolo, E., Hinze, C., Park, J., Roël, G., Balogh, A., et al. (2016) Tubular Epithelial NF-κB Activity Regulates Ischemic Aki. Journal of the American Society of Nephrology, 27, 2658-2669. https://doi.org/10.1681/asn.2015070748
|
[70]
|
Liu, Q., Liu, J., Du, Y., Guo, W., Mi, J. and Guo, Y. (2022) Network Pharmacology and Molecular Docking Analysis to Explore the Mechanism of Huaiqihuang-Mediated Alleviation of Henoch-Schönlein Purpura Nephritis. BioMed Research International, 2022, 1-13. https://doi.org/10.1155/2022/2798217
|
[71]
|
Ahlmann, M. and Hempel, G. (2016) The Effect of Cyclophosphamide on the Immune System: Implications for Clinical Cancer Therapy. Cancer Chemotherapy and Pharmacology, 78, 661-671. https://doi.org/10.1007/s00280-016-3152-1
|
[72]
|
Zhang, Y., Chang, J., Gao, H., Qu, X., Zhai, J., Tao, L., et al. (2021) Huaiqihuang (HQH) Granule Alleviates Cyclophosphamide-Induced Nephrotoxicity via Suppressing the MAPK/NF-κB Pathway and NLRP3 Inflammasome Activation. Pharmaceutical Biology, 59, 1423-1429. https://doi.org/10.1080/13880209.2021.1990356
|
[73]
|
Zhang, X., Cheng, Y., Zhou, Q., Huang, H., Dong, Y., Yang, Y., et al. (2020) The Effect of Chinese Traditional Medicine Huaiqihuang (HQH) on the Protection of Nephropathy. Oxidative Medicine and Cellular Longevity, 2020, 1-10. https://doi.org/10.1155/2020/2153912
|
[74]
|
Nguyen, B., Acharya, C., Tangpanithandee, S., Miao, J., Krisanapan, P., Thongprayoon, C., et al. (2023) Efficacy and Safety of Plasma Exchange as an Adjunctive Therapy for Rapidly Progressive IgA Nephropathy and Henoch-Schönlein Purpura Nephritis: A Systematic Review. International Journal of Molecular Sciences, 24, Article 3977. https://doi.org/10.3390/ijms24043977
|
[75]
|
Subspecialty Group of Immunology, Society of Pediatrics, Chinese Medical Association and Editorial Board of Chinese Journal of Pediatrics (2013) Evidence-Based Recommendations for the Diagnosis and Management in the Children with Henoch-Schönlein Purpura. Chinese Journal of Pediatrics, 51, 502-507.
|
[76]
|
Zhu, Y., Dong, Y., Wu, L. and Deng, F. (2019) Changes of Inflammatory Mediators and Oxidative Stress Indicators in Children with Henoch-Schönlein Purpura and Clinical Effects of Hemoperfusion in the Treatment of Severe Henoch-Schönlein Purpura with Gastrointestinal Involvement in Children. BMC Pediatrics, 19, Article No. 409. https://doi.org/10.1186/s12887-019-1802-2
|
[77]
|
Ma, D.Q., Li, Y., Han, Z.G., et al. (2017) Analysis on Kidney Injury-Related Clinical Risk Factors and Evaluation on the Therapeutic Effects of Hemoperfusion in Children with Henoch-Schönlein purpura. European Review for Medical and Pharmacological Sciences, 21, 3894-3899.
|
[78]
|
Yan, M., Wang, Z., Niu, N., Zhao, J. and Peng, J. (2015) Relationship between Chronic Tonsillitis and Henoch-Schönlein Purpura. International Journal of Clinical and Experimental Medicine, 8, 14060-14064.
|
[79]
|
Song, Y., Huang, X., Yu, G., Qiao, J., Cheng, J., Wu, J., et al. (2021) Pathogenesis of IgA Vasculitis: An Up-to-Date Review. Frontiers in Immunology, 12, Article 771619. https://doi.org/10.3389/fimmu.2021.771619
|
[80]
|
Akpinar, M.E., Kocak, I., Gurpinar, B. and Ozturk, B. (2009) Henoch-Schönlein Purpura after Adenotonsillectomy. Otolaryngology-Head and Neck Surgery, 141, 149-150. https://doi.org/10.1016/j.otohns.2008.12.063
|
[81]
|
Aydın, F., Kurt, T., Ünlü, E., Tekin, Z.E., Çelikel, E. and Acar, B.Ç. (2022) Steroid-Resistant Peripheral Neuropathy in a Child: A Rare Finding in Immunoglobulin a Vasculitis. The Turkish Journal of Pediatrics, 64, 576-579. https://doi.org/10.24953/turkjped.2020.3094
|
[82]
|
Jiang, J., Liao, K., Guo, H. and Chen, X. (2023) Varicella-Associated Disseminated Intravascular Coagulation Secondary to Henoch-Schönlein Purpura with Renal and Gastrointestinal System Involvement in a Child: A Case Report. Medicine, 102, e36203. https://doi.org/10.1097/md.0000000000036203
|
[83]
|
Dowell, S.F. and Bresee, J.S. (1993) Severe Varicella Associated with Steroid Use. Pediatrics, 92, 223-228. https://doi.org/10.1542/peds.92.2.223
|