|
[1]
|
Chen, X., Tu, L., Tang, Q., Huang, L. and Qin, Y. (2022) An Emerging Role for Neutrophil Extracellular Traps in IgA Vasculitis: A Mini-Review. Frontiers in Immunology, 13, Article 912929. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Türkmen, Ş., Taşar, S., Güzel, M., Sönmez, H.E., Çakan, M. and Sözeri, B. (2023) A Rare Complication of IgA Vasculitis: Renal and Intestinal Ischemia Successfully Treated with Plasmapheresis. The Turkish Journal of Pediatrics, 65, 868-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Neumann, T. (2022) Update Immunglobulin-A-Vaskulitis. Zeitschrift für Rheumatologie, 81, 305-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xu, L., Li, Y. and Wu, X. (2022) IgA Vasculitis Update: Epidemiology, Pathogenesis, and Biomarkers. Frontiers in Immunology, 13, Article 912864. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhu, Z., Zhang, T., Chang, S., Ren, Z. and Zhang, Q. (2023) AZGP1 as a Potential Biomarker of IgA Vasculitis with Nephritis in a Children‑Based Urinary Proteomics Study by diaPASEF. Molecular Medicine Reports, 28, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shi, D., Chan, H., Yang, X., Zhang, G., Yang, H., Wang, M., et al. (2019) Risk Factors Associated with IgA Vasculitis with Nephritis (Henoch-Schönlein Purpura Nephritis) Progressing to Unfavorable Outcomes: A Meta-Analysis. PLOS ONE, 14, e0223218. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hu, L., Li, L., Che, H., Zhao, B., Xiao, L., Liu, P., et al. (2024) Huanglian Decoction Treats Henoch-Schonlein Purpura Nephritis by Inhibiting NF-κB/NLRP3 Signaling Pathway and Reducing Renal IgA Deposition. Anais da Academia Brasileira de Ciências, 96, e20220970. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Parums, D.V. (2024) A Review of IgA Vasculitis (HENOCH-SCHÖNLEIN Purpura) Past, Present, and Future. Medical Science Monitor, 30, e943912. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qin, J., Zhang, L., Ke, B., Liu, T., Kong, C. and Jin, C. (2023) Causal Relationships between Circulating Inflammatory Factors and IgA Vasculitis: A Bidirectional Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1248325. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wen, M., Dang, X., Feng, S., He, Q., Li, X., Liu, T., et al. (2022) Integrated Analyses of Gut Microbiome and Host Metabolome in Children with Henoch-Schönlein Purpura. Frontiers in Cellular and Infection Microbiology, 11, Article 796410. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hu, X., Fan, R., Song, W., Qing, J., Yan, X., Li, Y., et al. (2022) Landscape of Intestinal Microbiota in Patients with IgA Nephropathy, IgA Vasculitis and Kawasaki Disease. Frontiers in Cellular and Infection Microbiology, 12, Article 1061629. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Batu, E.D., Sener, S., Ozomay Baykal, G., Arslanoglu Aydin, E., et al. (2023) The Characteristics of Patients with covid-19-Associated Pediatric Vasculitis: An International, Multicenter Study. Arthritis & Rheumatology, 75, 499-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Blumberg, S. (1980) A Possible Association between Influenza Vaccination and Small-Vessel Vasculitis. Archives of Internal Medicine, 140, 847-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Casini, F., Magenes, V.C., De Sanctis, M., Gattinara, M., Pandolfi, M., Cambiaghi, S., et al. (2022) Henoch-Schönlein Purpura Following COVID-19 Vaccine in a Child: A Case Report. Italian Journal of Pediatrics, 48, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hashizume, H., Ajima, S. and Ishikawa, Y. (2022) Immunoglobulin a Vasculitis Post-Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination and Review of Reported Cases. The Journal of Dermatology, 49, 560-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Urganci, N., Sakar, M., Yalcín, O. and Kalyoncu, D. (2022) Henoch-Schönlein Purpura Induced by Infliximab for Crohn’s Disease: A Case Report and Literature Review. Revista de Gastroenterología de México (English Edition), 87, 110-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ruan, J.W., Fan, G.Z., Niu, M.M., Jiang, Q., Li, R.X., Qiu, Z., et al. (2022) Serum Immunoglobulin Profiles in Chinese Children with Henoch-Schönlein Purpura. Scandinavian Journal of Immunology, 96, e13191. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Marro, J., Chetwynd, A.J., Edwards, S., Wright, R.D. and Oni, L. (2022) Increased Urinary IgA in Paediatric IgA Vasculitis Nephritis. International Journal of Molecular Sciences, 23, Article 14548. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Williams, C.E.C., Lamond, M., Marro, J., Chetwynd, A.J. and Oni, L. (2023) A Narrative Review of Potential Drug Treatments for Nephritis in Children with IgA Vasculitis (HSP). Clinical Rheumatology, 42, 3189-3200. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Held, M., Kozmar, A., Sestan, M., Turudic, D., Kifer, N., Srsen, S., et al. (2024) Insight into the Interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in IgA Vasculitis (IgAV). International Journal of Molecular Sciences, 25, Article 4383. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Takeuchi, S., Kawakami, T., Okano, T., Shida, H., Nakazawa, D., Tomaru, U., et al. (2021) Elevated Myeloperoxidase-DNA Complex Levels in Sera of Patients with IgA Vasculitis. Pathobiology, 89, 23-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, X., Tu, L., Tang, Q., Zou, J., Yun, X. and Qin, Y. (2023) DNase I Targeted Degradation of Neutrophil Extracellular Traps to Reduce the Damage on IgAV Rat. PLOS ONE, 18, e0291592. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Malíčková, K., Ďuricová, D., Bortlík, M., Hrušková, Z., Svobodová, B., Machková, N., et al. (2011) Impaired Deoxyribonuclease I Activity in Patients with Inflammatory Bowel Diseases. Autoimmune Diseases, 2011, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Leffler, J., Martin, M., Gullstrand, B., Tydén, H., Lood, C., Truedsson, L., et al. (2012) Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease. The Journal of Immunology, 188, 3522-3531. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jia, X., Zhu, Z., Miao, J., Zhang, L., Li, X., Bao, Y., et al. (2022) Serum Syndecan-1 Levels in Patients with Immunoglobulin a Vasculitis in Children. Jornal de Pediatria, 98, 526-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Muslu, A., Islek, I., Gok, F., Aliyazicioglu, Y., Dagdemir, A., Dundaroz, R., et al. (2002) Endothelin Levels in Henoch-Schonlein Purpura. Pediatric Nephrology, 17, 920-925. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fessatou, S., Nicolaidou, P., Gourgiotis, D., Georgouli, H., Douros, K., Moustaki, M., et al. (2008) Endothelin 1 Levels in Relation to Clinical Presentation and Outcome of Henoch Schonlein Purpura. BMC Pediatrics, 8, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Noce, A., Fabrini, R., Dessì, M., Bocedi, A., Santini, S., Rovella, V., et al. (2013) Erythrocyte Glutathione Transferase Activity: A Possible Early Biomarker for Blood Toxicity in Uremic Diabetic Patients. Acta Diabetologica, 51, 219-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tesauro, M., Nisticò, S., Noce, A., Tarantino, A., Marrone, G., Costa, A., et al. (2015) The Possible Role of Glutathione-S-Transferase Activity in Diabetic Nephropathy. International Journal of Immunopathology and Pharmacology, 28, 129-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Frkovic, M., Turcic, A., Gagro, A., Srsen, S., Frkovic, S.H., Rogic, D., et al. (2024) Erythrocyte Glutathione S-Transferase Activity as a Sensitive Marker of Kidney Function Impairment in Children with IgA Vasculitis. International Journal of Molecular Sciences, 25, Article 3795. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, L., Lin, Q., Jiang, L., Wu, M., Huang, L., Quan, W., et al. (2022) Increased Circulating Innate Lymphoid Cell (ILC)1 and Decreased Circulating ILC3 Are Involved in the Pathogenesis of Henoch-Schonlein Purpura. BMC Pediatrics, 22, Article No. 201. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Klose, C.S.N. and Artis, D. (2016) Innate Lymphoid Cells as Regulators of Immunity, Inflammation and Tissue Homeostasis. Nature Immunology, 17, 765-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bar‐Ephraïm, Y.E. and Mebius, R.E. (2016) Innate Lymphoid Cells in Secondary Lymphoid Organs. Immunological Reviews, 271, 185-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rangarajan, S., Richter, J.R., Richter, R.P., Bandari, S.K., Tripathi, K., Vlodavsky, I., et al. (2020) Heparanase-Enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. Journal of Histochemistry & Cytochemistry, 68, 823-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Schmitt, R. (2018) Zag—A Novel Biomarker for Cardiovascular Risk in ESRD Patients? Kidney International, 94, 858-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sörensen-Zender, I., Bhayana, S., Susnik, N., Rolli, V., Batkai, S., Baisantry, A., et al. (2015) Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart. Journal of the American Society of Nephrology, 26, 2659-2668. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schmitt, R., Marlier, A. and Cantley, L.G. (2008) Zag Expression during Aging Suppresses Proliferation after Kidney Injury. Journal of the American Society of Nephrology, 19, 2375-2383. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, Y., Wen, M., He, Q., Dang, X., Feng, S., Liu, T., et al. (2022) Lipid Metabolism Contribute to the Pathogenesis of IgA Vasculitis. Diagnostic Pathology, 17, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Elblehi, S.S., Hafez, M.H. and El-Sayed, Y.S. (2019) L-α-Phosphatidylcholine Attenuates Mercury-Induced Hepato-Renal Damage through Suppressing Oxidative Stress and Inflammation. Environmental Science and Pollution Research, 26, 9333-9342. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lee, H.S., Kim, B.K., Nam, Y., Sohn, U.D., Park, E.S., Hong, S.A., et al. (2013) Protective Role of Phosphatidylcholine against Cisplatin-Induced Renal Toxicity and Oxidative Stress in Rats. Food and Chemical Toxicology, 58, 388-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, L., Liu, H., Zhu, K., Zhang, L., Yin, X., Han, L., et al. (2023) Proteome Analysis Reveals Novel Serum Biomarkers for Henoch-Schönlein Purpura in Chinese Children. Journal of Proteomics, 276, Article 104841. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhu, W., Liu, M., Wang, G., Peng, B., Yan, Y., Che, J., et al. (2014) Fibrinogen Alpha Chain Precursor and Apolipoprotein A-I in Urine as Biomarkers for Noninvasive Diagnosis of Calcium Oxalate Nephrolithiasis: A Proteomics Study. BioMed Research International, 2014, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Davalos, D. and Akassoglou, K. (2011) Fibrinogen as a Key Regulator of Inflammation in Disease. Seminars in Immunopathology, 34, 43-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Batnožić Varga, M. (2023) Association between High Mobility Group Box 1 Protein Gene (Rs41369348) Polymorphism and Immunoglobulin a Vasculitis in Children. Acta Clinica Croatica, 62, 25-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Filleron, A., Cezar, R., Fila, M., Protsenko, N., Van Den Hende, K., Jeziorski, E., et al. (2024) Regulatory T and B Cells in Pediatric Henoch-Schönlein Purpura: Friends or Foes? Arthritis Research & Therapy, 26, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jia, X., Zhu, H., Jiang, Q., Gu, J., Yu, S., Chi, X., et al. (2023) Identification of Key Genes and Imbalance of Immune Cell Infiltration in Immunoglobulin A Associated Vasculitis Nephritis by Integrated Bioinformatic Analysis. Frontiers in Immunology, 14, Article 1087293. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Xu, Y., Huang, X., Wang, Y., Zheng, L., Li, M., Dai, Y., et al. (2023) Development of Henoch-Schoenlein Purpura in a Child with Idiopathic Hypereosinophilia Syndrome with Multiple Thrombotic Onset: A Case Report. World Journal of Clinical Cases, 11, 952-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sonoda, E., Matsumoto, R., Hitoshi, Y., Ishii, T., Sugimoto, M., Araki, S., et al. (1989) Transforming Growth Factor Beta Induces IgA Production and Acts Additively with Interleukin 5 for IgA Production. The Journal of Experimental Medicine, 170, 1415-1420. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ma, X., Nakayamada, S. and Wang, J. (2021) Multi-Source Pathways of T Follicular Helper Cell Differentiation. Frontiers in Immunology, 12, Article 621105. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jen, H., Chuang, Y., Lin, S., Chiang, B. and Yang, Y. (2011) Increased Serum Interleukin-17 and Peripheral Th17 Cells in Children with Acute Henoch-Schönlein Purpura. Pediatric Allergy and Immunology, 22, 862-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Jiang, M., Dai, J., Jiang, C., Pan, Y., Ren, M. and Xing, M. (2023) Long Noncoding RNA MEG8 Induces an Imbalance of Th17/Treg Cells through the Mir-107/stat3 Axis in Henoch-Schonlein Purpura Rats. Aging, 15, 13854-13864. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xia, L., Chen, M., Zhang, H., Zheng, X., Bao, J., Gao, J., et al. (2022) Genome-Wide Association Study of 7661 Chinese Han Individuals and Fine-Mapping Major Histocompatibility Complex Identifies HLA-DRB1 as Associated with IgA Vasculitis. Journal of Clinical Laboratory Analysis, 36, e24457. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Held, M., Stingl Jankovic, K., Sestan, M., Sapina, M., Kifer, N., Srsen, S., et al. (2024) HLA Polymorphisms and Clinical Manifestations in IgA Vasculitis. International Journal of Molecular Sciences, 25, Article 882. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cui, M., Liu, J., Geng, L., Li, Q. and Xi, L. (2022) Let-7a Targeting TNFAPI3 Promotes Vascular Endothelial Cell Apoptosis of Pediatric Patients with Henoch-Schönlein Purpura via NF-κB Signaling Pathway. Journal of Healthcare Engineering, 2022, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., et al. (2000) Hypoxia-Induced Endothelial Apoptosis through Nuclear Factor-κB (NF-κB)-Mediated BCL-2 Suppression. Circulation Research, 86, 974-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Gholinejad, Z., Khadem Ansari, M.H. and Rasmi, Y. (2019) Titanium Dioxide Nanoparticles Induce Endothelial Cell Apoptosis via Cell Membrane Oxidative Damage and P38, PI3K/Akt, NF-κB Signaling Pathways Modulation. Journal of Trace Elements in Medicine and Biology, 54, 27-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, X., Che, R., Xu, H., Ding, G., Zhao, F., Huang, S., et al. (2022) Hemoperfusion and Intravenous Immunoglobulins for Refractory Gastrointestinal Involvement in Pediatric Henoch-Schönlein Purpura: A Single-Center Retrospective Cohort Study. BMC Pediatrics, 22, Article No. 692. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Ozen, S., Marks, S.D., Brogan, P., Groot, N., de Graeff, N., Avcin, T., et al. (2019) European Consensus-Based Recommendations for Diagnosis and Treatment of Immunoglobulin a Vasculitis—The SHARE Initiative. Rheumatology, 58, 1607-1616. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Penido, M.G.M.G. and Palma, L.M.P. (2022) IgA Vasculitis in Children. Brazilian Journal of Nephrology, 44, 3-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhong, X. and Ding, J. (2022) Diagnosis and Treatment of IgA Nephropathy and IgA Vasculitis Nephritis in Chinese Children. Pediatric Nephrology, 38, 1707-1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Working Group for National Survey on Status of Diagnosis and Treatment of Childhood Renal Disease (2013) Multi-center Investigation of Diagnosis and Treatment of Henoch-Schonlein Purpura Nephritis in Childhood. Chinese Journal of Contemporary Pediatrics, 51, 881-887.
|
|
[63]
|
Hou, L., Zhang, Z. and Du, Y. (2021) Leflunomide Therapy for IgA Vasculitis with Nephritis in Children. BMC Pediatrics, 21, Article No. 391. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kara, M.A., Kiliç, B.D., Büyükçelik, M. and Balat, A. (2022) Renal Biopsy in Children with IgA Vasculitis. Brazilian Journal of Nephrology, 44, 48-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Miki, H., Tsuboi, H., Kawashima, F., Sugita, T., Nishiyama, T., Kuroda, Y., et al. (2024) Multidrug-Resistant IgA Vasculitis with Gastrointestinal Symptoms Successfully Treated with Intravenous Cyclophosphamide and Maintained with Mycophenolate Mofetil. Internal Medicine, 63, 743-747. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Di Gaetano, N., Cittera, E., Nota, R., Vecchi, A., Grieco, V., Scanziani, E., et al. (2003) Complement Activation Determines the Therapeutic Activity of Rituximab in Vivo. The Journal of Immunology, 171, 1581-1587. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Hernández-Rodríguez, J., Carbonell, C., Mirón-Canelo, J., Diez-Ruiz, S., Marcos, M. and Chamorro, A.J. (2020) Rituximab Treatment for IgA Vasculitis: A Systematic Review. Autoimmunity Reviews, 19, Article 102490. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Xue, X., Liu, X., Lu, C., Jin, X., Liu, Q., Wang, X., et al. (2021) Chinese Patent Herbal Medicine Huaiqihuang for Henoch-Schonlein Purpura Nephritis in Children: A Systematic Review of Randomized Controlled Trials. BMC Complementary Medicine and Therapies, 21, Article No. 278. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Markó, L., Vigolo, E., Hinze, C., Park, J., Roël, G., Balogh, A., et al. (2016) Tubular Epithelial NF-κB Activity Regulates Ischemic Aki. Journal of the American Society of Nephrology, 27, 2658-2669. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Liu, Q., Liu, J., Du, Y., Guo, W., Mi, J. and Guo, Y. (2022) Network Pharmacology and Molecular Docking Analysis to Explore the Mechanism of Huaiqihuang-Mediated Alleviation of Henoch-Schönlein Purpura Nephritis. BioMed Research International, 2022, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ahlmann, M. and Hempel, G. (2016) The Effect of Cyclophosphamide on the Immune System: Implications for Clinical Cancer Therapy. Cancer Chemotherapy and Pharmacology, 78, 661-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Zhang, Y., Chang, J., Gao, H., Qu, X., Zhai, J., Tao, L., et al. (2021) Huaiqihuang (HQH) Granule Alleviates Cyclophosphamide-Induced Nephrotoxicity via Suppressing the MAPK/NF-κB Pathway and NLRP3 Inflammasome Activation. Pharmaceutical Biology, 59, 1423-1429. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zhang, X., Cheng, Y., Zhou, Q., Huang, H., Dong, Y., Yang, Y., et al. (2020) The Effect of Chinese Traditional Medicine Huaiqihuang (HQH) on the Protection of Nephropathy. Oxidative Medicine and Cellular Longevity, 2020, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Nguyen, B., Acharya, C., Tangpanithandee, S., Miao, J., Krisanapan, P., Thongprayoon, C., et al. (2023) Efficacy and Safety of Plasma Exchange as an Adjunctive Therapy for Rapidly Progressive IgA Nephropathy and Henoch-Schönlein Purpura Nephritis: A Systematic Review. International Journal of Molecular Sciences, 24, Article 3977. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Subspecialty Group of Immunology, Society of Pediatrics, Chinese Medical Association and Editorial Board of Chinese Journal of Pediatrics (2013) Evidence-Based Recommendations for the Diagnosis and Management in the Children with Henoch-Schönlein Purpura. Chinese Journal of Pediatrics, 51, 502-507.
|
|
[76]
|
Zhu, Y., Dong, Y., Wu, L. and Deng, F. (2019) Changes of Inflammatory Mediators and Oxidative Stress Indicators in Children with Henoch-Schönlein Purpura and Clinical Effects of Hemoperfusion in the Treatment of Severe Henoch-Schönlein Purpura with Gastrointestinal Involvement in Children. BMC Pediatrics, 19, Article No. 409. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Ma, D.Q., Li, Y., Han, Z.G., et al. (2017) Analysis on Kidney Injury-Related Clinical Risk Factors and Evaluation on the Therapeutic Effects of Hemoperfusion in Children with Henoch-Schönlein purpura. European Review for Medical and Pharmacological Sciences, 21, 3894-3899.
|
|
[78]
|
Yan, M., Wang, Z., Niu, N., Zhao, J. and Peng, J. (2015) Relationship between Chronic Tonsillitis and Henoch-Schönlein Purpura. International Journal of Clinical and Experimental Medicine, 8, 14060-14064.
|
|
[79]
|
Song, Y., Huang, X., Yu, G., Qiao, J., Cheng, J., Wu, J., et al. (2021) Pathogenesis of IgA Vasculitis: An Up-to-Date Review. Frontiers in Immunology, 12, Article 771619. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Akpinar, M.E., Kocak, I., Gurpinar, B. and Ozturk, B. (2009) Henoch-Schönlein Purpura after Adenotonsillectomy. Otolaryngology-Head and Neck Surgery, 141, 149-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Aydın, F., Kurt, T., Ünlü, E., Tekin, Z.E., Çelikel, E. and Acar, B.Ç. (2022) Steroid-Resistant Peripheral Neuropathy in a Child: A Rare Finding in Immunoglobulin a Vasculitis. The Turkish Journal of Pediatrics, 64, 576-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Jiang, J., Liao, K., Guo, H. and Chen, X. (2023) Varicella-Associated Disseminated Intravascular Coagulation Secondary to Henoch-Schönlein Purpura with Renal and Gastrointestinal System Involvement in a Child: A Case Report. Medicine, 102, e36203. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Dowell, S.F. and Bresee, J.S. (1993) Severe Varicella Associated with Steroid Use. Pediatrics, 92, 223-228. [Google Scholar] [CrossRef]
|