[1]
|
Lee, K.A., Luong, M.K., Shaw, H., Nathan, P., Bataille, V. and Spector, T.D. (2021) The Gut Microbiome: What the Oncologist Ought to Know. British Journal of Cancer, 125, 1197-1209. https://doi.org/10.1038/s41416-021-01467-x
|
[2]
|
Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M., et al. (2018) The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science, 359, 104-108. https://doi.org/10.1126/science.aao3290
|
[3]
|
Yarchoan, M., Hopkins, A. and Jaffee, E.M. (2017) Tumor Mutational Burden and Response Rate to PD-1 Inhibition. New England Journal of Medicine, 377, 2500-2501. https://doi.org/10.1056/nejmc1713444
|
[4]
|
Ma, Y., Li, J., Wang, H., Chiu, Y., Kingsley, C.V., Fry, D., et al. (2020) Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology, 159, 306-319.e12. https://doi.org/10.1053/j.gastro.2020.03.018
|
[5]
|
Andrews, M.C., Duong, C.P.M., Gopalakrishnan, V., Iebba, V., Chen, W., Derosa, L., et al. (2021) Gut Microbiota Signatures Are Associated with Toxicity to Combined CTLA-4 and PD-1 Blockade. Nature Medicine, 27, 1432-1441. https://doi.org/10.1038/s41591-021-01406-6
|
[6]
|
Santoni, M., Piva, F., Conti, A., Santoni, A., Cimadamore, A., Scarpelli, M., et al. (2018) Re: Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. European Urology, 74, 521-522. https://doi.org/10.1016/j.eururo.2018.05.033
|
[7]
|
Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97. https://doi.org/10.1126/science.aan3706
|
[8]
|
Gopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V., et al. (2018) Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science, 359, 97-103. https://doi.org/10.1126/science.aan4236
|
[9]
|
Kim, K., Kwon, O., Ryu, T.Y., Jung, C.-R.J., Min, J.-K., Kim, D.-S., Son, M.-Y. and Cho, H.-S. (2019) Propionate of a Microbiota Metabolite Induces Cell Apoptosis and Cell Cycle Arrest in Lung Cancer. Molecular Medicine Reports, 20, 1569-1574.
|
[10]
|
Tinsley, N., Zhou, C., Tan, G., Rack, S., Lorigan, P., Blackhall, F., et al. (2019) Cumulative Antibiotic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. The Oncologist, 25, 55-63. https://doi.org/10.1634/theoncologist.2019-0160
|
[11]
|
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089. https://doi.org/10.1126/science.aac4255
|
[12]
|
Mycko, M.P., Cichalewska, M., Cwiklinska, H. and Selmaj, K.W. (2015) miR-155-3p Drives the Development of Autoimmune Demyelination by Regulation of Heat Shock Protein 40. The Journal of Neuroscience, 35, 16504-16515. https://doi.org/10.1523/jneurosci.2830-15.2015
|
[13]
|
Davar, D., Dzutsev, A.K., McCulloch, J.A., Rodrigues, R.R., Chauvin, J., Morrison, R.M., et al. (2021) Fecal Microbiota Transplant Overcomes Resistance to Anti-Pd-1 Therapy in Melanoma Patients. Science, 371, 595-602. https://doi.org/10.1126/science.abf3363
|
[14]
|
Horn, V. and Sonnenberg, G.F. (2024) Group 3 Innate Lymphoid Cells in Intestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 21, 428-443. https://doi.org/10.1038/s41575-024-00906-3
|
[15]
|
Zheng, Y., Fang, Z., Xue, Y., Zhang, J., Zhu, J., Gao, R., et al. (2020) Specific Gut Microbiome Signature Predicts the Early-Stage Lung Cancer. Gut Microbes, 11, 1030-1042. https://doi.org/10.1080/19490976.2020.1737487
|
[16]
|
袁文杰, 郭亚琼, 韩毅, 等. 非小细胞肺癌患者肠道微生物特征分析[J]. 微生物学报, 2021, 61(9): 2776-2790.
|
[17]
|
Zheng, Y., Wang, T., Tu, X., Huang, Y., Zhang, H., Tan, D., et al. (2019) Gut Microbiome Affects the Response to Anti-PD-1 Immunotherapy in Patients with Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 7, Article No. 193. https://doi.org/10.1186/s40425-019-0650-9
|
[18]
|
Tomita, Y., Ikeda, T., Sakata, S., Saruwatari, K., Sato, R., Iyama, S., et al. (2020) Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research, 8, 1236-1242. https://doi.org/10.1158/2326-6066.cir-20-0051
|
[19]
|
Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.cd-21-1059
|
[20]
|
Helmink, B.A., Khan, M.A.W., Hermann, A., Gopalakrishnan, V. and Wargo, J.A. (2019) The Microbiome, Cancer, and Cancer Therapy. Nature Medicine, 25, 377-388. https://doi.org/10.1038/s41591-019-0377-7
|
[21]
|
Takada, K., Shimokawa, M., Takamori, S., Shimamatsu, S., Hirai, F., Tagawa, T., et al. (2021) Clinical Impact of Probiotics on the Efficacy of Anti‐PD‐1 Monotherapy in Patients with Nonsmall Cell Lung Cancer: A Multicenter Retrospective Survival Analysis Study with Inverse Probability of Treatment Weighting. International Journal of Cancer, 149, 473-482. https://doi.org/10.1002/ijc.33557
|
[22]
|
Dizman, N., Meza, L., Bergerot, P., Alcantara, M., Dorff, T., Lyou, Y., et al. (2022) Nivolumab plus Ipilimumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nature Medicine, 28, 704-712. https://doi.org/10.1038/s41591-022-01694-6
|
[23]
|
Lythgoe, M.P., Mullish, B.H., Frampton, A.E. and Krell, J. (2022) Polymorphic Microbes: A New Emerging Hallmark of Cancer. Trends in Microbiology, 30, 1131-1134. https://doi.org/10.1016/j.tim.2022.08.004
|
[24]
|
Hefazi, M., Patnaik, M.M., Hogan, W.J., Litzow, M.R., Pardi, D.S. and Khanna, S. (2017) Safety and Efficacy of Fecal Microbiota Transplant for Recurrent Clostridium Difficile Infection in Patients with Cancer Treated with Cytotoxic Chemotherapy: A Single-Institution Retrospective Case Series. Mayo Clinic Proceedings, 92, 1617-1624. https://doi.org/10.1016/j.mayocp.2017.08.016
|
[25]
|
Chen, D., Wu, J., Jin, D., Wang, B. and Cao, H. (2018) Fecal Microbiota Transplantation in Cancer Management: Current Status and Perspectives. International Journal of Cancer, 145, 2021-2031. https://doi.org/10.1002/ijc.32003
|
[26]
|
Maleki, S., Lenehan, J., Burton, J., Silverman, M., Parvathy, S.N., El-Hajjar, M., et al. (2020) P864 Combination of Fecal Microbiota Transplantation from Healthy Donors with Anti-PD1 Immunotherapy in Treatment-Naïve Advanced or Metastatic Melanoma Patients. Journal for ImmunoTherapy of Cancer, 8, A11. https://doi.org/10.1136/lba2019.17
|
[27]
|
Zhao, W., Lei, J., Ke, S., Chen, Y., Xiao, J., Tang, Z., et al. (2023) Fecal Microbiota Transplantation plus Tislelizumab and Fruquintinib in Refractory Microsatellite Stable Metastatic Colorectal Cancer: An Open-Label, Single-Arm, Phase II Trial (RENMIN-215). eClinicalMedicine, 66, Article ID: 102315. https://doi.org/10.1016/j.eclinm.2023.102315
|
[28]
|
Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., et al. (2019) Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178, 795-806.e12. https://doi.org/10.1016/j.cell.2019.07.008
|
[29]
|
Tintelnot, J., Xu, Y., Lesker, T.R., Schönlein, M., Konczalla, L., Giannou, A.D., et al. (2023) Microbiota-Derived 3-IAA Influences Chemotherapy Efficacy in Pancreatic Cancer. Nature, 615, 168-174. https://doi.org/10.1038/s41586-023-05728-y
|
[30]
|
Machida, K. and Tahara, S.M. (2022) Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-Like Cells. Cancers, 14, Article No. 2381. https://doi.org/10.3390/cancers14102381
|