|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., et al. (2021) The Role of Short-Chain Fatty Acids in Intestinal Barrier Function, Inflammation, Oxidative Stress, and Colonic Carcinogenesis. Pharmacological Research, 165, Article ID: 105420. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kanani, A., Veen, T. and Søreide, K. (2021) Neoadjuvant Immunotherapy in Primary and Metastatic Colorectal Cancer. British Journal of Surgery, 108, 1417-1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Aldahhan, R., Almohazey, D. and Khan, F.A. (2022) Emerging Trends in the Application of Gold Nanoformulations in Colon Cancer Diagnosis and Treatment. Seminars in Cancer Biology, 86, 1056-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Feng, Y., Yuan, Q., Newsome, R.C., Robinson, T., Bowman, R.L., Zuniga, A.N., et al. (2023) Hematopoietic-Specific Heterozygous Loss of DNMT3a Exacerbates Colitis-Associated Colon Cancer. Journal of Experimental Medicine, 220, e20230011. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gu, L., Liu, Y., Jiang, C., Sun, L. and Zhou, H. (2020) Identification and Clinical Validation of Metastasis-Associated Biomarkers Based on Large-Scale Samples in Colon-Adenocarcinoma. Pharmacological Research, 160, Article ID: 105087. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Morita, R., Hirohashi, Y., Torigoe, T., Ito-Inoda, S., Takahashi, A., Mariya, T., et al. (2016) Olfactory Receptor Family 7 Subfamily C Member 1 Is a Novel Marker of Colon Cancer-initiating Cells and Is a Potent Target of Immunotherapy. Clinical Cancer Research, 22, 3298-3309. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., et al. (2022) Cancer Treatment and Survivorship Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 409-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhou, J., Foroughi pour, A., Deirawan, H., Daaboul, F., Aung, T.N., Beydoun, R., et al. (2023) Integrative Deep Learning Analysis Improves Colon Adenocarcinoma Patient Stratification at Risk for Mortality. eBioMedicine, 94, Article ID: 104726. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, B., Kong, X., Wang, R., et al. (2021) CLK2 Promotes Occurrence and Development of Non-Small Cell Lung Cancer. Journal of BUON, 26, 58-64.
|
|
[11]
|
ElHady, A.K., El‐Gamil, D.S., Abadi, A.H., Abdel‐Halim, M. and Engel, M. (2022) An Overview of CDC2‐Like Kinase 1 (CLK1) Inhibitors and Their Therapeutic Indications. Medicinal Research Reviews, 43, 343-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhou, Q., Lin, M., Feng, X., Ma, F., Zhu, Y., Liu, X., et al. (2020) Targeting CLK3 Inhibits the Progression of Cholangiocarcinoma by Reprogramming Nucleotide Metabolism. Journal of Experimental Medicine, 217, e20191779. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jiang, N., Bénard, C.Y., Kébir, H., Shoubridge, E.A. and Hekimi, S. (2003) Human CLK2 Links Cell Cycle Progression, Apoptosis, and Telomere Length Regulation. Journal of Biological Chemistry, 278, 21678-21684. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lin, J., Lin, G., Chen, B., Yuan, J. and Zhuang, Y. (2022) CLK2 Expression Is Associated with the Progression of Colorectal Cancer and Is a Prognostic Biomarker. BioMed Research International, 2022, Article ID: 7250127. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, T., Jin, K., Zhou, H., Liao, Z., Zhang, H., Shi, S., et al. (2023) Deubiquitinating PABPC1 by USP10 Upregulates CLK2 Translation to Promote Tumor Progression in Pancreatic Ductal Adenocarcinoma. Cancer Letters, 576, Article ID: 216411. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Deshmukh, V., O’Green, A.L., Bossard, C., Seo, T., Lamangan, L., Ibanez, M., et al. (2019) Modulation of the WNT Pathway through Inhibition of CLK2 and DYRK1A by Lorecivivint as a Novel, Potentially Disease-Modifying Approach for Knee Osteoarthritis Treatment. Osteoarthritis and Cartilage, 27, 1347-1360. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Blum, A., Wang, P. and Zenklusen, J.C. (2018) SnapShot: TCGA-Analyzed Tumors. Cell, 173, 530. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Luo, M., Zhao, C., Zhao, Y., Wang, Y. and Li, P. (2024) Identification of Homer Protein Homolog 3 as a Prognostic Marker of Colon Adenocarcinoma. Heliyon, 10, e33344. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yu, B., Su, J., Shi, Q., Liu, Q., Ma, J., Ru, G., et al. (2022) KMT5A-Methylated SNIP1 Promotes Triple-Negative Breast Cancer Metastasis by Activating YAP Signaling. Nature Communications, 13, Article No. 2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Y., Li, Q., Liu, H., Tang, H., Yang, H., Wu, D., et al. (2023) MKRN1 Promotes Colorectal Cancer Metastasis by Activating the TGF-β Signalling Pathway through SNIP1 Protein Degradation. Journal of Experimental & Clinical Cancer Research, 42, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wilton, J., de Mendonça, F.L., Pereira-Castro, I., Tellier, M., Nojima, T., Costa, A.M., et al. (2023) Pro-Inflammatory Polarization and Colorectal Cancer Modulate Alternative and Intronic Polyadenylation in Primary Human Macrophages. Frontiers in Immunology, 14, Article ID: 1182525. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tang, Y., Ni, A., Sun, L., Li, S. and Li, G. (2024) Analysis of the Upregulated Expression Mechanism of Apoptotic Chromatin Condensation Inducer 1 in Hepatocellular Carcinoma Based on Bioinformatics. Turkish Journal of Gastroenterology, 35, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ma, Y., Gao, F. and Liu, Y. (2024) CLK3 Positively Promoted Colorectal Cancer Proliferation by Activating IL-6/STAT3 Signaling. Experimental Cell Research, 440, Article ID: 114132. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jang, J.Y. (2014) Bowel Preparations as Quality Indicators for Colonoscopy. World Journal of Gastroenterology, 20, 2746-2750. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Berry, E., Hostetter, J., Bachtold, J., Zamarripa, S. and Argenbright, K.E. (2024) Evaluating Colonoscopy Quality by Performing Provider Type. JNCI: Journal of the National Cancer Institute, 116, 1264-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lu, J., Annunziata, F., Sirvinskas, D., Omrani, O., Li, H., Rasa, S.M.M., et al. (2022) Establishment and Evaluation of Module-Based Immune-Associated Gene Signature to Predict Overall Survival in Patients of Colon Adenocarcinoma. Journal of Biomedical Science, 29, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Estevez-Garcia, P., Lopez-Calderero, I., Molina-Pinelo, S., Muñoz-Galvan, S., Salinas, A., Gomez-Izquierdo, L., et al. (2013) Spinophilin Loss Correlates with Poor Patient Prognosis in Advanced Stages of Colon Carcinoma. Clinical Cancer Research, 19, 3925-3935. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gan, B., He, R., Zhang, Y., Wei, D., Hu, X. and Chen, G. (2018) Downregulation of HOXA3 in Lung Adenocarcinoma and Its Relevant Molecular Mechanism Analysed by RT-QPCR, TCGA and in Silico Analysis. International Journal of Oncology, 53, 1557-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Pei, J., Zhao, Z., Sun, Z., Gu, W., Zhu, J., Zhu, J., et al. (2022) Development and Validation of a Novel Classification Scheme for Combining Pathological T Stage and Log Odds of Positive Lymph Nodes for Colon Cancer. European Journal of Surgical Oncology, 48, 228-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhong, Y., Yang, L., Xiong, F., He, Y., Tang, Y., Shi, L., et al. (2021) Long Non-Coding RNA AFAP1-AS1 Accelerates Lung Cancer Cells Migration and Invasion by Interacting with SNIP1 to Upregulate C-myc. Signal Transduction and Targeted Therapy, 6, Article No. 240. [Google Scholar] [CrossRef] [PubMed]
|