[1]
|
Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S., et al. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610. https://doi.org/10.1001/jama.2016.10924
|
[2]
|
de Boer, I.H. (2013) Kidney Disease and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care, 37, 24-30. https://doi.org/10.2337/dc13-2113
|
[3]
|
魏倩, 张锦. 2型糖尿病肾病不同时期的胰岛素抵抗分析[J]. 中国中西医结合肾病杂志, 2010, 11(1): 50-52.
|
[4]
|
韩爽, 徐弘昭, 许钟镐. 胰岛素抵抗在糖尿病及糖尿病肾病进展中的作用[J]. 中国实验诊断学, 2017, 21(2): 368-371.
|
[5]
|
赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[J]. 中国糖尿病杂志, 2016, 24(2): 169-172.
|
[6]
|
Turner, N. and Heilbronn, L.K. (2008) Is Mitochondrial Dysfunction a Cause of Insulin Resistance? Trends in Endocrinology & Metabolism, 19, 324-330. https://doi.org/10.1016/j.tem.2008.08.001
|
[7]
|
瞿华, 郑怡, 宫晓莉, 等. 线粒体功能障碍在糖尿病并发症发病机制及治疗中的研究进展[J]. 中华内分泌代谢杂志, 2020, 36(2): 161-164.
|
[8]
|
Giacco, F. and Brownlee, M. (2010) Oxidative Stress and Diabetic Complications. Circulation Research, 107, 1058-1070. https://doi.org/10.1161/circresaha.110.223545
|
[9]
|
Do Nascimento, L.R. and Domingueti, C.P. (2019) MicroRNAs: New Biomarkers and Promising Therapeutic Targets for Diabetic Kidney Disease. Brazilian Journal of Nephrology, 41, 412-422. https://doi.org/10.1590/2175-8239-jbn-2018-0165
|
[10]
|
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015) Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, 13, 17-24. https://doi.org/10.1016/j.gpb.2015.02.001
|
[11]
|
尹频, 贺勇, 查何, 等. miR-451对肾小球系膜细胞增殖的抑制作用及其机制[J]. 中国生物制品学杂志, 2013, 26(12): 1748-1752.
|
[12]
|
Hur, W., Lee, J.H., Kim, S.W., Kim, J., Bae, S.H., Kim, M., et al. (2015) Downregulation of MicroRNA-451 in Non-Alcoholic Steatohepatitis Inhibits Fatty Acid-Induced Proinflammatory Cytokine Production through the AMPK/AKT Pathway. The International Journal of Biochemistry & Cell Biology, 64, 265-276. https://doi.org/10.1016/j.biocel.2015.04.016
|
[13]
|
Sankrityayan, H., Kulkarni, Y.A. and Gaikwad, A.B. (2019) Diabetic Nephropathy: The Regulatory Interplay between Epigenetics and MicroRNAs. Pharmacological Research, 141, 574-585. https://doi.org/10.1016/j.phrs.2019.01.043
|
[14]
|
Mohan, A., Singh, R.S., Kumari, M., Garg, D., Upadhyay, A., Ecelbarger, C.M., et al. (2016) Urinary Exosomal MicroRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PLOS ONE, 11, e0154055. https://doi.org/10.1371/journal.pone.0154055
|
[15]
|
张晶露, 邱琳, 雒晓春. 糖尿病肾病发病机制研究进展[J]. 医学综述, 2017, 23(8): 1623⁃1627.
|
[16]
|
Xiao, L., Zhu, X., Yang, S., Liu, F., Zhou, Z., Zhan, M., et al. (2014) Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy. Diabetes, 63, 1366-1380. https://doi.org/10.2337/db13-1412
|
[17]
|
冯俊, 马屹茕, 陈朝威, 丁国华. 线粒体复合体在肾脏疾病中的研究进展[J]. 中华肾脏病杂志, 2020(3): 247-252.
|
[18]
|
Ayanga, B.A., Badal, S.S., Wang, Y., Galvan, D.L., Chang, B.H., Schumacker, P.T., et al. (2016) Dynamin-Related Protein 1 Deficiency Improves Mitochondrial Fitness and Protects against Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology, 27, 2733-2747. https://doi.org/10.1681/asn.2015101096
|
[19]
|
Czajka, A. and Malik, A.N. (2016) Hyperglycemia Induced Damage to Mitochondrial Respiration in Renal Mesangial and Tubular Cells: Implications for Diabetic Nephropathy. Redox Biology, 10, 100-107. https://doi.org/10.1016/j.redox.2016.09.007
|
[20]
|
Ma, T., Zhu, J., Chen, X., Zha, D., Singhal, P.C. and Ding, G. (2013) High Glucose Induces Autophagy in Podocytes. Experimental Cell Research, 319, 779-789. https://doi.org/10.1016/j.yexcr.2013.01.018
|
[21]
|
Bitarte, N., Bandres, E., Boni, V., Zarate, R., Rodriguez, J., Gonzalez-Huarriz, M., et al. (2011) MicroRNA-451 Is Involved in the Self-Renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells. Stem Cells, 29, 1661-1671. https://doi.org/10.1002/stem.741
|
[22]
|
Pan, X., Wang, R. and Wang, Z. (2013) The Potential Role of miR-451 in Cancer Diagnosis, Prognosis, and Therapy. Molecular Cancer Therapeutics, 12, 1153-1162. https://doi.org/10.1158/1535-7163.mct-12-0802
|
[23]
|
Cao, J., Da, Y., Li, H., Peng, Y. and Hu, X. (2020) Upregulation of MicroRNA-451 Attenuates Myocardial I/R Injury by Suppressing HMGB1. PLOS ONE, 15, e0235614. https://doi.org/10.1371/journal.pone.0235614
|
[24]
|
Bai, X., Geng, J., Zhou, Z., Tian, J. and Li, X. (2016) MicroRNA-130b Improves Renal Tubulointerstitial Fibrosis via Repression of Snail-Induced Epithelial-Mesenchymal Transition in Diabetic Nephropathy. Scientific Reports, 6, Article No. 20475. https://doi.org/10.1038/srep20475
|
[25]
|
Zhuo, S., Yang, M., Zhao, Y., Chen, X., Zhang, F., Li, N., et al. (2016) MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis. Diabetes, 65, 3276-3288. https://doi.org/10.2337/db16-0166
|
[26]
|
Wang, W., Zhang, L., Wang, Y., Ding, Y., Chen, T., Wang, Y., et al. (2017) Involvement of miR-451 in Resistance to Paclitaxel by Regulating YWHAZ in Breast Cancer. Cell Death & Disease, 8, e3071-e3071. https://doi.org/10.1038/cddis.2017.460
|
[27]
|
Karolina, D.S., Armugam, A., Tavintharan, S., Wong, M.T.K., Lim, S.C., Sum, C.F., et al. (2011) MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus. PLOS ONE, 6, e22839. https://doi.org/10.1371/journal.pone.0022839
|
[28]
|
Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., et al. (2011) MicroRNAs 103 and 107 Regulate Insulin Sensitivity. Nature, 474, 649-653. https://doi.org/10.1038/nature10112
|
[29]
|
Liang, C., Gao, L., Liu, Y., Liu, Y., Yao, R., Li, Y., et al. (2019) MiR-451 Antagonist Protects against Cardiac Fibrosis in Streptozotocin-Induced Diabetic Mouse Heart. Life Sciences, 224, 12-22. https://doi.org/10.1016/j.lfs.2019.02.059
|
[30]
|
Sun, Y., Peng, R., Peng, H., Liu, H., Wen, L., Wu, T., et al. (2016) miR-451 Suppresses the NF-kappaB-Mediated Proinflammatory Molecules Expression through Inhibiting LMP7 in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 433, 75-86. https://doi.org/10.1016/j.mce.2016.06.004
|
[31]
|
孙艳. miR-451通过LMP7/NF-KappB信号通路调控小鼠糖尿病肾病的机制研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2016.
|
[32]
|
Mootha, V.K., Lindgren, C.M., Eriksson, K., Subramanian, A., Sihag, S., Lehar, J., et al. (2003) PGC-1α-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes. Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180
|
[33]
|
Patti, M.E., Butte, A.J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., et al. (2003) Coordinated Reduction of Genes of Oxidative Metabolism in Humans with Insulin Resistance and Diabetes: Potential Role of PGC1 and NRF1. Proceedings of the National Academy of Sciences, 100, 8466-8471. https://doi.org/10.1073/pnas.1032913100
|
[34]
|
张克交, 杨艳敏, 张彦栋, 等. 线粒体与胰岛素抵抗的关系研究进展[J]. 中国当代医药, 2019, 26(32): 16-19.
|
[35]
|
Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L. and Brand, M.D. (2013) Sites of Reactive Oxygen Species Generation by Mitochondria Oxidizing Different Substrates. Redox Biology, 1, 304-312. https://doi.org/10.1016/j.redox.2013.04.005
|
[36]
|
Su, Y., Chiou, W., Chao, S., Lee, M., Chen, C. and Tsai, Y. (2011) Ligustilide Prevents LPS-Induced iNOS Expression in RAW 264.7 Macrophages by Preventing ROS Production and Down-Regulating the MAPK, NF-κB and AP-1 Signaling Pathways. International Immunopharmacology, 11, 1166-1172. https://doi.org/10.1016/j.intimp.2011.03.014
|
[37]
|
Phosat, C., Panprathip, P., Chumpathat, N., Prangthip, P., Chantratita, N., Soonthornworasiri, N., et al. (2017) Elevated C-Reactive Protein, Interleukin 6, Tumor Necrosis Factor Alpha and Glycemic Load Associated with Type 2 Diabetes Mellitus in Rural Thais: A Cross-Sectional Study. BMC Endocrine Disorders, 17, Article No. 44. https://doi.org/10.1186/s12902-017-0189-z
|
[38]
|
徐海波, 闫晓光, 钟威. 新诊断2型糖尿病患者血清Nesfatin-1α肿瘤坏死因子-α水平与胰岛素抵抗的相关性研究[J]. 中国糖尿病杂志, 2017, 25(1): 45-48.
|
[39]
|
Zhang, Y. and Ye, J. (2012) Mitochondrial Inhibitor as a New Class of Insulin Sensitizer. Acta Pharmaceutica Sinica B, 2, 341-349. https://doi.org/10.1016/j.apsb.2012.06.010
|
[40]
|
T. Barry Levine Arlene Bradley Levine. 代谢综合征与心血管疾病[M]. 张华, 张代富, 译. 北京: 人民出版社, 2010: 28-29.
|
[41]
|
黄宇理, 包宗明. 冠心病患者血浆8-表氧-前列腺素F2α和胰岛素抵抗的变化及临床意义[J]. 中国循证心血管医学杂志, 2011, 3(2): 121-123.
|
[42]
|
Steinberg, H.O., Paradisi, G., Hook, G., Crowder, K., Cronin, J. and Baron, A.D. (2000) Free Fatty Acid Elevation Impairs Insulin-Mediated Vasodilation and Nitric Oxide Production. Diabetes, 49, 1231-1238. https://doi.org/10.2337/diabetes.49.7.1231
|